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Abstract: Highly flexible manufacturing systems require continuous run-time (self-) optimization of
processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc.
A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the
context sensitivity approach based on data streaming from high amount of sensors and other data
sources. Cyber-physical systems play an important role as sources of information to achieve context
sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed
to identify the current context under which the manufacturing system is operating. In this paper, it is
demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization
of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in
manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning
algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses
run-time context extractor and optimizer. Based on the self-learning module both context extraction
and optimizer are continuously learning and improving their performance. The solution is following
Service Oriented Architecture principles. The generic solution is developed and then applied to
two very different manufacturing processes.

Keywords: context sensitivity; cyber-physical systems; sensors for context extraction; flexible
manufacturing system; process optimization; self-learning systems; SOA

1. Introduction

The modern Flexible Manufacturing Systems (FMS) must deal with uncertainty; a change is
expected, but the future is unknown [1]. The desire for ‘robustness’ stems from the fact that change is
inevitable, both in reality and perception [2], and systems have to be continuously optimized to adapt
to such changes. Both research and industrial communities have developed various approaches to
cope with such changes. For example, the so-called changeable system method attempts to design the
systems robust to various unknown changes [1]. Such systems need continuous run time optimization
of various parameters, such as efficiency, energy consumption, availability, etc., and adapting to
dynamically changing conditions under which they are operating. The classical approach to process
optimization is to build specific off-line optimizations for different parameters and processes, each
basing on different adaptive control laws. Building and, especially maintenance, of such solutions for
highly dynamic FMS are time and costs consuming, and such solutions often cannot cope with many
non-planned changes. The modern manufacturing system, with increased number of sensors, offer
new opportunities for optimization of dynamically changing manufacturing processes. Especially
Cyber-Physical Systems (CPS), which are being rapidly integrated in the current manufacturing
systems, open new opportunities as complex, intelligent sensors providing enormous amounts of data
on processes.
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The objective of the presented research is to investigate how context sensitivity, using data from
numerous sensors and CPS integrated in the modern manufacturing systems, can be used to realize
a holistic solution for (self-) optimization of discrete flexible manufacturing systems. The context
sensitivity allows for observation of changes in circumstances in which a system is operating, which in
turn allows for a dynamic adaptation of the system to these varying conditions [3]. Thereby CPS play
an important role as they offer new/additional sources of information, which can be used to achieve
context sensitivity. Especially CPS directly integrated in manufacturing processes can be used for an
effective identification of dynamically changing context under which the manufacturing system is
operating. Self-learning capabilities are introduced enabling applicability of the solution to wide scope
of manufacturing processes. The assumption is that building and adjustments of such generic context
sensitive solution for various specific optimizations and processes is much more time/costs effective
than building of classical optimizations solutions.

In this paper the applicability of the proposed holistic context sensitivity solution is demonstrated
in two different application scenarios. The experiment in the first scenario investigates the potential
optimization of energy consumption within a manufacturing process (secondary manufacturing
process) by applying context sensitivity. The second experiment investigates the optimization of
process control to gain a higher efficiency of the manufacturing process (prime manufacturing process)
by applying context sensitivity as well.

The paper is organized in the following way: Section 2 provides the key research question and
assumption, Section 3 includes a brief analysis of the state of the art in the key research areas relevant
for the proposed solution. Sections 4 and 5 describe the concept and implementation of the proposed
solution. Section 6 provides the results of the experimental investigations of the solution, while
Section 7 includes a brief analysis of the key benefits of the proposed solution, as well as the further
research plans.

2. Research Question

The need for run-time optimizations of FMS is nowadays indispensable as described in the
introduction of the paper. To achieve this there is a need for a solution that is capable of managing
a high amount of data, complex models and algorithms. Furthermore, there is a need for a holistic
solution that can be applied to different parameters, machines, systems and sectors. Thereby the effort
for adjustments should be minimal. Such a holistic solution would prevent the building of scattered
solutions and at the same time support the discovery of extensive problem solutions. However, in
order to find such a generic solution, a common approach for the following two problems needs to
be elaborated:

• Monitoring of changes during run-time within a FMS (e.g., changing process parameters,
environment in which the system is operating etc.), which can be used for further processing.

