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Abstract: The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth
Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of
users/devices in a short period of time. The BLE standard specifies a wide range of configurable
parameter values that determine the discovery process and need to be set according to the particular
application requirements. Many previous works have been addressed to investigate the discovery
process through analytical and simulation models, according to the ideal specification of the standard.
However, measurements show that additional scanning gaps appear in the scanning process, which
reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices
and respond to both regular patterns and variable events associated with the decoding process.
We have demonstrated that these non-idealities, which are not taken into account in other studies,
have a severe impact on the discovery process performance. Extensive performance evaluation for
a varying number of devices and feasible parameter combinations has been done by comparing
simulations and experimental measurements. This work also includes a simple mathematical model
that closely matches both the standard implementation and the different chipset peculiarities for any
possible parameter value specified in the standard and for any number of simultaneous advertising
devices under scanner coverage.

Keywords: Bluetooth Low Energy; neighbor discovery; non-detection probability; discovery latency;
real testbed

1. Introduction

Bluetooth is a technology usually associated with short-range personal area networks with a low
density of active devices, and many users only see it as the technology employed by their hands-free
devices [1,2]. However, this vision of Bluetooth is changing with the appearance of the Internet of
Things (IoT), connecting billions of devices and services anytime and everywhere, generating an
incredible amount of new applications in many fields: wearable devices, health care, smart homes,
connected cars, smart cities, etc. [3,4].

Some of the IoT applications [5], which require mobility and global connectivity based on a cellular
network, will use 4G technologies such as LTE Machine to Machine (LTE-M) or Narrowband IoT
(NB-IoT) and 5G technologies in the future. Nevertheless, most of the IoT devices will not use cellular
wireless systems; instead, they will employ technologies that operate in Industrial Scientific Medical
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(ISM) unlicensed bands, such as Wi-Fi, ZigBee, Bluetooth and others, which will form what is known
as capillary networks [6]. This is one of the reasons why Bluetooth introduced from its Version 4.0 [7]
a low energy variant known as Bluetooth Smart or Bluetooth Low Energy (BLE). BLE includes lower
power modes, lower complexity and lower cost, which are indispensable characteristics for making it
a suitable technology for the IoT in the following years.

As any emerging technology, BLE has raised a wide range of new questions and aspects that
need to be characterized: its power efficiency, latency, range, throughput, etc. Searching for a
global perspective that takes into account all of them for the whole variety of BLE-based services
and applications is practically unapproachable. In [8], the BLE protocol stack is described, and
the impact of several parameters on its performance is investigated, showing that configuration
parameters have a big impact on the tradeoff between performance and energy consumption. Many
other studies evaluate new services and applications based on the BLE technology: healthcare, home
automation, proximity sensing, consumer electronics, security, vehicular communications, sport, etc.
Some examples are the BLE-based blood pressure monitoring system developed in [9], the remote
lock system designed in [10] for pervasive computing environments, the fuzzy logic-based mechanism
for energy management in home automation presented in [11] or the studies about the potential
feasibility of BLE technology for intra-vehicular wireless sensor networks [12] and for inter-vehicular
communications [13]. Among that range of applications, we focus our analysis on high density
scenarios. These involve the discovery of a large number of users/devices in a short period of time,
such as race tracking for sport events, cattle control, access control, goods traceability, etc.

The purpose of this paper is to evaluate the performance of BLE as a technology that enables
fast and reliable discovery and identification in high density environments from a real perspective,
including the non-idealities present in off-the-shelf devices. The probability of not discovering a device
in a given period of time depends on a vast number of variables and parameters. Some of them
are technology dependent, such as the scan window, scan interval, advertising interval, frame size,
advertising channels, transmitted power, etc., and others come determined by the environment:
interference, noise, collisions, received signal level, etc. In this paper, we will analyze the probability
of not detecting a frame of a system with multiple advertisers (devices transmitting beacon frames
periodically) and one device continuously scanning for those frames. Once we obtain this probability,
several other metrics will be derived, which result in being very useful for the IoT world, such as
the average number of transmissions before detection, the detection latency, the average number of
detections within a window of opportunity, etc.

The importance of the topic and its expected impact in the following years is revealed by
previous works in the literature, which focus on similar aspects, such as the modeling of the discovery
latency. For example, [14] proposes an analytical model for evaluating a three-channel-based neighbor
discovery procedure, further enhanced in [15] with real experiments to analyze the energy consumption.
The work in [8] evaluates the impact of several of its parameters on its performance, including also real
measurements of the energy consumption. Another example of the analysis of the latency performance
combined with simulation experiments can be found in [16], where multiple BLE pairs (advertisers
and scanners) are considered.

The most recent work in [17] improves the models of [14,15] using the Chinese remainder
theorem. This work analyzes the best tradeoff between discovery latency and energy consumption
considering a variable scan window, scan interval and advertising intervals and concluding that the
best configuration comes when the advertising interval is equal to the scan window.

All of the aforementioned works are based on the premise that the scanner behavior matches
exactly what is derived from the standard and do not consider non-idealities present in real devices.
For example, one could consider that when the scan window is matched with the scan interval, the
scanner should be doing a continuous scan, i.e., scanning 100% of the time. However, along the paper,
we will demonstrate that this is not true, and the impact of these non-idealities is very significant on
the results and calculations derived from them. Measurements show that additional gaps appear in
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the scanning process, which reduce the discovery capabilities. These gaps have been identified in all
of the measured devices and respond to both regular patterns and variable events associated with
the decoding process. In addition, we propose a simple mathematical model for the non-detection
probability and the main performance parameters derived from it, which includes both the standard
implementation and the non-idealities present in the devices. The results have been validated with
extensive experimentation in a real testbed, and simulations have been carried out to extrapolate the
results for high density scenarios. The mathematical model will be a valuable tool to easily obtain
an upper bound of discovery capacities and to select the desirable parameters values according to
a particular BLE application.

The structure of the paper is as follows. In Section 2, we shortly describe the standard BLE, and we
present the experimental analysis performed in order to characterize the non-idealities existing in the
manufactured chipset scanner operation. In Section 3, we propose a simple mathematical model that
meets both the standard implementation and the manufactured chipset peculiarities. Numerical results
from the mathematical model, the simulation and the experimental measurements of real devices are
presented and discussed in Section 4. Finally, the main conclusions are summarized in Section 5.

