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Abstract: In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS)
method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular
arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and
cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the
two parameters independently with one-dimensional (1D) subspace-based estimation techniques,
where we only perform difference for auto-correlation matrices and the cross-correlation matrices are
kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal
elements of URA. Thus, the proposed method can decrease the computational complexity, suppress
the effect of additive noise and also have little information loss. Simulation results show that, in LGA,
compared to other methods, the proposed methods can achieve performance improvement in the
white or colored noise conditions.

Keywords: two-dimensional direction of arrival estimation; spatial differencing matrix set;
low-grazing angle; information loss

1. Introduction

Two-dimensional (2D) direction of arrival (DOA) estimation including azimuth and elevation
angles with different array geometry has been widely applied in wireless communications, radar and
sonar signal processing [1]. Recently, the 2D DOA estimation with uniform rectangular arrays (URAs)
has attracted widespread concern [2–5]. Various algorithms have been developed for improving the
estimation performance, such as the multiple signal classification (MUSIC) [6], estimation of signal
parameters via rotational invariance techniques (ESPRIT) [7] and the matrix pencil (MP) method [8].
However, in a low-grazing angle (LGA) condition [9–13], the coherency between direct and reflected
signals of each target can cause the sample covariance matrix to be rank-deficient. To address this
problem, both spatial smoothing [14–17] and spatial differencing [18–20] techniques are developed for
2D DOA estimation with URAs.

For spatial smoothing techniques, Yeh et al. [15] developed the spatial smoothing 2D MUSIC
algorithm by using the covariance matrices of overlapping rectangular subarrays and Chen et al. [16]
presented an analysis of a special smoothing scheme extended in conjunction with the eigenstructure
technique. To reduce the computational complexity, a partial spectral search based method (PSS)
is proposed for limiting the searching region into a small sector [21]. Then, a tree structure
one-dimensional (1D) algorithm [22] was developed based on a repeated use of the 1D MUSIC
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algorithm. However, it requires a large number of eigenvalue decompositions (EVDs) and does not
perform well under a low signal-to-noise ratio (SNR). For spatial differencing techniques, Liu et al. [18]
constructed a new spatial differencing matrix to suppress the white noise by using the difference
between the first subarray and the spatial backward subarray. By exploiting the difference between the
neighboring forward subarrays and backward subarrays, the method in [19] can suppress the colored
noise. Additionally, an asymmetric spatial difference smoothing method [20] was used to reduce noise
for coherent sources location, especially when the number of targets is odd.

However, due to the 2D peaks search, 2D or 1D EVD operations, all the aforementioned methods
suffer from great computational complexity, especially for a large size of subarrays. In other words,
these methods can provide better performance at the cost of great computation. Therefore, we
concentrate on reducing the computational complexity caused by the 2D operations, while maintaining
a high estimation performance. In this paper, we propose a spatial differencing matrix set (SDMS)
method for 2D DOA estimation with URA in LGA. Employing the overlapping column or row
subarrays along the x- or y-direction, we build the SDMSs by rearranging the auto-correlation and
cross-correlation matrices in turn among different subarrays. In addition, to suppress the data loss,
we only perform difference for the auto-correlations and the cross-correlations are kept completely.
Then, the two parameters are estimated independently by using the 1D subspace-based estimation
technique, the pair-matching of which is achieved by extracting the diagonal elements of the URA.
Simulation results verify the effectiveness of the proposed method.

The advantages of the proposed method can be given as follows:

• The methods in [3,4,15–17,21] involve the 2D EVD or 2D peak search, while the proposed method
can estimate the parameters with 1D subspace-based estimation techniques.

• The method in [22] can only use the auto-correlations of different subarrays, while the proposed
method can use more information including auto-correlations and cross-correlations.

• The spatial differencing techniques in [18,19] perform a difference operation on the whole
subarrays, while the proposed method is only for the auto-correlations and the cross-correlations
are kept completely. Thus, the SDMS method has little data loss.

The rest of this paper is given as follows. In Section 2, the basic received signal model of the
URA in LGA is developed. Then, we derive the SDMS method using a 1D subspace-based estimation
technique and achieve pair-matching by extracting the diagonal elements of the URA in Section 3.
Simulation results are given in Section 4, and we conclude the whole paper in Section 5.