• Extraction of a current context based on monitored data to be used for knowledge creation, which
can be used for (self-) optimization of manufacturing processes.

2.1. Hypothesis

The generic context sensitive solution based on CPS, proposed in this paper, is easily adjustable to
allow for optimization/adaptation of wide scopes of manufacturing systems. The context sensitivity
allows for observation of changes in circumstances in which a manufacturing system is operating,
which in turn allows for a dynamic adaptation of the system to these varying conditions [4].

2.2. Approach

The approach is based upon the assumption that the extracting of current context of the process
allows for an effective self-optimization of manufacturing systems. Context extraction is a “generic
observer”, which allows for run-time monitoring of processes and conditions, and extraction of
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knowledge about the changes in processes and conditions under which they are operating, i.e., context
extraction seems to be an answer to both above listed problems and an effective way for run-time
optimization of FMS. In this paper, the context is defined as “any information that can be used to
characterize the situation of an entity” [5]. However, one of the key research challenges is which
information should be used to describe the context (see Section 5) [6].

The approach, therefore, assumes that more efficient and re-usable embedded optimization
services can be developed by using context sensitivity than by using classical optimization services.
Such context aware services use information acquired from various sources (e.g., CPS, inputs of the
human operator, etc.). The run-time context extraction uses a context model for device spaces.

Aiming to allow for application of the context model and context extraction services in different
applications domains, the model consists of a generic model and a specific model, which instantiate
generic concepts to allow for adjustments to the specific domain and application. The extracted context
is used by embedded optimization services to adapt the process behavior to e.g., update process
parameters. This work will investigate how such approach can be used as a generic solution to realize
(self-) optimization of manufacturing systems.

3. State of the Art

3.1. Context Sensitivity and Context Modelling

Context Sensitivity is a concept propagated in the domains of Ambient Intelligence (AmI)
and ubiquitous computing [7]. Existing research on context can be classified in two categories:
context-based, proactive delivery of knowledge, and the capture and utilization of contextual
knowledge. In the case of embedded services, the notion of context refers to process preferences of
products and process skills of devices, physical capabilities of the equipment, environment conditions.
As context integrates different knowledge sources and binds knowledge to the user to guarantee
that the understanding is consistent, context modeling is extensively investigated within Knowledge
Management research [8]. According to [9], context-sensitive computing uses contexts to provide
relevant information and/or services to the users or applications. The relevancy depends mainly on
the tasks or on the application domain [10].

The most challenging aspect of the application of the context sensitivity in the industrial processes
is an effective acquisition/collection of data needed to extract a current context of the process. Therefore,
the advanced sensors and CPS, as complex, intelligent sensors, are basic prerequisite for an effective
application of this approach in manufacturing industry.

Key research task for the manufacturing domain for achieving context sensitivity is the definition
of a generic and dynamic context model. Furthermore, the model need to be easy extendable for
various manufacturing domains as well as for specific applications. The model must include the
context of processes, equipment, products, humans and the use of knowledge for planning/executing
various activities.

Some ontology-based solutions, concerned with the semantic representation of context and
personalized service search and retrieval techniques, are described in [11,12]. There are also approaches
to extend existing standards by adding/using context, such as KNX ISO [13]. The need to go beyond
context representation to context reasoning, classification and dependency is also recognized [14].
Defining the context (model), that is required for achieving context sensitivity can be difficult, as
indicated in [3,5]. Informal context models are often based on proprietary representation schemes
without facilities for sharing the understanding about context between different systems [15]. Existing
formal context models support formality and address a certain level of context reasoning [16].
Most common approaches to context-modelling are key-value models, Markup Scheme Models,
Graphical Models such as Unified Modelling Language (UML), OOM, Logic- Based Models and
Ontology-Based Models [17]. Some researchers [18] report about the comparison of different context
modelling techniques. The present research on context modelling is often focused on ontologies [19].
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This approach due to its easy extendibility and applicability for various processes seems to be the most
appropriate for manufacturing industry. The modeling of context in the case of processes optimization
in manufacturing industry is a challenging research task, as services in this domain are highly dynamic
and reside in distributed environments [18].