2. BLE Overview

BLE was first introduced in Version 4.0 of the Bluetooth Core Specification [7]. The low energy
system includes features designed to enable products that require lower current consumption,
less complexity and reduced cost compared to Bluetooth legacy products. The system is also designed
for use cases and applications with lower data rates and has shorter duty cycles. Like legacy Bluetooth,
the BLE radio operates in the unlicensed 2.4 GHz ISM band using forty physical channels separated
by 2 MHz. The neighbor discovery process is one of the main modifications that were introduced
in BLE. Unlike classical Bluetooth, BLE dedicates three special channels (37, 38 and 39), called
advertising channels, to the discovery of other BLE devices, initiating a connection and broadcasting
data. Channels from 0 to 36 are used for data exchange between connected devices. The BLE system
employs a frequency hopping transceiver to combat interference and fading, but this mechanism is not
employed on the advertisement transmissions. Hence, the advertising channels have been strategically
chosen to reduce interference from other systems that coexist in the 2.4 GHz band. Low energy
radio operation uses a Gaussian Frequency Shift Keying (GFSK) modulation to minimize transceiver
complexity. The symbol rate is 1 Mbaud and supports a bitrate of 1 Mbps.

The objective of this work is to discover and identify the devices present in the operating scenario
in the shortest possible time, but with no additional data exchange. Due to this, for the purpose of
the paper, only non-connectable undirected advertising events are relevant, as no connections will be
established in any case. Devices that transmit advertising packets on the advertising PHY channels
are referred to as advertisers, whereas the devices that enter in scanning mode, wanting to discover
its neighbors without the intention of establishing a connection after the discovery, are referred to
as scanners. As shown in Figure 1, in order to announce its presence, the advertiser periodically
generates non-connectable undirected advertising events, which consist of a sequence of packets in
the three advertising channels indexed by 37, 38 and 39. That is, the PHY channel changes for each
packet sent by the advertiser in the same event following a round-robin cycle 37→ 38→ 39→ 37→
38→ 39→ · · · . The successive advertisement events are separated by a predefined advertisement
interval. To avoid repeated collisions between simultaneous advertising devices, a random delay
is added to the advertisement interval. The scanner enters into the scanning mode in periodic time
intervals called the scan interval and listens to the advertising messages for a fixed time called the
scan window. The scanner changes its scanning channel after each scan interval following the already
explained sequence.

Depending on the type of advertising packet, the scanner may make a request to the advertiser on
the same advertising PHY channel, which may be followed by a response from the advertiser. In this
study, we analyze only non-connectable advertising events.
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Figure 1. Transmissions on BLE advertising PHY channels and the frame structure.

The advertising frame or advertising Packet Data Unit (PDU) follows the structure depicted in the
lowest part of Figure 1. The payload is variable from eight to 39 raw bytes; however, in our experiments,
the payload consists of the ADV address, a three-byte flags field to allow the reading of the advertising
by standard mobile applications and the data itself. Since the transmission bitrate is 1 Mbps, Table 1
summarizes the duration of the frames for the three data sizes employed in our analysis.

Table 1. Frame duration for the employed sizes.

Data Bytes Total Frame Bytes Duration

1 22 176 µs
10 31 248 µs
26 47 376 µs

2.1. Characterization of Non-Idealities Present in Real Devices

From our previous experience, we know that the behavior of real devices is not ideal. For example,
one could suppose that setting the same value to the scan window (TscanWindow) and scan interval
(TscanInterval) in the scanning device would keep the receiver in a continuous scan mode. However, this
is not true, and the devices present short intervals during which they are not scanning. Some of
these gaps are present even when there is only the scanner in the scenario, while others appear when
the scanner decodes advertising frames. These gaps should not be ignored because even if part of
a frame is received during a gap, the frame would not be detected. Thus, below, we will proceed
to the characterization of these gaps, differentiating the pauses exclusively due to the receiver and
the ones appearing because of processing frames. To carry out this characterization, we analyzed the
instantaneous power consumption of the devices using a current sensing solution based on the design
of [18], which accurately detects load currents between 0 A and 1 A. Unlike the work in [15], in our
case, the aim is not to analyze the power consumption of the devices, but instead, to extract behavior
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patterns that allow us to determine the amount of time during which a frame cannot be detected.
The final implementation of the sensor testbed is shown in Figure 2.

Current sensors

RF Shield box

BLE
scanner

BLE advertisers

Power
supply

Digital
oscilloscope

Laptop

Figure 2. Testbed schematic setup.

2.1.1. Scanning Gaps Caused Exclusively by the Scanning Device

We analyzed the performance of several devices of different BLE chipset manufacturers, including
Broadcom, Cambridge Silicon Radio, Nordic Semiconductor, Bluegiga and Texas Instruments.
We configured all of them to scan continuously, i.e., fixing the scan window and the scan interval to
the same value. The reason behind this decision is to avoid other effects that would hinder the desired
characterization, such as the fluctuation phenomenon described in [17,19] under specific combinations
of these two values. Once the devices are characterized, analyzing the behavior for the unmatched
scan window and scan interval values can be easily performed.

From the observed measurements, we have concluded that all scanning devices follow with slight
variations two behavior patterns, referred to as Type 1 and Type 2. The first pattern schematic is shown
in Figure 3a, where it can be observed that a unique gap appears in every scan interval. This pause is
associated with the change of the scanning frequency. It has been measured that for all Type 1 devices,
this gap has a fixed duration of Tf qChgGap = 1.1 ms, regardless of the employed scan interval.

TfqChgGap TfqChgGap

TscanWindow=TscanInterval

(a)

TinterFqChgGap

TgapInt1 TgapInt1

TgapInt2TfqChgGap TfqChgGap

TscanWindow=TscanInterval

(b)

Figure 3. Continuous scan behavior. (a) Type 1 scanning devices; (b) Type 2 scanning devices.
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On the other hand, other devices follow the pattern shown in Figure 3b. As can be observed, the
scanning frequency change gap is also present, but there are also other periodic pauses of less duration,
which also affect the performance of the system. We will name TinterFqChgGap the duration of these gaps
and TgapInt1 and TgapInt2 the periods between them. It must be noted that the pattern shows a peculiar
event (highlighted in red) where only one gap of duration TinterFqChgGap is present when two of them
separated by TgapInt2 were expected. This effect happens always in the penultimate group of double
gaps. The authors want to remark that the description of the device behavior presented here is based
on real measurements. This behavior depends on the specific device firmware and hardware, which is
designed and implemented by the chipset manufacturers.

As an example, the numerical values for the reference device, which follows the Type 2 pattern
for a TscanWindow = TscanInterval = 500 ms, are shown in Table 2. However, as opposed to the devices
that follow the Type 1 pattern, Tf qChgGap depends on the scan interval used, as depicted in Figure 4.

Table 2. Parameter values for a continuous scan with TscanWindow = TscanInterval = 500 ms.