In this paper, operators (·)T , (·)∗ and (·)H represent transpose, conjugation, and conjugate
transpose, respectively. IN denotes an N × N identity matrix and JM denotes an M×M exchange
matrix with ones on its anti-diagonal and zeros elsewhere. ⊕ and ⊗ represent Hadamard product
and Kronecker product, respectively; diag(·) and blkdiag(·) denote the diagonal matrix or the block
diagonal matrix operator. E[·] and vec(·) denote expectation and vectorization, respectively.

2. System Model

As described in Figure 1, we regard the multipath effect as ideal specular reflection, where both
curved earth and atmosphere refraction are not considered. We also consider K narrowband far-field
signals sk(t) (k = 1, 2, · · · , K) impinging on a URA with MN well calibrated and identically polarized
sensors parallel to the xoy plane. Here, both x- and y- directions of the URA are separated by half
a wavelength, the height of which is set as h. Since the received signals include two paths, i.e., direct
path, reflected path, the output can be given as [11,12]

X(t) =
K

∑
k=1

ax(αk, θdk)a
T
y (αk, θdk)sk(t) +

K

∑
k=1

ax(αk, θrk)a
T
y (αk, θrk)βksk(t) + Z(t), (1)

where θdk and θrk are the direct and reflected elevation angle for the kth target (θdk ≈ −θrk = θk),
respectively, αk is the azimuth angle and βk is the multipath reflection coefficient from
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the kth signal to receiver array; Let βk = exp[ j(π − 2π∆Rk/λ)], ∆Rk ≈ 2hsin θk for simplicity,
∆Rk is the difference value between direct path and reflected path in LGA; ax(αk, θk) = ax(uk)

= [1, e−jπuk , . . . , e−jπ(M−1)uk ]T , ay(αk, θk) = ay(vk) = [1, e−jπvk , . . . , e−jπ(N−1)vk ]T , uk = sin θk cos αk,
and vk = sin θk sin αk. The elements of Z(t) are temporally and spatially complex white Gaussian
noises with zero-mean and variance σ2. Then, by vectorizing the matrix X(t), a composite data vector
can be constructed as

x(t) = vec(X(t)) = (Ax ◦Ay)s(t) + z(t), (2)

where Ax = [ax(u1), ax(−u1), · · · , ax(uK), ax(−uK)]
T , Ay =[ay(v1), ay(−v1), · · · , ay(vK),ay(−vK)]

T ,
s(t) = [s1(t), β1s1(t),· · · , sK(t), βKsK(t)]T2K×1, z(t) = vec(Z(t)).

k
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Figure 1. The array geometry model for the URA.

By forming Φy=diag[e−jπv1 , ejπv1 , · · · , e−jπvK , ejπvK ], the model in (2) can be rewritten as

x(t) =


x1

x2
...

xN

 =


Ax

AxΦy
...

AxΦN−1
y

 s(t) + z(t). (3)

From (2) and (3), the incident signals can be divided into K parts and the signals in each part are
correlated. With L snapshots (t = 1, 2, · · · , L), the sample covariance matrix can be calculated as

R0 = E
[
x(t)xH(t)

]
=

1
L

L

∑
t=1

x(t)xH(t) = ARsAH + σ2IMN , (4)

where A = Ax ◦Ay, Rs = E[s(t)sH(t)] denotes the correlation matrix of coherent signals. Thus, due to
rank-deficiency of the covariance matrix R0, the classic methods for 2D DOA estimation will lose
efficiency [6–8].

3. 2D DOA Estimation in LGA

In this section, we proposed a SDMS method that uses the differencing matrices among different
spatial smoothing subarrays for 2D DOA estimation in LGA, where the parameters uk and vk are
estimated independently.
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3.1. 1D Estimation of Parameter uk

Here, as described in Figure 2a, we divide the URA with M × N sensors into P overlapping
forward rectangular subarrays of size Q × N along the x-direction. Each rectangular subarray has
N column subarrays with Q sensors, such as the shaded areas for the first rectangular subarray.
Then, the nth column of pth rectangular subarray can be given as zpn(t) = Xpyn(t) = XpGny(t), where
Xp = [0Q×(p−1) IQ 0Q×(P−p)], P = M-Q + 1, p = 1, 2, · · · , P, n = 1, 2, · · · , N, and
Gn = [0M×(n−1)M IM 0M×(N−n)M]. As a result, using the matrix pencil of auto-correlation and
cross-correlation matrices between different column subarrays, we can build the new matrix as