In the presented paper ontologies are used for the modelling of context. Advantage of using
ontologies it that the context can be modelled in a natural way and various reasoning mechanisms are
available [20] that can be used for extraction of context. In addition, ontologies provide extendable
mechanism, which are supporting the problem on how to infer high-level context information from
low-level raw context data [21]. In [22,23] tool support for modelling of context as well as a selection of
appropriate information sources are described that could foster the “easy” creation of context models.

3.2. Cyber-Physical Systems

According to [24] a Cyber-Physical Systems (CPS) is defined as an “integration of computation
and physical processes”. The key idea is to combine the physical world (e.g., manufacturing process)
with the virtual world (e.g., information processing). Thereby, CPS have a strong focus on a network of
interacting CPS in order to achieve the desired functionality in contrast to traditional isolated systems.
One example of a typical CPS is an intelligent manufacturing line, where the work of a machine is
supported by the communication with its depending components.

The usage of CPS promises huge advantages against traditional systems. Hardware systems and
software system can be interconnected arbitrarily. In addition, the connections of each other’s systems
can be changed, deleted or newly built up on the fly. Furthermore, all accessible data, information
and services can be deployed and utilized at any time anywhere in the system. Thus, cyber-physical
systems’ services are independent from location, adapted to current systems requirements, partly
autonomously, multifunctional and multimodal, networked and distributed along their application
area [25,26].

It is expected that CPS will play an important role in future systems, especially also in
manufacturing systems [27,28]. Recently there are several recommender models proposed to facilitate
the sharing/extraction of knowledge [29]. The current Industry 4.0 initiative is strongly based on
application of CPS in the manufacturing processes [30]. Although more and more CPS are applied
in industrial environments and CPS are used in consumer environments as information sources for
context sensitivity, this is still not investigated in current manufacturing systems.

3.3. Service Oriented Architectures

Service Oriented Architecture (SOA) is an approach that has been around since the 90s, when it
was used in Tuxedo to describe “services” and “service processes” [31]. Service-orientation is still one of
the most promising architectural designs for rapid integration of data and business processes. There are
several standards available and accepted in industry that build on SOA principles, such as e.g., HTTP,
JSON, XML, WS-*, etc. [22]. SOA is already heavily used in corporate and consumer environments
but in embedded real-world environment SOA is emerging slower. The introduction of the OPC-UA
architecture was a big step towards service-oriented architectures in industrial machine-2-machine
sector. The upcoming trend to use CPS in industrial environments also fosters the usage of SOA-like
principles in such environments. However, current research tries to apply SOA principles in domains,
where such principles are not yet widely spread, such as industrial automation [32] or building
automation [33] making it a promising approach for context aware solutions.

3.4. Self-Learning

Evolvable Production Systems are complex and lively composed of intelligent modules
that interact, through bio-inspired mechanisms, to assure high system availability and seamless
reconfigurations [34]. While the changeable system approach aims to design the systems robust to
various unknown changes [1], self-learning production systems adapt themselves to changes based
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on learning in real time. Intensive research activities in the domain of self-learning systems have
proved that the machine learning techniques, dynamic self-adaptation and operator’s feedback in
the loop can be effectively applied in various systems to increase their intelligence and allow for
adaptation to changeable conditions. In manufacturing systems in particular, these methods have
been proven to be especially useful for monitoring/diagnosis [35,36]. However, the application of
self-adaptation and self-learning of production systems based on context sensitivity in industrial
practice is unexplored [37–39].