Parameter
Value

Type 1 Pattern Type 2 Pattern

Tf qChgGap 1.1 ms 16.05 ms
TinterFqChgGap - 300 µs

TgapInt1 - 16.82 ms
TgapInt2 - 4.3 ms

Figure 4 depicts the evolution of Tf qChgGap versus the selected scan interval. As stated before, the
Tf qChgGap duration for the devices that follow the Type 1 pattern is constant, and the ones following
the Type 2 pattern increase linearly. In the same figure, the percentage between Tf qChgGap and the scan
interval is shown, reflecting the importance of these gaps especially for low scan interval values.
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Figure 4. Frequency change gap duration for different scan intervals.

2.1.2. Scanning Gaps Caused by the Processing of Frames

So far, it may seem that devices following the Type 1 pattern have better performance than devices
following the second pattern; however, next, we will see that global performance depends also on the
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number of received frames. This happens because when a frame is received, the scanner abandons
momentarily the scanning state to process the frame; producing, in this way, different pauses from the
already analyzed ones.

To characterize this behavior, we followed the schema depicted in Figure 2. Now, we included
14 devices manufactured by RedBearLab, specifically the BLE Nano based on Nordic nRF51822
SoC [20] as advertisers and a second current sensor for measuring simultaneously in the oscilloscope
the behavior of the advertisers and the scanner. In this setup, the laptop only controlled and powered
the scanner.

Figure 5 is an example where the consumption of an advertiser in channels 37, 38 and 39 (green line)
and the behavior of a scanner based on the Type 1 pattern (blue line) are depicted. In red, the start and
the end of the gap due to the frame processing are represented. As can be observed, at that moment,
the receiver was scanning Frequency 38, as it detected the second frame of the advertisement event.

These gaps are also dependent on the device. In order to determine their statistics, we
implemented an automatized measurement process to analyze the duration of the pauses for different
frame sizes and for the two reference devices (Type 1 and Type 2 patterns). To calculate the duration
and to discard invalid samples, we apply a step detector in the transmitted and received signal.
We consider the beginning of the gap when a falling edge of the transmitted signal coincides with
another falling edge of the received signal within a margin of 200 samples (20 µs). The end of the
gap is determined by the immediately next rising edge of the received signal. The realizations were
formed by 1000 samples, and the step detector implemented was based on the Canny algorithm for
one dimension [21].
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Figure 5. Consumption example of the advertiser/scanner.

From this analysis, we can extract the following conclusions depicted in Figure 6:

• The reference device with the Type 1 pattern has a uniform distributed processing gap duration
(τdecodGap) with a minimum value (TminDecodGap) of 350 µs and a maximum value (TmaxDecodGap)
of 1.6 ms.

• For the second device (Type 2 pattern), the duration of the pause is considerably lower (194 µs)
and is practically constant.

• The advertisement frame length does not have an effect in any case.
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Figure 6. Continuous scan behavior. (a) Type 1 pattern; (b) Type 2 pattern.

Figure 7 summarizes the combined effect of both gap types for the first reference device in
a scenario with several advertisers (blue line). A total of ten interruptions of the scanning (yellow line)
can be observed. We will analyze each of these pauses with the corresponding advertisement events
prior to the gap.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Figure 7. Combined effect of both types of gaps.

All of the pauses correspond to processing gaps except from the penultimate (i.e., the ninth
gap), which is due to the change of scanning frequency. At the beginning of the capture, it can be
observed that the receiver is scanning at Frequency 39 because the processing frame gap is present in
the last frame of the advertisement events, and after it (last gap), the detected frame is the first of the
advertisement event.

If we analyze the rest of the gaps in detail, we can see that the first gap comes after an overlap of
two advertisements events. From these two events, only the first is detected, while the second one
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is missed because the last frame of the event, which matches the current scanning frequency, arrives
while the receiver is still processing the frame of the first event.

The second, third, fourth, sixth and eighth gaps correspond to the detection of single
advertisements events on Frequency 39. It should be noticed that their duration is variable.

The fifth and seventh gaps also correspond to an overlap of several advertisement events, like the
first. However, in the last ones, the number of advertisement events overlapping is greater attending
to the amplitude depicted. In both cases, only one of the advertisements is detected, while the rest are
not because the receiver is processing the detected frame.

Therefore, although the first impression is that the scanners that follow the Type 1 pattern have
better performance because their scanning frequency change gaps are smaller, in scenarios with a high
density of transmitters, the processing gaps gain importance, and both effects should be considered.

3. Analytical Model

In this section, our objective is to define a simple, but still accurate mathematical model to
describe the BLE device discovering process in full accordance with the BLE specification and be able
to reflect the behavior particularities of different BLE chipset manufacturers. We start from a simple
long-term characterization of the collision probability according to the ideal implementation of the
BLE specification. Then, we use it as a basis to derive the non-detection probability by including the
required adaptations to meet the non-idealities of real BLE chipset manufacturer implementations
presented in Section 2. Note that the non-detection probability depends on three main components:
collisions between advertisements packets, gaps in the scanning process of the scanner BLE and Block
Error Rate (BLER) due to channel and interference conditions. Next, we derive several parameters of
interest, such as the mean discovery latency and mean number of detections in the time spent (dwell
time) of an advertising BLE under the scanner coverage area. Finally, we prove that the proposed
model agrees with experimental measurements and the results derived from simulations for a small
and a high number of competing BLE devices.

The analytical model used for non-detection probability characterization takes into account the
parameters and variables summarized in Tables 3 and 4.

Table 3. Parameters included in the model.

Parameter Description

Tadv Transmission time of the advertisement PDU (ADV_PDU)
TadvInterval Fixed advertisement interval

TadvDelayMax Maximum value of the random backoff (standard: 10 ms)
τadvDelay Random backoff between advertisements: Uni f orm[0, TadvDelayMax]
TadvEvent Advertisement event interval: TadvInterval + τadvDelay

TscanInterval Scan interval
TscanWindow Scan window
Tf qChgGap Gap due to change of scanning frequency (Type 1 and 2 scanners)

TinterFqChgGap Duration of scattered gaps inside the scan interval (Type 2 scanner)
TgapInt1, TgapInt2 Time intervals between scattered gaps inside the scan interval (Type 2 scanner)

TminDecodGap Minimum value of processing gap after ADV_PDU detection
TmaxDecodGap Maximum value of processing gap after ADV_PDU detection

τdecodGap Processing gap after ADV_PDU detection. Uni f orm[TminDecodGap, TmaxDecodGap]
TscanGap Sum of durations of all the gaps occurred in the scan window

NscanWindow
interFqChgGap Number of scattered gaps inside the TscanWindow

NBLE
Total number of advertising devices that are in the coverage area of the scanner
and can be potentially colliding



Sensors 2017, 17, 499 10 of 23

Table 4. Variables included in the mathematical model.