Rxp =
{

E[zp1zH
p1], · · · , E[zp1zH

pN ],︸ ︷︷ ︸
N matrices o f size Q×N

E[zp2zH
p2], · · · , E[zp2zH

pN ],︸ ︷︷ ︸
N−1 matrices o f size Q×N

· · · , E[zpNzH
pN ]
}

︸ ︷︷ ︸
1

, (5)
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Figure 2. Rectangular subarray grouping of the URA.

In (5), because of the calculation of covariance matrices in turn, the data information can be used
more effectively. In addition, the cross-correlation matrix E[zpdzH

pn(t)] (d 6= n) can also restrain the
effect of additive noise. However, the auto-correlation matrix E[znpzH

np(t)] has the noise covariance
matrix σ2IQ, which will certainly decrease the performance. Then, in order to suppress the effect of
noise, we first build an initial matrix that has the same noise matrix as Rxp, and we have

Cx = { E[z11zH
11], 0 · · · , 0︸ ︷︷ ︸

N matrices o f size Q×N

, E[z11zH
11], 0, · · · , 0︸ ︷︷ ︸

N−1 matrices o f size Q×N

, · · · , E[z11zH
11]︸ ︷︷ ︸

1

}. (6)

Combining (5) and (6), the forward SDMS for the x-direction (SDMS-x) can be defined as

Dxp = Cx − JQR∗xpFQ = AxQD̄xpdiag
[
AH

xQ, · · · , AH
xQ

]
, (7)

where FQ = blkdiag[JQ, JQ, · · · , JQ], the number of JQ in FQ is N(N + 1)/2, D̄xp = [Rs −
ΘQ−p+1R∗s Θ−1+p−Q, · · · ,−ΘQ−p+1R∗s ΦN−1Θ−1+p−Q, · · · , Rs − ΘQ−p+1Φ1−NR∗s ΦN−1Θ−1+p−Q],
AxQ is the submatrix of the array response matrix Ax consisting of the first Q rows, XpAx = AxQΘp−1,
and JQA∗xQ = AxQΘQ, Θ=diag[e−jπu1 , ejπu1 , e−jπuK , · · · , ejπuk ]. Following the forward backward (FB)
technique, the new FB SDMS-x can be given as

Dx =
1

2P

P

∑
p=1

[
Dxp+JQ

(
Dxp

)∗FQ

]
. (8)
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Then, based on the definition in (8), we can prove that the new FB SDMS-x has the
following property.

Theorem 1. Assume that there are 2K narrowband coherent signals impinging on the URA (M× N sensors).
As described in Figure 2a, the URA is divided along the x-direction and the number of sensors in each column
subarray is Q. Then, we define the new FB SDMS-x Dx as in (8). If Q ≥ 2K, the rank of Dx is equal to the
number of the signals, namely, rank(Dx) = 2K.

Proof. See the Appendix A.

Under the Theorem 1, we divide AxQ into two submatrices as AxQ = [AT
xQ1, AT

xQ2]
T, where

AxQ1 and AxQ2 consist of the first 2K rows and the last Q− 2K rows, respectively. Since the matrix
AxQ is a Vandermonde matrix with full rank, we can get a 2K × (Q − 2K) linear operator Γx for
AxQ2 = ΓH

x AxQ1. Then, the matrix Dx can be divided into two submatrices as

Dx =

[
Dx1

Dx2

]
} 2K
}Q− 2K

, (9)

where DxQ2 = ΓH
x DxQ1. In addition, the operator Γx can be calculated as

Γx = A−H
xQ1AH

xQ2 =
(

Dx1DH
x1

)−1
Dx1DH

x2. (10)

Therefore, by constructing the matrix Ωx= [ΓH
x ,−IQ−2K]

H , we can get ΩH
x AxQ = 0(Q−2K)×2K,

which can be used to estimate the parameter uk. By letting a (uk) = [1, e−jπuk , · · · , e−jπ(Q−1)uk ]T,
the parameter uk can be estimated by minimizing the following cost function

f (uk) = aH (uk)Πxa (uk) , (11)

where Πx=Ωx
(
ΩH

x Ωx
)−1

ΩH
x .