4. Concept for Context Sensitivity

The concept to achieve context sensitivity in FMS is shown in Figure 1. Context Monitoring is
used to collect “raw data” from the FMS. The collected data is subsequently used by the Context
Extraction to derive the current context of the FMS. In a next the current identified context is
provided to upstream services (Context Provision). The provided context can for example used
for generating knowledge about a manufacturing process. This knowledge will be used as a
basis for operational decisions. This generated knowledge in turn forms the basis for decisions
about optimizations of specific manufacturing processes. Decisions regarding the optimization
of manufacturing process can be (a) short-term (specific tasks of a manufacturing process) and
(b) long-term (overall manufacturing process).
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As explained above, for achieving context sensitivity in production systems, CPS as well as
other sensors and information sources are used to collect data about manufacturing process (as a
sub-set of a whole production system). The collected data is used in the next step for identifying the
current context of the monitored manufacturing processes. The identification starts through context
monitoring services, which are, e.g., services for monitoring of processes or of a user interacting with a
system for changing conditions [4]. The monitored “raw data” is transformed into a “standardized”
data format by the monitoring services in order to allow further processing by the context extraction
services. The context extraction service identifies current context by instantiating monitored data
into the context model. Furthermore, reasoning techniques are used to support context identification.
For reasoning, previously identified context and the context model is used, which is stored in the
context repository. In contrast to many current approaches, where often only data about location/user
is used for identifying context, the presented approach uses any monitored information that can be
instantiated in the context model for identifying context. After the current context is identified, it is sent
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to the system adapter services, which are responsible for the system adaptation. In addition, the outer
loop supports updating the context, based on the used concepts and relations of the identified context.

5. Implementation

Section 4 described how the context sensitivity can conceptually be used to allow for run-time
optimizations of manufacturing systems. However, to allow for implementation of such a concept,
an architecture is required, that can be integrated into existing manufacturing systems and allows
to operate unobtrusively. To achieve such a “reference” architecture several application cases
and scenarios from different industrial sectors have been analyzed. The key tasks performed by
the components in this architecture are: monitor for contextual changes, identification of context,
adaptation of system behavior and learning based on executed adaptations. The resulting architecture
is depicted in Figure 2.
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The components of the proposed system include:

• System Monitor, Context Extractor (including the Context Model) and Context Sensitive
Optimizer—see Sections 5.1–5.4 for detailed explanation of these services.

• Adaptation Learner and Context Learner: These services allow the system to learn. Key factor
for the learning are the results of the Validator Services (operator’s feedback). These results are
analyzed using data mining techniques and are used to improve the operation of the Context
Extractor and the Context Sensitive Optimizer during run time (see also Section 5.4).

• Validator (for Context and Adaptation): These services are measuring the performance of
optimization and context extraction. The measurement is either based on the manual feedback
of the operator (e.g., acceptance of optimization proposals) or on statistical analysis in case the
system operates in automatic mode. The results of the validator services are the key input for the
learning services.

For simplicity, the Data Access Layer, Data Processing and the Service Infrastructure as well as
supporting services/modules are not shown in Figure 2. However, the overall architecture is following
a strict SOA approach.

5.1. Context Model

For the extraction of current context, an underlying model is required that supports the
identification of context. In that sense the context model forms the basic data model that is used
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for the context identification/extraction. The proposed approach uses ontologies as technology for
modelling the context model. Contrary to many ontologies, the context model proposed in this work
is not foreseen, to define a full description of all possible context, but to model the concepts that are
required for supporting the context identification [10].

The application of the proposed solution to a specific domain normally requires adjustment of the
context model. Therefore, a general and extensible context model is proposed. It is in a format that
meets several requirements: help to describe and capture context easily; help to manipulate context;
facilitate context consumption by services. Therefore, the context model consists of a layered ontology
approach. The model includes:

• the generic device context model
• the domain specific and/or
• application-specific context model(s).

The generic device context model defines the high-level context. The other layer(s) define the
domain and/or application specific context model(s). The context model to be used in the proposed
approach consists of all three layers. Thus, the context model is a semantic model for an integrated
representation of machine, device and processing knowledge (including information of goal, activity,
resource, etc.) as well as its generation. The model developed is defined as high-level structured
representations of the product, processes and resources involved in process and their relationships.
The generic context model defines concepts such as: Generic Device, Production Unit, Process Step,
Operator, Resource, etc. Subsequent, the sector specific context model defines concepts such as:
Manufacturing Process, NC controlled Lathe, Shoe Machine, etc. Finally, the Application Specific
part contains specific products and processes (see Figure 3 for an excerpt of the above-mentioned
context models).
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The research is focused on development guidelines to effectively define context models for
various applications [3]. Some basic principles for context modelling were elaborated and followed:
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(1) Description of context: In practice, it is virtually impossible to model all possible context information.
An approach to create the full description of all possible context would be too time and cost intensive.
Therefore, “only” the concepts should be modelled, that are relevant for the extraction of current
context; (2) Availability of Context: In order to allow an efficient identification/extraction of context
only context should be modelled that can be either provided by automatic monitoring by the system
or manually provided by the human operator. However, provision of context information should
be as easy as possible. Therefore, the context to be modelled should be (relatively) easy acquirable;
(3) Cost of Context Modelling: Intuitively, if we could model as much context factors in as much details,
the accuracy of context will be higher. At the same time the costs for the modelling of context are
raising the more detailed the context is modelled. Therefore, it is important to find a good trade-off
between investments due to context modelling and potential optimizations due to context extraction
and adaptation.