Variable Description

Ppattern
scanGap Probability that a periodical scanning gap occurs

PdecodGap
Probability that a device causes a scanning interruption
between two consecutive advertisements

NNBLE
decodGap

Average number of devices that may be generating decoding gaps
within a TadvInterval + τadvDelay interval in a scenario with NBLE advertisers

PscanGap
noDetect Non-detection probability due to periodical scanning gaps

PdecodGap,NBLE
noDetect

Non-detection probability due to dynamic scanning gaps (decoding gaps)
in an scenario with NBLE advertisers

Pgap,NBLE
noDetect

Non-detection probability due to scanning gaps
(periodical and dynamic scanning gaps) in a scenario with NBLE advertisers

Pcol,NBLE
noDetect

Non-detection probability of a device due to collisions
in a scenario with NBLE advertisers

Pgap+col,NBLE
noDetect

Non-detection probability of a device due to collisions and gaps
in a scenario with NBLE advertisers

PNBLE
noDetect

Overall non-detection probability of a device due to collisions,
gaps and channel errors in a scenario with NBLE advertisers

NNBLE
advReq

Average number of ADV_PDU transmissions required before detection
of a device in a scenario with NBLE advertisers

DNBLE
detect Average detection delay of a device in a scenario with NBLE advertisers

tNBLE
interDetect

Average time between two consecutive detections of a device
in a scenario with NBLE advertisers

NNBLE
detect

Average number of detections of an advertiser BLE within a window of
opportunity (coverage time interval or dwell time) in a scenario with NBLE advertisers

The number of BLE devices involved in the analysis is NBLE + 1. A fixed device is configured as a
scanner, whereas the other NBLE devices are configured as advertisers.

In the first approach and in order to meet the requirements of applications where a number of
users need to be counted in a very short period of time, the scanner BLE fixes the same scan window
and scan interval values to keep the receiver scanning 100% of the time. A collision occurs when the
ADV_PDU transmissions of at least two advertisers are time overlapped on the same channel that
the receiver is scanning. We assume that the three channels are equally interfered and that all of the
devices keep the same event advertising timings. Then, we characterize the collision probability as if
the scanner were always scanning in the same channel and the advertisers were always transmitting
in this frequency.

In order to develop the analytical model, we note that in both the ideal and the real implementation,
the advertisement process for a device is independent of other devices, and it is not conditioned by
collisions or non-detections.

At a determined time instant, the collision probability of the ADV_PDU transmission of
a device with the ADV_PDU of other advertiser BLE devices is a stochastic process with memory.
The advertisement event interval (TadvEvent) is the sum of a fixed component (TadvInterval) and a pseudo
random variable (τadvDelay), and the transmission time of the ADV_PDU is fixed. Thus, the process
differs from a Markovian process. The collision probability of an ADV_PDU depends on the history
of transmissions of all BLE devices that coexist under the scanner coverage area. For instance,
in a straightforward scenario where NBLE = 2 and the two BLE devices enter into coverage of
the BLE scanner, the time difference among their first advertisements is confined to the interval
[0, TadvInterval + TadvDelayMax]. However, if the two BLE devices have previously collided in the first
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transmission (1st_Adv_Tx), the time difference among their respective sequent advertisement events
(2nd_Adv_Tx) is a random variable confined to the time interval [0, TadvDelayMax]. In the same way,
the time difference interval between the advertisements of the two devices in a 3rd_Adv_Tx, after
a collided transmission in the 1st_Adv_Tx and a non-collided transmission in the 2nd_Adv_Tx,
is confined to a time interval up to [0, 2 · TadvDelayMax − Tadv], and so on.

However, in a long-term and averaged analysis, we can simplify the collision probability
calculation. When a collision occurs, the probability that the transmission of a reference advertiser
(started in a time instant t) collides with another one, Pcol,2

noDetect, corresponds with the probability that
one neighbor device starts its own transmission in the interval [t− Tadv, t + Tadv]. As the mean time
between consecutive advertisement transmissions is TadvInterval + τadvDelay, the probability of collision

is 2·Tadv
TadvInterval+τadvDelay

. Finally, given that transmissions of the NBLE devices are independent, the collision
probability of a reference advertiser with any other of its neighbor devices is one minus the probability
of not colliding with any of them. Thus, the collision probability in a scenario with NBLE advertisers is
obtained with Equation (1).

Pcol,NBLE
noDetect = 1− (1− Pcol,2

noDetect)
NBLE−1 with Pcol,2

noDetect =
2·Tadv

TadvEvent
= 2·Tadv

TadvInterval+τadvDelay
(1)

Next, the characterization of interference from other communication systems and path loss
effects can be included by means of a BLER parameter on the unsuccessful reception probability of
an ADV_PDU. Non-detection probability in a scenario with NBLE advertisers (PNBLE

noDetect), including
collision effects and errors when ADV_PDUs do not collide, is obtained by Equation (2):

PNBLE
noDetect = Pcol,NBLE

noDetect + (1− Pcol,NBLE
noDetect ) · BLER (2)

3.1. Non-Detection Probability According to the Behavior of the Actual Chipsets

Now, we will include in the non-detection probability characterization the behavior particularities
of different BLE chipset manufacturers. As we have seen in Section 2, the scanners present short pauses
on the scanning, which we have compiled into two possible behavior patterns, shown in Figure 3.
The effects of these gaps on the non-detection probability will be included in the model by treating
separately the existence of the two types of pauses in which the scanner does not scan. That is:

The periodical scanning gaps (with fixed duration): which correspond to the fixed periods of time
in which the scanner does not scan. They are present even when there is only the scanning device in
the scenario. The non-detection probability due to these periods will be denoted by PscanGap

noDetect.
The dynamic scanning gaps (with fixed or variable duration): These interruptions in the scanning

process occur every time the scanner correctly detects a frame. As a consequence, they depend on
the number of advertisements the scanner is detecting and thus on the number of simultaneous
BLE advertisers under the scanner coverage. The non-detection probability due to these periods in
a scenario with NBLE advertising devices will be denoted by PdecodGap,BLE

noDetect .
In the next sections, we describe all considerations that allow us to derive the final expression of

PscanGap
noDetect and PdecodGap,BLE

noDetect .

3.1.1. Periodical Scanning Gaps

In a first approximation, assuming that the scanner is alone, the probability of a gap of this type
occurring (Ppattern

scanGap) is the ratio between the sum of the mean durations of all of the gaps occurring on

the scan window (denoted as TscanGap) and the TscanWindow. Ppattern
scanGap is calculated with Equation (3),

being NscanWindow
interFqChgGap the number of scattered gaps inside the TscanWindow and conveniently derived

from using the TscanWindow, Tf qChgGap, TinterFqChgGap, TgapInt1 and TgapInt2 parameters.