3.2. 1D Estimation of Parameter vk

Similarly, as described in Figure 2b, we divide the URA into F overlapping forward rectangular
subarrays along the y-direction. Each rectangular subarray has M row subarrays with Q sensors.
Then, the mth row of f th rectangular subarray can be set as w f m(t) = X f GmTey(t), where Te is the
row permutation matrix, X f = [0Q×( f−1) IQ 0Q×(F− f )], f = 1, 2, · · · , F, m = 1, 2, · · · , M, F=N-Q+1,
and Gm = [0N×(m−1)N IN 0N×(M−m)N ]. Then, we can build the new FB SDMS for the y-direction
(SDMS-y) as

Dy =
1

2F

F

∑
f=1

[
Dy f+JQ

(
Dy f

)∗
FQ

]
, (12)

where

Dy f = Cy − JQR∗y f FQ = AyQD̄y f diag
[
AH

yQ, · · · , AH
yQ

]
, (13)

Ry f =
{

E[w f 1wH
f 1], · · · , E[w f 1zH

f M],︸ ︷︷ ︸
M matrices o f size Q×M

E[w f 2wH
f 2], · · · , E[w f 2wH

f M],︸ ︷︷ ︸
M−1 matrices o f size Q×M

· · · , E[w f MwH
f M]
}

︸ ︷︷ ︸
1

, (14)
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Cy = {E[w11wH
11], 0 · · · , 0︸ ︷︷ ︸

M matrices o f size Q×M

, E[w11wH
11], 0, · · · , 0︸ ︷︷ ︸

M−1 matrices o f size Q×M

, · · · , E[w11wH
11]︸ ︷︷ ︸

1

}, (15)

and AyQ is the submatrix of the array response matrix Ay consisting of the first Q rows,
X f Ay = AyQΦ f−1, JQA∗yQ = AyQΘQ, Dy f = [Rs − ΦQ− f+1R∗s Φ−1+ f−Q, · · · − ΦQ− f+1R∗s ΘM−1

Φ−1+ f−Q, · · · , Rs −ΦQ− f+1Θ1−MR∗s ΘM−1Φ−1+ f−Q]. Likewise, the new FB SDMS-y in (12) has the
following property.

Theorem 2. Assume that there are 2K narrowband coherent signals impinging on the URA (M× N sensors).
As described in Figure 2b, the number of sensors in each row subarray is Q, and the new FB SDMS-y is defined
in (12). If Q ≥ 2K, then the rank of Dy is equal to the number of the signals, namely, rank(Dy) = 2K.

Based on the Theorem 2, we can divide the matrix Dy as

Dy =

[
Dy1

Dy2

]
} 2K
}Q− 2K

, (16)

where DyQ2 = ΓH
y DyQ1 and Γy is the linear operator. By letting a (vk) = [1, e−jπvk , · · · , e−jπ(Q−1)vk ]T ,

the parameter vk can be estimated by minimizing the following cost function

f (vk) = aH (vk)Πya (vk) , (17)

where Πy=Ωy

(
ΩH

y Ωy

)−1
ΩH

y , Ωy= [ΓH
y ,−IQ−2K]

H , Γy = A−H
yQ1AH

yQ2 =
(

Dy1DH
y1

)−1
Dy1DH

y2.

3.3. Pair-Matching of Parameters uk and vk

Since the estimated parameters uk and vk are calculated independently, the pair-matching is very
important for multiple targets. In the case of M<N, by extracting the diagonal elements of URA,
we can write

rdiag(t) = A (vk)⊕A (uk) · s(t) + N0, (18)

where A (vk) = Ax, A (uk) is the submatrix of the array response matrix Ay consisting of the
first M rows, and N0 is the subarray of N. Since both A (vk) and A (uk) are Vandermode matrices,
A (vk) ⊕ A (uk) is also a Vandermode matrix. Using the FBSS method, we can divide rdiag(t) into P
overlapping forward subarrays with Q sensors. Then, the smoothing matrix can be given as

Ddiag =
1
P

P

∑
p=1

[
Rp

diag + JQ(R
p
diag)