5.2. Context System Monitor

The objective of the System Monitor is to receive raw sensor data and provide aggregated data.
In order to monitor “raw sensory data”, the System Monitor need to be connected to diverse legacy
systems, such as CPS, Web Services, file systems etc. To achieve this the System Monitor implements a
Service-oriented configurable monitoring architecture (SOMA). Each system to be integrated into the
System Monitor will be monitored by a specific monitor, that delivers its data to the superior Generic
Monitor for further processing. The Generic Monitor is able to standardize and correlate data from
specific systems for further processing in the Context Extractor module.

The main component of the System Monitor is the modular monitoring process, used for all
monitoring services with an extendable and configurable standardized process (see Figure 4).
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The process is three-parted and contains the:

• Monitoring system/sensor module, which contains all services to monitor legacy systems and
devices in enterprises vie the Data Access Layer. The distributed monitoring services also call
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back to this module with their gathered information. The monitoring services can be extended
and configured for different data sources.

• Parser module, which contains content parser for the different possible data captured by the
monitoring services. This module is parsing the content provided by the monitoring services so
that it can be analyzed by the analyzer module. The parser can be extended and configured for
different content provided by the monitoring services.

• Analyzer builder module, which correlates the monitored content and constructs the “Monitoring
Data” to be stored and handed over to the Context Extractor or any other service that needs this
information. The analyzer can be extended and configured for different content provided by the
parser module.

5.3. Context Extractor

The objective of the Context Extraction is to extract and identify high-level context from
the monitored data in the Context System Monitor. The service is based on a semantic model
for an integrated representation of knowledge about devices, machines, manufacturing processes
and environment.
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Figure 5 shows the Context Extractor Architecture. The Context Extractor tries to extract current
context based on the monitored data provided by the System Monitor. The following process involves
Context Identification and Context Reasoning. Finally, the extracted context published via the System
Optimizer Interface. The corresponding modules comprise the following functionality:

• Context Model—see Section 5.1 above. All features in the Context Extractor are based on
this model.

• Context Monitoring—see Section 5.2 above. The Context Monitoring acts as a proxy between
System Monitor and Context Identification.

• Context Identification module, which analyses the Monitoring Data handed over by the Context
System Monitor and extracts knowledge context such as what products or components are
involved, what resources are used, and what items, parts or units are referenced or manipulated
in the current on-going context (see the text to follow).
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• Context reasoning module, a rule based system which reasons on the context provided by
the Context Identification module, and refines current identified contexts. This module also
compares the similarity between the current on-going contexts and historical contexts in the
model repository.

• System optimizer interface, which provides the results of the context extraction modules to other
up-stream modules/services.

5.3.1. Context Identification

The Monitoring Data sent from the Context System Monitoring is analyzed by the Context
Extraction to identify meaningful context concepts. The Monitoring Data contains only low level
crowded data regarding context concepts. For example, product ID which is currently produced at the
manufacturing system, temperature etc. These may not be meaningful context concepts yet according
to the Context model. These data are transformed to the information through the conceptual structure
of the Context Model (ontology), such as what concepts are being used, what resources (sensors,
CPS) are involved etc. The process includes simple tasks such as mapping from the Monitoring Data
format to the Context Model (Ontology) format, or more complex tasks such as querying all available
information regarding a concept (e.g., product) to determine if it is an existing concept in the Model.