Ppattern
scanGap =

TscanGap

TscanWindow
=

Tf qChgGap+NscanWindow
interFqChgGap ·TinterFqChgGap

TscanWindow
(3)
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However, starting here, the question is what happens when simultaneous advertiser devices are
present in the system and how these gaps on the scanning affect the detection. In this case, we will see
that the operation mode of the scanner simplifies the characterization of this impact. We have verified
that if an advertisement is sent and during the reception time, the scanner has planned a periodic gap,
two possible overlapping cases can occur, with different effects:

1. If ADV_PDU transmission starts later than the start time of a periodic gap, the ADV_PDU is
not detected. In this case, the time intervals between consecutive gaps (TgapInt1 and TgapInt2) are
not affected.

2. If ADV_PDU frame reception is earlier than the start time of a periodic gap, this gap is postponed
until the end of reception, regardless of whether the reception is correct, or an error, or a collision
has occurred. In this case, the time interval between the postponed periodic gap and the following
gap is reduced with respect TgapInt1 or TgapInt2, because the planned start times of the following
gaps remain unchanged according to the pattern timing defined in the scanner device.

Moreover, we know that after successful advertisement receptions, the scanner introduces a gap
related to the decoding time. In this case, when the reception is correct, the decoding gap and also
the postponed gap scan should start simultaneously, but the scanner only applies the larger of them.
On the other hand, if an unsuccessful reception or a collision occurs, the periodic scan gap is applied
after the last frame involved in the collision is received.

The behavior described here is based on the analysis of real measurements of a testbed involving
up to 14 simultaneous devices operating under the parameters of the standard. This behavior depends
on the final manufacturer implementation of the firmware and hardware.

Furthermore, Ppattern
scanGap remains unchanged, according to (3). Therefore, the non-detection

probability (PscanGap
noDetect), according to Equation (4), depends on the probability of generating an

advertisement within the scanning gap period and is the same as Equation (3). Note that according to
the characterizations made in Section 2, Tf qChgGap and TinterFqChgGap are usually constant.

PscanGap
noDetect =

TscanGap

TscanWindow
=

Tf qChgGap+NscanWindow
interFqChgGap ·TinterFqChgGap

TscanWindow
(4)

3.1.2. Dynamic Scanning Gaps

These interruptions in the scanning process occur when the receiving device correctly detects
a frame. In order to derive PdecodGap,NBLE

noDetect , we first obtain the probability that a device causes a
scanning interruption between two consecutive advertisements (PdecodGap). In the first approach, if the
ADV_PDUs are always correctly detected, this corresponds to Expression (5):

PdecodGap =
τdecodGap

TadvInterval+τadvDelay
(5)

Nevertheless, since the advertisement transmission of a device has a certain probability of not
being detected in the presence of NBLE devices (including itself), the expression to be handled in
order to characterize the probability that the scanner enters in a decoding gap due to this advertiser is
obtained by Equation (6):

PdecodGap =
τdecodGap

TadvInterval+τadvDelay
=

τdecodGap ·(1−PNBLE
noDetect)

TadvInterval+τadvDelay
(6)

Starting from PdecodGap, we obtain the probability that the scanner enters in a decoding gap
in a scenario with NBLE advertisers. In this case, two advertisers cannot simultaneously generate
a decoding gap, but in the period of time between two advertisements of a reference device, its neighbor
devices may trigger NBLE − 1, NBLE − 2, · · · , 1 or no decoding gaps on the scanner, depending on their
detection probability. Therefore, we can calculate the mean time that the scanner generates a decoding
gap within a TadvInterval + τadvDelay interval by multiplying the average time of the decoding gap after
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ADV_PDU detection (τdecodGap) by the average number of devices that may be generating decoding

gaps (NNBLE
decodGap), according to Equation (7). Note that the system includes a finite population of

advertising devices, so the probability of having n decoding gaps is a binomial distribution. Finally,
the non-detection probability due to decoding gaps (PdecodGap,NBLE

noDetect ) is the probability of generating an
advertisement within a decoding gap period, which in this case is the probability of the scanner being
in a decoding gap period, given by Equation (8).

NNBLE
decodGap =

NBLE−1

∑
n=1

n ·
(

NBLE − 1
n

)
· (1− PNBLE

noDetect)
n ·
(

PNBLE
noDetect

)(NBLE−1)−n
(7)

PdecodGap,NBLE
noDetect =

τdecodGap ·N
NBLE
decodGap

TadvInterval+τadvDelay
(8)

It is important to keep in mind that PdecodGap,NBLE
noDetect depends on PNBLE

noDetect, and at the same time,

PdecodGap,NBLE
noDetect , in addition to PscanGap

noDetect, will modify the probability PdecodGap,NBLE
noDetect . Therefore, a recursive

process will be used to obtain them.
Once PscanGap

noDetect and PdecodGap,NBLE
noDetect are obtained, we must take into account the probability that

the scanner is in a scanning gap, regardless of whether it is a decoding gap or in a gap due to its
scan interruption pattern. According to the analysis made above, the two effects are characterized as
independent, by they could occur simultaneously. Thus, the approach (9) is used in order to compute
the non-detection probability (Pgap,NBLE

noDetect ) due to both effects.

Pgap,NBLE
noDetect = PscanGap

noDetect + PdecodGap,NBLE
noDetect − PscanGap

noDetect · P
decodGap,NBLE
noDetect (9)

Then, the probability of non-detection due to collisions and gaps (Pgap+col,NBLE
noDetect ) can be obtained

with Equation (2), by setting Pgap,NBLE
noDetect instead of BLER.

Pgap+col,NBLE
noDetect = Pcol,NBLE

noDetect + (1− Pcol,NBLE
noDetect ) · P

gap,NBLE
noDetect (10)

Finally, we will use the equations above to obtain PNBLE
noDetect in an iterative way according to the

algorithm shown in (11).

n← 0

Pgap+col,NBLE
noDetect (n)← Pcol,NBLE

noDetect (n) +
(

1− Pcol,NBLE
noDetect (n)

)
· PscanGap

noDetect(n)

n← n + 1
obtain PdecodGap,NBLE

noDetect (n) with Equations (7) and (8)
Pgap,NBLE

noDetect (n)← PscanGap
noDetect(n) + PdecodGap,NBLE

noDetect (n)− PscanGap
noDetect(n) · P

decodGap,NBLE
noDetect (n)

Pgap+col,NBLE
noDetect (n)← Pgap+col,NBLE

noDetect (n− 1) +
(

1− Pgap+col,NBLE
noDetect (n− 1)

)
· Pgap,NBLE

noDetect (n)

while
(

Pgap+col,NBLE
noDetect (n)− Pgap+col,NBLE

noDetect (n− 1)
)
> ε

{
n← n + 1
obtain PdecodGap,NBLE

noDetect (n) with Equations (7) and (8)
Pgap,NBLE

noDetect (n)← PscanGap
noDetect(n) + PdecodGap,NBLE

noDetect (n)− PscanGap
noDetect(n) · P

decodGap,NBLE
noDetect (n)

Pgap+col,NBLE
noDetect (n)← Pgap+col,NBLE

noDetect (n− 1) +
(

1− Pgap+col,NBLE
noDetect (n− 1)

)
· Pgap,NBLE

noDetect (n)

}
Pgap+col,NBLE

noDetect ← Pgap+col,NBLE
noDetect (n)

(11)
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Similar to Equation (2), characterization of interference from other communication systems and
path loss effects can also be included as the input BLER parameter in order to compute the overall
non-detection probability using (12):

PNBLE
noDetect = Pgap+col,NBLE

noDetect + (1− Pgap+col,NBLE
noDetect ) · BLER (12)

3.2. Derived Parameters of Interest

In this section, we derive several parameters of interest, such as the mean discovery latency and
the mean number of detections during the time that an advertising BLE is under the scanner coverage
area (dwell time), when there are NBLE simultaneous advertisers.