∗
JQ

]
, (19)

where Rp
diag = XpRdiagXH

p and Rdiag = E[rdiag(t)rH
diag(t)]. Hence, we can get the estimated parameters

by minimizing the following cost function

f (vk, uk) = aH (vk, uk)Πdiaga (vk, uk) , (20)

where a (vk, uk) = [1, e−jπvk e−jπuk , · · · , e−jπ(Q−1)vk e−jπ(Q−1)uk ]T, Πdiag=Ωd
(
ΩH

d Ωd
)−1

ΩH
d ,

Ωd= [ΓH
d ,−IQ−2K]

H , Γd = A−H
dQ1AH

dQ2 =
(
Dd1DH

d1
)−1Dd1DH

d2, and Dd1 and Dd2 consist of the
first 2K rows and the last Q-2K rows of Ddiag, respectively. From (20), the parameters uk and vk can be
matched by repeating the following minimization for i = 1, · · · , 2K and j = 1, · · · , i− 1

{i, ki} = arg min
ki

f
(
vi, uki

)
, subject to ki 6= kj, (21)
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and the constraint condition ki 6= kj can avoid the different uk paired with the same vk. Then, the
azimuth angle and elevation angle can be estimated as

αk = tan−1 (uk/vk) , θk = sin−1
√

v2
k + u2

k . (22)

3.4. Implementation of the Proposed Method

From (11), (17) and (22), the azimuth and elevation angles can be estimated by using the spatial
differencing method, where the computational burdensome EVD is avoided and the effect of additive
noise is also suppressed. Then, with the finite array data y(t)L

t=1, the proposed method can be
implemented as follows:

1. Calculate the estimated sample covariance matrix R̂ in (4) as

R̂0 = (1/L)
L

∑
t=1

y(t)yH(t), (23)

LM2N2 flops.

2. Form the FB SDMS-x D̂x in (8) and the FB SDMS-y D̂y in (12) as

D̂x =
1

2P

P

∑
p=1

[
D̂xp+JQ

(
D̂xp

)∗FQ

]
, D̂y =

1
2F

F

∑
f=1

[
D̂y f+JQ

(
D̂y f

)∗
FQ

]
, (24)

where D̂xp and D̂y f can be calculated by using the covariance matrix R̂0

2Q3 flops.

3. Estimate the orthogonal projectors Π̂x in Section 3.1 and Π̂y in Section 3.2.

2N(N + 1)Q2K2 + 2M(M + 1)Q2K2 + 2[3Q2(Q− 2K) +O(2K)3] flops.

4. Estimate the parameters uk and vk by finding the phases of the p zeros of the polynomial pu(z)

and pv(z) using (11) and (17), where pu(z)
∆
= zQ−1aH (z) Π̂xa (z) and pv(z)

∆
= zQ−1aH (z) Π̂ya (z),

z ∆
= e−jπuk or z ∆

= e−jπvk

2[(Q− 1)2 +O(Q− 1)3] flops.

5. Perform the pair-matching of the parameters vk and uk by using (18)–(21) and estimate the
azimuth and elevation angles by (22)

2Q2(2K)2 + 3Q2(Q− 2K) +O(2K)3 flops.

As shown above, the cost of each step is roughly indicated in terms of the number of MATLAB
flops. Furthermore, in the case of Q � 2K, the computational complexity of the proposed method
mainly includes the calculation of covariance matrix and SDMSs, the estimation of parameters and the
pair-matching, which is about LM2N2 + 8N2Q2 + 8M2Q2 + 12Q3 + 10Q2.

Remark 1. The proposed method can estimate the parameters independently, and the null space is calculated by
using the linear propagator based on the partition of the array response matrix. The polynomial roots can be
obtained by the Linsey–Fox root finding algorithm, which is less than the MATLAB function roots. However,
the 2D FBSS-MUSIC method in [15,16], the 2D FBSS based DOA matrix (FBSS-DOAM) method in [23], the
conventional spatial differencing (CSD) method in [18,19], and the tree structure one-dimensional (1D) based
(TSOD) algorithm in [22] all involve the EVD to obtain the signal subspace or noise subspace. Furthermore, as
shown in Table 1, FBSS-MUSIC and CSD both need 2D spectrum peak searching. TSOD needs (2P + 8K + 1)
1D EVD, while FBSS-DOAM needs two times of 1D spectrum peak searching. It is easily seen that the proposed
method is computationally more efficient than other recently developed methods.
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Table 1. Computational complexity comparison.