As shown in Figure 6, the Context Identification process includes steps of identification of CPS,
identifying process from sensors and CPS data, identifying production orders and produce items and
resources, and constructing a dummy context to glue all identified data into the concepts included
in the Context Model. This process is mainly realized by querying and mapping. As the monitoring
data is represented in RDF format, SPARQL queries are issued to retrieve available information
from it and to check with the Context Model, which is also represented in RDF. Then, based on the
results, a mapping is implemented to generate high level context concepts into the Context Model by
RDF manipulation.
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5.3.2. Context Reasoning

As it is often not possible to identify directly from the Monitoring Data high level context concepts
included in the Context Model, the so-called Context Reasoning is applied allowing, based on diverse
information from CPS and other sensors, such as the resources used, the actors involved as well as
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information of history contexts, to find out the context concepts values under which the system is
currently working. Three types of reasoning technologies are used:

• Ontological Reasoning: based on the semantics of the ontology language and the definitions in
the Context Model ontology the deductive reasoning is carried out, such as transitive reasoning
and subsumption.

• Rule-based Reasoning: uses the deductive techniques as in the Ontological Context Reasoning, but
with application-specific rules provided by users. Such application- or domain-specific rules could
be provided by a domain expert or constructed based on a statistical analysis of historical data.

• Statistical Reasoning: does not rely on strict logical rules but instead tries to correlate information
into possible relations, as suggested by the empirical data, to determine the most possible
current context.

The Rule based Reasoning allows the identification of the context concepts by applying domain
specific rules which use the data from current sensors. Under sensors are understood simple sensors
(e.g., temperature, pressure), or complex sensors, including CPS treated as complex, intelligent sensors
(e.g., a machine providing data on its current state etc.). The Context Identification uses various types
of rules, the simplest one in a form:

IF (
n

∑
1

wisensoriTRUE) ≥ mj THEN conceptj IS TRUE (1)

where

• sensori TRUE has value 1 or 0 depending is the value of the current signal at sensor i (e.g.,
temperature) satisfying the sub-rules associated to the sensori or not,

• n is the number of sensors relevant for the definition of concept j
• wi is the weighing of the sensor value in identification of the context concept j,
• mj is the margin to claim that the context concept j is true or not

For example, the rule can be:

IF sensor1 true (a processing device has a valve attached to it), +
sensor2 true (the valve is observed by pressure sensor which provides a resource identified
as pressure in Bar) >2 THEN
“The processing device is of type Mixing-Head” (w is 1 for both sensors in this case).

This is the simple rule when the context is defined by one of the concepts in the context model
(described above). In the more general case, the context is defined as a set of concepts in the context
model and the rules are correspondingly more complex.

5.3.3. Context Similarity Measurement

The Context Similarity Measure is applied in both Context Extractor (Context Reasoning) but
also in Optimizer for Context-aware optimizations and selections. Basically, it compares two given
contexts (concerning their related concepts regarding e.g., devices, equipment, processes etc.) by using
the context hierarchy tree defined in the Context Model., to tell how similar they are [21].

A context situation is characterized by a context instance and its related context
resources—concepts such as devices, units, processes etc. A context situation C can be defined
as a set of context elements—(Ei), i.e., a set of concepts in the Context Model which are relevant for the
context situation. The following notions are defined:

• Current Context (CC): The Context (current situation) for which similarity with the context
situations (cases) already stored in the database will be computed.
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• Stored Context (SC): any of the previously stored context cases which are stored in the database,
used for computing the similarity with CC.

• Raw Similarity (RS): the value of the absolute similarity between two entities before
being weighted.

• Weighted Similarity (WS): the relative, i.e., weighted value of the similarity. The following equality
stands: WS = RS * weight.

Then the similarity between two context situations C1 and C2 can be derived into similarity
measures of these 2 elements, as shown in Equation (2):

WS(CC, SC) =
n

∑
1

wisimEi (Ei(CC), Ei(SC)) (2)

where wi is the weight of the element set,
n
∑
1

wi = 1, simEi (Ei(CC), Ei(SC)) is the similarity between

two element sets of CC and SC (the value is a real number between 0 and 1), n is the number of
concepts involved in the context situation. The weight of each context element can be the same in a
simple model, or a higher weight can be applied to the more important element in a more complex
model. In the latter case, a domain expert or a group of experts have to define initial weights and a
learning algorithm is implemented to adjust the weights based on user feedback.