The average number of ADV_PDU transmissions required before detection (NNBLE
advReq) can be

straightforwardly obtained by:

NNBLE
advReq = 1 ·

(
1− PNBLE

noDetect

)
+

∞

∑
k=1

(1 + k) ·
(

1− PNBLE
noDetect

) (
PNBLE

noDetect

)k

= 1 + PNBLE
noDetect(

1−PNBLE
noDetect

) (13)

The average detection delay (DNBLE
detect) is defined as the interval between when the advertiser

transmits the first advertising packet until the scanner receives its ADV_PDU correctly. Using
Equation (13):

DNBLE
detect =

(
NNBLE

advReq − 1
)
· TadvEvent (14)

From (13), the average time between two consecutive detections (TNBLE
interDetect) is given by

Equation (15):

TNBLE
interDetect = NNBLE

advReq · TadvEvent (15)

Finally, if we define a window of opportunity (coverage time interval or dwell time), TcovWindow,

the average number of detections (NNBLE
detect) of an advertiser BLE will be:

NNBLE
detect =

TcovWindow

TNBLE
interDetect

(16)

4. Experimental and Simulation Validation of the Analytical Model

The device discovery process for BLE as described in Section 2 is fairly simple, and in fact, this
is the reason why we want to explore potential benefits of using this process in applications where a
certain number of users need to be counted in a very short period of time, as the sport applications
referred to in Section 1. According to the requirements of these application scenarios, we want to
quantify the discovery process for a large number of devices. The main parameters of the performance
evaluation include:

• The collision probability/non-detection probability.
• The average discovery latency or, alternatively, the mean time between consecutive ADV_PDU

detections of an advertiser.
• The mean number of ADV_PDU detections within a window of opportunity time (coverage time

interval or dwell time).

Additional parameters, such as the probability that all coexisting advertisers can be detected
by the scanner within the coverage time, are also included. Even in ideal conditions, with respect to
wireless channel effects or interference from other systems, the performance of the device discovery
process is greatly influenced by the scanner parameter settings, such as the scanning interval, the
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scan window size and, in the advertisers, the advertising interval and the advertising PDU size.
Specifically, concerning the scanning device, by choosing the scanning interval and the scan window
size, we can control the tradeoff between the discovery capability and the energy consumption of the
scanner. That is, for a given scanning interval, shortening the scan window, the energy consumption of
the scanner is decreased, whereas the non-detection probability of the advertising devices increases.
Nevertheless, from the point of view of these specific applications, the energy consumption is not
one of the most relevant parameters, given that the main objective is to detect a high number of
BLE devices in a short time window, even if we detect the identifier of the same device several
times. Repetition will provide us a desirable redundancy in order to compensate even high BLER
scenarios that extend the experimental conditions and simulation analysis performed here. Thus,
as explained in Section 2.1.1, to avoid other effects that would make the desired characterization
difficult, we fixed TscanInterval = TscanWindow. Note that wireless data transmission is affected by
many physical and environmental conditions, which degrade the behavior of the system in real-life
conditions. This is the reason why the experiments, simulations and analysis are performed in a
controlled scenario without interferences and with the best channel conditions. Once we verify that
the numerical results from the mathematical model closely match those obtained in the simulation
and testbed measurements, extensive experiments could be performed with BLE devices in several
channel/interference conditions, which could be easily included in the mathematical model through
the appropriate BLER values.

Related to the advertisers, several previous works [17] focus on the performance impact in terms
of the tradeoff between consumption and discovery latency, connected with the relationship between
TadvInterval and TscanWindow, within a scenario where TscanWindow < TscanInterval . However, in our case,
given that continuous scanning is assumed, the main objective is to verify how the real peculiarities of
scanning patterns of the BLE chipsets affect the discovery process and, even, notably modify the ideal
expected performance. Regarding the TadvInterval duration influence, it is evident that larger TadvInterval
values result in lower energy consumption on the advertiser side and lower collision probability at
the scanner. Nevertheless, the mean number of possible detections on a short window of opportunity
decreases or even becomes zero. As we said above, in some scenarios, redundancy by repetition could
be beneficial. Thus, we want to quantify for an increased number of simultaneous advertisers the
impact of TadvInterval in the non-detection probability, the discovery delay and the mean number of
detections. About ADV_PDUs sizes, it seems also clear that shorter ADV_PDUs will result in lower
collision probabilities, whereas longer ADV_PDUs allow one to extend the capabilities of the system;
for instance, monitoring physiological parameters in a sporting event (for example, averaged health
parameters, such as temperature, pulse/heart rate, oxygen saturation), that only require a few bytes in
order to record global statistics or setup health alarms concerning a specific participant. Thus, it is
also interesting to quantify the discovery performance connected with the ADV_PDU size for several
TadvInterval settings.

Summarizing, the objectives of the evaluations performed in this section are:

• To validate the characterization performed in Section 2 of the non-idealities present on the
scanning process by comparing simulations and experiment tests with an increasing number of
BLE advertisers and different parameter settings.

• To analyze how close the numerical results from the mathematical model match those obtained in
the simulations and experimental tests for any parameter values specified in the standard and
also considering the real chipset behavior. This ratifies the potential benefits of using a simple
analytical model in order to easily obtain an upper bound of discovery capacities in a potential
application scenario.

• To carry out an analysis in ideal channel conditions that allows one to evaluate the non-detection
probability, delay, etc., as the number of BLE devices increases for several parameter settings and
real chipsets.
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4.1. Testbed Conditions

We performed a series of tests in the scenario following the schema depicted in Figure 2. All of
the devices, up to 14 advertisers and one scanner, were placed inside an RF-shield box, always with
the same arrangement; see Figure 8. The scanner was connected to a laptop where we performed the
raw capture of the data using Tshark.

Figure 8. Experimental testbed.