FBSS-MUSIC FBSS-DOAM CSD TSOD Proposed Method

EVD one, O(Q6) two, O(Q3) one, O(Q6) (2P + 8K + 1), O(Q3) w/o
1D searching w/o two w/o two w/o
2D searching one w/o one w/o w/o

Remark 2. As described in (7) and (12), the proposed method can form the row and column FB SDMSs by
using the auto-correlation and cross-correlation matrices among different subarrays, where we only perform
the difference for the auto-correlations, and the cross-correlations are kept completely. In addition, we also
employ the FB technique to improve the estimation performance. However, the TSOD method can only use the
auto-correlations of different subarrays and CSD performs the difference on the whole subarrays. Thus, SDMS
can achieve performance improvement over the methods in [18,19,22].

3.5. Cramér–Rao Bounds (CRB)

As described in Section 2, according to [24], the CRB can be obtained as

CRB =
σ2

2L

{
Re
[
DHΠ⊥AD⊕ R̂T

s

]}−1
, (25)

where

D =

[
∂a1

∂θ1
, · · · ,

∂aK
∂θK

,
∂a1

∂φ1
, · · · ,

∂aK
∂φK

]
(26)

and R̂s =

[
Rs Rs

Rs Rs

]
, Π⊥A = IMN −A(AHA)−1AH , ak is the kth column of A, k = 1, · · ·, 2K.

4. Simulation Results

We now evaluate the estimation performance of SDMS by using some numerical experiments.
In LGA, the heights of the URA is set as h = 20 m and the number of sensors is M = N = 20. The colored
noise is of a second-order AR model with coefficients a = [1,−0.7,−0.6] [25] and the targets are
located at α = [10◦, 20◦, 40◦], θ = [20◦, 35◦, 50◦]. The wavelength of received signals is set as 1 m and
the estimation performance is examined over 300 Monte Carlo runs.

Experiment 1: Effectiveness of proposed method. In this experiment, we mainly examine the
effectiveness of SDMS in the presence of white noise and colored noise conditions, where the number of
sensors in each subarray is Q = 16 and the total number of snapshots is chosen to be L = 500. Here, the
SNR is set as 10 dB. Figure 3 shows the estimation results of the proposed method with 100 Monte
Carlo runs. As expected, all the 2D DOAs can be estimated effectively and accurately for the white
noise and colored noise conditions.

Experiment 2: Performance versus SNR. In Figures 4 and 5, we evaluate the performance in terms
of SNR in the white noise and colored noise conditions, where we assume L = 500 and Q = 16.
Three methods are performed for comparison, including the CSD method in [18], the TSOD method
in [22] and the proposed method. Moreover, the CRB is also provided. It can be observed that, due
to the use of more information and the application of the difference operation, the performance of
the proposed method is better than those of methods in [18,22]. In the white noise condition, the
performance of CSD is better than TSOD for relatively low SNR, whereas it is the opposite with high
SNR. It illustrates that the difference operation can reduce the effect of white noise in the low SNR
condition, while the data loss will also decrease the performance in a high SNR condition. In the colored
noise condition, since the non-diagonal elements of the noise covariance matrix have significant value,
CSD is always superior to TSOD. Comparing SDMS and CSD, SDMS can achieve better performance
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by using more data information. To sum up, SDMS can achieve great performance improvement in the
low SNR condition by using more information and performing the difference operation.
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Figure 3. The estimated 2D DOAs of SDMS method with 100 Monte Carlo runs.
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Figure 4. Performance versus SNR in the white noise condition.