The similarity between two element sets simEi (Ei(CC1), Ei(SC2)) is computed by exploiting the
hierarchical class tree of an ontology as presented in [21].

5.4. Optimizer and Self-Learning

The Optimizer module includes services which update/optimize the system behavior based on
the identified change of context. The Context Extractor identifies in run time the change in context
and provides the information on the Optimizer. The optimizer then adapts the system behavior to
the changed ‘conditions’. In the currently developed version of the Optimizer, it includes sets of
rules to adapt the system behavior to the change of context. The rules are continuously updated
by the Self-learning services which ‘learn’ how to improve the system behavior based on the user
validation of the proposals made by the Optimizer. The domain specific rules are applied, as explained
in Section 5.3. These rules are updated by the Self-learning services (weights in the rules) However,
besides such self-learning rule based solution, the Optimizer may include different other solutions
such as classical optimization algorithms etc.

Self-learning services are used during the Adaptation process, during the Proactive behavior
and during Context Extraction. When an optimization process is triggered, the monitoring data are
retrieved and encapsulated into a structure that in turn is sent to the learning module to be processed.
The result is again encapsulated into a structure. The selected algorithm is instantiated, to be used for
current optimization process as presented in [40]. Based on the input structure the learning module is
able to instantiate the necessary number of algorithms to face the current application scenario.

Two core operations learn and reason, allow the training of the algorithm using a particular model
and elaborating a result. The instantiated learning algorithms need a number of models to be trained,
depending on the specific application. In the same application, several models can be used depending
on the current application scenario. The number of instantiated algorithms determines the number of
necessary models to use (see also [40]). An update of the existing learning models is carried out using
the last optimization process result. The updated learning models serve to update the context model
accordingly. The self-learning services are using then these new updated learning models, while the
Context Extractor uses the updated context model.

The Learning Services have been implemented using RapidMiner [41]. This framework allows the
easy integration and usage of several learning algorithms and is furthermore extensible. The following
learning algorithms are possible to be executed through the Learning Services and are automatically
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selected based on the application requirements: ID3 Learner, Naïve-Bayes Learner, Support Vector
Machine, Neural Networks, Rule Induction and Least Mean Square. The architecture of the Learning
Services allows for an easy extension of existing learning algorithms as well as for integration of
additional learning algorithms.

6. Experimental Results

As indicated above, the proposed solution is applicable to wide scope of systems. Two specific
applications were investigated in practice, i.e., the above described solution is applied in two very
different run-time optimizations. The adjustment of the generic solution to the specific applications
includes: (a) definition/update of the context model relevant for the specific optimization and
process; (b) definition of CPS and other sources of information as well updates of the rules to process
these information needed for context extraction; (c) adjustment of the Optimizer initial rules to
specific optimization.

6.1. Energy Consumption Optimization

The first scenario is the application of the proposed solution for the optimization of so-called
secondary processes, in this case optimization of energy consumption of CNC machines. The above
proposed solution is integrated to the existing service platform. The goal in this experiment is to
improve machine tool energy consumption by using context aware and self-adapting solution, as
an alternative to the common time-out strategy for reducing energy consumption (see also in [42]).
The majority of the current procedures for optimization of energy consumptions of CNC machines
require setting of time out in advance which leads to suboptimal energy consumption. The proposed
solution aims to avoid this shortcoming of the current procedures.

The selected Context Model includes specific extension of the generic model that are used to
represent IDLE times. For IDL times concepts such as VTodo, VEvent, VAlarm and VFreeBusy are
used. The actual machine being idle is identified and represented within the default generic context
model as either a GenericDevice or some of its subclasses (like ProcessingDevice or ProductionUnit).
The Context Extractor monitors several machine control states in run-time of the manufacturing
process and identifies the idle time patterns in different time domains. The Context Extractor receives
raw-data via the Data Access Layer and identifies the idle times, i.e., deduces high-level information
from the received low-level raw data and checks the context consistency and reliability as well. Context
Extractor encapsulates all identified machine idle times in a standardized meta-data model and notifies
the Optimizer that the context has changed. The simple rules and the context similarity measure,
as the one presented in Section 5.3, are applied. The machine tool data are classified in time domain
(see Figure 7).