Tshark is the command line tool of Wireshark [22], a common network protocol analyzer
usually employed to audit local area networks, but which can also be used to analyze frames
captured through a Bluetooth interface. We then processed the raw data, filtering by interface and
advertiser in order to extract different statistics and calculate the non-detection probability and
time between consecutive detections. With this configuration, the scanners were programmed with
a 500-ms value for both the scan window and scan interval. The advertisers had a wider variation of
configurations. The advertisement interval, TadvInterval , and the size of the advertisement data are set
according to the evaluation conditions considered in Section 4.3. Once the number of selected devices
were programmed, we double checked their configuration with the android application of Nordic
Semiconductor, nRF Connect for Mobile [23]. Finally, we closed the RF-shield box and proceeded with
the measurements.

The transmission power of advertising devices could be configured in a range between −40 dBm
and 4 dBm. For this range of values, we checked that there was no impact on the BLER in our
scenario because the propagation losses are very low inside the RF-shield box. In order to observe
some variation on the BLER, it was necessary to insert an extra attenuation shielding the advertising
device. The final employed value for all devices was 4 dBm. We captured data during three hours for
each parameter combination set.

4.2. Simulation

In order to validate both the analytical model and experimental results, we developed a BLE
simulation framework in C++ that fully complies with the BLE advertisement specification. We also
included two scanner configurations with the scan patterns identified in Section 2. The simulations
were conducted without any of the simplifications or assumptions used to derive the analytical
model. In order to obtain the desired statistics, the discovery process was monitored in a number
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of coverage time intervals. In the simulation, the initial instant for each coverage time interval
(TcovWindow) was randomly chosen at any continuous time between [0, TscanWindow], and in the same
way, the starting transmission time of each advertising device was independently generated between
[0, TadvInterval + TadvDelayMax]. A number up to 50,000 coverage time intervals was considered when
NBLE is lower than 20 and up to 10,000 for a higher number of devices. Simulation allows including
errors due to channel or interference conditions. However, the results are obtained without considering
any reception failure of ADV_PDUs (i.e., BLER = 0%) in order to meet experimental testbed conditions.

4.3. Performance Results

The evaluation has been conducted using the setting as listed in Table 5. Figure 9 compares
the analytical model (Model) and the simulation results (Sim) obtained for the ideal implementation
of the standard to those obtained when real scanning devices are assumed, including in the last
case, the results obtained in the experimental test (Exp) for a number of NBLE devices up to 14.
The transmission power of advertising devices was set to 4 dBm, and it has been verified that in this case
and even when power is set to −40 dBm, the non-detection probability for only one advertising device
corresponds to PscanGap

noDetect. Therefore, BLER effects are almost negligible and enable the comparison
of results between the model and simulations in ideal channel conditions. Figure 9a1–a3 shows the
non-detection probability for all of these cases, as the number of advertiser BLEs increases from
two to 14 for several Tadv values (176 µs, 248 µs and 376 µs) and for different TadvInterval intervals
(100 ms in Figure 9a1, 300 ms in Figure 9a2 and 500 ms in Figure 9a3 with TadvDelayMax = 10 ms).
From these figures, it is observed that the numerical results from the mathematical model match with
the simulation ones for both ideal and real implementations and for any parameter setting. At the
same time, it seems clear that model and simulations perfectly match the experimental results, thus
validating the characterization of the scanner process in the actual chipsets.

We can see how non-detection probability increases with the number of simultaneous advertising
devices under the scanner coverage and also with higher Tadv and TadvInterval values. By comparing
the results, we can observe that differences between the ideal standard and the actual implementations
are quite significant. It is evident that the assumption of the ideal case implies a clear underestimation
of non-detection probability. On the other hand, differences between chipsets from different
manufacturers need to be taken into account. In this particular case, the Type 1 scanning device
provides better results than the Type 2 up to NBLE = 8 when TadvInterval is equal to 100 ms.
This advantage is maintained up to NBLE = 21 when TadvInterval is equal to 300 ms for Tadv = 376 µs or
up to 23 for Tadv = 176 µs. Finally, the Type 1 device is superior up to NBLE = 35 when TadvInterval is
equal to 500 ms with Tadv = 376 µs and up to 37 for Tadv = 176 µs.

Table 5. Parameters used in the evaluation.

General Parameters Real Scanner Service Parameters

Parameter Values Parameter
Value

Type 1 Pattern Type 2 Pattern

Tadv 176 µs, 248 µs, 376 µs Tf qChgGap 1.1 ms 16.05 ms
TadvInterval 100 ms, 300 ms, 500 ms TinterFqChgGap - 300 µs
τadvDelay Uni f orm(0, TadvDelayMax) TgapInt1 - 16.82 ms

TadvDelayMax 10 ms TgapInt2 - 4.3 ms
TscanInterval 500 ms τdecodGap Uni f orm(TminDecodGap, TmaxDecodGap)
TscanWindow 500 ms TminDecodGap 350 µs 194 µs

NBLE 2 to 200 TmaxDecodGap 1.6 ms 194 µs
TcovWindow 5 s
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Figure 9. Non-detection probability (a1–a3) and mean time between consecutive detections in seconds
(b1–b3) as the number of BLE advertisers increases, for several Tadv values (176 µs, 248 µs and
376 µs) and for different TadvInterval intervals (100 ms, 300 ms and 500 ms) with TadvDelayMax = 10 ms.
Comparison among experimental measurements, simulation and the analytical model.
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Figure 10. Non-detection probability (a1–a3), mean time between consecutive detections in seconds
(b1–b3) and mean number of detections under coverage (TcovWindow = 5 s) (c1–c3), as the number
of advertisers increase, for several Tadv values (176 µs, 248 µs and 376 µs) and for different TadvInterval
intervals (100 ms, 300 ms and 500 ms) with TadvDelayMax = 10 ms. Comparison between simulation and
the analytical model for ideal (a1,b1,c1), Type 1 real devices (a2,b2,c2) and Type 2 real devices (a3,b3,c3).

However, as is shown in Figure 10, the Type 2 scanning device is a better choice when a high
number of advertising devices coexist. In similar conditions, the mean time between consecutive
detections is shown in Figure 9b1–b3. This parameter has been chosen instead of the average detection
delay because this statistic can be directly obtained by processing the data from experimental
measurements without any kind of assumption. We can compare approximately the average detection
delay only by subtracting TadvEvent from the mean time between advertisements. As shown in the
figures, results from the mathematical model, simulation and experimental tests match again for
both ideal and real implementations for any parameter setting. Focusing on the ideal standard
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implementation, it is easy to check that, as expected, the average detection delay is clearly higher
as long as TadvInterval decreases due to the higher non-detection probability. Comparing results for
NBLE = 14 and Tadv = 376 µs, they are almost similar. For instance, for ideal devices, the average
detection delay is 10.28 ms when TadvInterval = 100 ms (in this case, TadvEvent = 105 ms), 9.94 ms when
TadvInterval = 300 ms (TadvEvent = 305 ms) and 9.87 ms when TadvInterval = 500 ms ( TadvEvent = 505 ms).
The absolute values of non-detection probability are not high enough to have a notable impact on
this parameter. However, differences in the mean time between consecutive detections will have
a great impact in the number of potential detections in a fixed coverage time interval (TcovWindow),
being a valuable parameter for the intended applications.