 
-5 0 5 10 15 20 25

10
-2

10
-1

10
0

10
1

SNR

R
M

S
E

 

 

SDMS

CSD

TSOD

Figure 5. Performance versus SNR in the colored noise condition.
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Experiment 3: Performance versus the number of snapshots. In this experiment, we evaluate the
estimation performance with different methods (described in Experiment 2) in terms of the number
of snapshots, where we assume the SNR is 2 dB and Q = 16. Figures 6 and 7 show the RMSE versus
the number of snapshots in the white noise and colored noise conditions, respectively. It is shown
that, because of the use of difference operation and cross-correlation matrices, even when the number
of snapshots is small, the proposed method still outperforms the methods in [18,22]. Then, for the
white noise, the performance of CSD is weaker than TSOD for the small number of snapshots due to
the data loss caused by the difference operation between forward and backward smoothed matrices.
For colored noise, CSD performs better than TSOD. In addition, by using more data information,
the performance of SDMS is also less sensitive to the number of snapshots than that of CSD.
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Figure 6. Performance versus the number of snapshots in the white noise condition.
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Figure 7. Performance versus the number of snapshots in the colored noise condition.

Experiment 4: Performance versus the size of subarrays. Figure 8 describes the performance versus the
size of subarrays in the white noise condition. Here, we assume L = 500, SNR = 10 dB. It is easily seen
that SDMS still outperforms CSD and TSOD. In addition, due to the increase of array aperture, the
performance of those methods becomes better. Then, we can observe that TSOD fails with a small size
of subarrays but performs better than CSD with a big size. The reason is that the data loss caused by the
difference operation will become larger when the size of subarrays increases. However, the proposed
method can use the cross-correlation to reduce the data loss, resulting in a better performance.
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Figure 8. Performance versus the size of subarrays in the white noise condition.

5. Conclusions

A new computationally efficient SDMS method with little information loss is proposed to suppress
the effect of white noise or colored noise in LGA. The two parameters are estimated independently by
using a 1D subspace-based estimation technique, the pair-matching of which is achieved by extracting
the diagonal elements of URA. Simulation results show that, in LGA, the performance of the proposed
method is superior to the other recently developed method in low SNR conditions and with a small
number of snapshots for white noise and colored noise conditions. In the near future, based on
improving the information utilization, the extended spatial differencing method with MIMO radar for
joint DOA and DOD estimation will be considered carefully.
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Appendix A

Based on the fact that the rank of a matrix is unchanged by a permutation of its columns [18],
the rank of SDMS in (8) can be rewritten as

rank (Dx) = rank

{
P

∑
p=1

(
E[z11zH

11(t)]− JQE[zp1zH
p1(t)]

∗
JQ

)}
. (A1)

Then, we can calculate

E[z11zH
11(t)]− JQE[zp1zH

p1(t)]
∗JQ = AxQ

(
Rs −ΘQ−p+1R∗s Θ−1+p−Q

)
AH

xQ. (A2)

Since Q ≥ 2K, the rank of Dx can be repressed as

rank (Dx) = rank

{
P

∑
p=1

(
Rs −ΘQ−p+1R∗s Θ−1+p−Q

)}
. (A3)
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By using Rs = diag (ρ1, ρ2, · · · , ρK) and Θ = diag (Θ1, Θ2, · · · , ΘK), we have

Λp = Rs −ΘQ−p+1R∗s Θ−1+p−Q

= blkdiag
(

ρ1 −Θ
Q−p+1
1 ρ∗1Θ

−1+p−Q
1 , · · · , ρK −Θ

Q−p+1
K ρ∗KΘ

−1+p−Q
K

)
= blkdiag

(
Λp1, Λp2, · · ·ΛpK

)
. (A4)

Clearly, we can get rank (Dx) = rank

(
P
∑

p=1
Λp

)
=

K
∑

k=1
rank

(
P
∑

p=1
Λpk

)
. In the matrix form,

we have

P

∑
p=1

Λpk = ΓkVΓH
k , (A5)

where ρk = sksH
k , Γk =

[
sk, Θ

Q
k s∗k , · · · , sk, Θ

Q−P+1
k s∗k

]
and V = diag (1,−1, · · · , 1,−1). From (A5), we

can prove that

rank

(
P

∑
p=1

Λpk

)
= rank (Γk) = rank

([
s∗k , Θks∗k · · · , Θ−P+1

k s∗k
])

= rank (diag (s∗k )Ωk) = 2, (A6)

where Ωk =
[
ωk, ω∗k

]
and ωk =

[
1, ejπuk , · · · , ejπ(P−1)uk

]
. Therefore, in the case of Q ≥ 2K, from (A6),

we can get that the rank of Dt is equal to 2K.
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