Figure 10 extends the comparison for a larger number of advertising devices, up to 200. In this
case, only simulation and mathematical results are illustrated related to the non-detection probability
(Figure 10a1–a3), the mean time between consecutive detections (Figure 10b1–b3) and the mean number
of detections under coverage (Figure 10c1–c3), as the number of advertisers increases, for several Tadv
values (176 µs, 248 µs and 376 µs) and for different TadvInterval with TadvDelayMax = 10 ms. The mean
number of detections under coverage evaluation only intends to be illustrative. Discovery capacity
needs to be evaluated for each potential application, being TcovWindow particularized to the expected
value. In this case, as an example, TcovWindow is set to 5 s.

In order to facilitate the visualization of results, unlike Figure 9, Figure 10 compares separately
simulation and the analytical model for ideal, Type 1 scanning devices and Type 2 scanning devices.
We show that mathematical curves almost coincide with the simulation results for the entire range of
parameters and devices. Differences between actual devices are significant. As anticipated before, for
a larger number of advertising devices, Type 2 scanning devices clearly offer better results. Note that,
when a few advertisers are considered, the impact of the additional micro-gap scans exceeds that
caused by gaps due to decoding. However, as long as the number of advertisers increases, decoding
interruptions are the most challenging issue in the successful detection probability. In this case, mean
τdecodGap is clearly higher in Type 1 devices. Concerning the averaged detection delay, in contrast to
Figure 9, in Figure 10b1–b3, we clearly check (see NBLE = 200) that the averaged detection delay is
higher as long as decreases, as expected. However, shorter TadvEvent remains to be desirable to achieve
a lower mean time between consecutive detections and, thus, a higher number of detections in a
TcovWindow. Concerning this last parameter (see Figure 10c1–c3), we can see that using this simple
discovery process, the number of potential detections is high enough even for a large number of
simultaneous devices, providing a high margin for repetitions in order to combat real propagation and
interference conditions with non-negligible BLER. Figure 11a shows the Cumulative Density Function
(CDF) of the number of detections for several Tadv = 176 µs, Tadv = 376 µs with TadvInterval = 100 ms
and TadvDelayMax = 10 ms, when there are NBLE = 200 BLE advertisers. We can see that, even in the
worst case (real device Type 1 and Tadv = 376 µs), less than 7% of the advertisers are detected three
or less times. In this same case, the probability of zero detections of a device is 0.000692. Using this
probability, we can theoretically derive in a simple way the probability that not all of the devices (200)
are detected in TcovWindow, using the expression 1− (1− 0.000692)200. This probability is around 13%,
which agrees with the result obtained by the simulation, as shown in Table 6. Nevertheless, in most
of the cases, non-detection affects only one or two devices, as the non-detection probability of a BLE
in TcovWindow is very low. In a similar way, Figure 11b shows the CDF of the number of detections
for Tadv = 176 µs, Tadv = 376 µs with TadvInterval = 500 ms and TadvDelayMax = 10 ms, when there are
NBLE = 200 BLE advertisers. Now, in the worst case (Type 1 real device and Tadv = 376 µs), less than
13.4% of the advertisers are detected three or less times. Table 6 shows the simulation results concerning
the probability that not all of the devices (200) are detected in the TcovWindow for Tadv = 176 µs,
Tadv = 376 µs with TadvInterval = 100 ms and TadvInterval = 500 ms when TadvDelayMax = 10 ms.
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Figure 11. CDF of the number of detections under coverage (TcovWindow = 5 s) for several Tadv values
(Tadv = 176 µs, Tadv = 376 µs) when TadvInterval = 100 ms (a); and TadvInterval = 500 ms (b) with
TadvDelayMax = 10 ms and when there are NBLE = 200 BLE advertisers. Comparison between
simulation results for ideal devices, Type 1 real devices and Type 2 real devices.

Table 6. Probability (in %) that not all of the devices (200) are detected in the TcovWindow (5 s) for
several Tadv values (Tadv = 176 µs, Tadv = 376 µs) when TadvInterval = 100 ms and TadvInterval = 500 ms
with TadvDelayMax = 10 ms and when there are NBLE = 200 BLE advertisers. Comparison between
simulation results for ideal devices, Type 1 real devices and Type 2 real devices.

TadvInterval
Tadv = 176 µs Tadv = 376 µs

Ideal Type 1 Type 2 Ideal Type 1 Type 2

100 ms 0 % 0.04 % 0 % 0.2 % 12.96 % 2.52 %
500 ms 0 % 4.94 % 0.54 % 0.3 % 19.69 % 6.48 %

5. Conclusions

In this paper, we have experimentally studied the BLE discovery process when a high number
of users needs to be discovered in a short period of time. After analyzing several scanning devices
from different BLE chipset manufacturers, we have shown that all of them have non-idealities in
the scanning process. Even though this aspect is not taken into account in other studies, we have
demonstrated that these non-idealities have a severe impact on the performance of the discovery
process. We have identified two main behavior patterns that characterize the diverse actual devices by
setting appropriate parameter values. Once these non-idealities have been characterized, an extensive
performance analysis for a varying number of devices and feasible parameter combinations concerning
the advertising interval and advertising frame size has been conducted. Simulations and experimental
measurements for two specific chipsets have been compared, considering up 14 devices. This study has
been extended by simulation for a higher number of devices. It has been observed that the advantages
of using a particular scanner chipset over another depend on the number of devices that need to be
detected, and they are also conditioned by the selected parameter settings.

This work also includes a simple model that meets both the standard implementation and the
described peculiarities of the actual implementation on the chipsets. The results from the mathematical
model, the simulation results and the experimental measurements of real devices closely match for any
feasible parameter values specified in the standard and for any number of simultaneous advertising
devices under a scanner coverage. That is, the model can be useful in order to easily obtain an upper
bound for the discovery capacity and to select the desirable parameters values according to a particular
BLE application.
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The following abbreviations are used in this manuscript:

ADV Advertising
BLE Bluetooth Low Energy
BLER Block Error Rate
CDF Cumulative Density Function
GFSK Gaussian Frequency Shift Keying
ISM Industrial Scientific Medical
IoT Internet of Things
LTE-M LTE Machine to Machine
NB-IoT Narrowband IoT
PDU Packet Data Unit
PHY Physical
SoC System on a Chip
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