The identified idle times are sent to the Optimizer which proposes possible scheduling for
energy saving tasks to be executed during the identified idle-times taking into account both their
duration and the entire lifecycle of the machines and processes, i.e., taking into account the tasks
executed in the past and various information describing the conditions under which the process is
operating. The observation of the context, based on the data from CPS in processes, under which the
machines/process are executed allows for modelling of machine tool behavior. This in turn allows to
predict how the machine will be used in future and by this avoid setting of time-out, i.e., the machine
can be shut-off once an idle time identified. Assuming that the characteristic wake up delay is known,
the machine can be turned on in advance, and by this avoid delays and potential losses in productivity
of the processes. In addition, the model of the machine behavior gained allows identification of the
most appropriate energetic states for the context under which the machine is operating.
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Figure 7. Example of detected machine idle times.

The proposed solution has been tested on data gathered from real machine installations.
The context sensitive solution was fed with the provided data and by this the capability of the
solution to recognize the idle times patterns and schedule machine energy saving tasks has been
explored. The selected energy saving tasks were then communicated to the shop floor machines using
an OPC-UA connection. The solution has been tested over a period of time showing good levels of
reliability, feasibility and robustness. The results concerning the energy savings achieved as well as the
loss of machine availability occurring by using the proposed solution are shown in Figure 8.
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Figure 8. Energy saving result and machine availability.

It can be seen that the application of the proposed solution results in a considerable improvement
in energy savings for machine tools. The baseline for comparison is the current practice in industry
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where, as indicated above, it is required to set time out in advance which in turn leads to suboptimal
energy consumption. However, the presence of an initial transient phase where the energy saving
improves while the machine availability decreases can be seen. This can be attributed to the learning
model of the machine that initially has not enough entries to correctly predict machine behavior.
As learning approaches ID3 Learner and Naïve-Bayes Learner have been applied, both providing
similar results. After this transient phase, the system stabilizes, i.e., the Optimizer learns based on
the expert decisions along time and populates the learning model of the machine with new entries
enhancing its capability to generalize.

As a result, the machine availability loss reduces along time approaching zero. Furthermore, the
loss of availability along time goes to zero.

6.2. Availability and Efficiency Optimization at CPS Based FMS

This experiment involved CPS based FMS in shoe industry. The production and manufacturing
of shoes involves a wide variety of materials and a large number of operations. Such FMS comprise
a set of complex operations that are labor intensive and are very dependent on the operator’s skill.
The need for automatic recognition of current situations and continuous optimization of processes has
been identified by the producers of FMS for shoe industry.

The proposed solution has been integrated into real industrial equipment. The Context Extractor
identifies current context of production process and reacts to changing of context caused by variations
in different parameter sets in order to improve error-prone processes (caused by humans) and reduce
maintenance problems.

The selected experiment deals with a scenario in which the valves of a so called “mixing
head” system shall be automatically adjusted based on the identified changing context. During
the production process of shoe sole, different components are mixed by synchronously acting
on different non-mechanical connected valves. The problem that arises after a vaguely defined
time of shoe sole production, the valves get asynchronous. The influences that are causing the
asynchronous operation of the valves are very different. Some of the cause are: different force
requirements (due to changing products), different air supply, valve abrasion or operator’s skills.
All these skills influence the quality of the final product. In the experiment the tested solution is
continuously fed with manufacturing process parameters, which are collected from various CPS in the
manufacturing process. The Context Model includes concepts, such as MixingHead, Tank, Material,
SensoricalValveInformation, SensoricalTankInformation, SensoricalAmbitentTemperature-Information,
SensoricalAmbitentHumidityInformation. In addition, several supporting concepts such as
RotationsPerMinute, TimedCycle, Counter, FillingLevel have been introduced in the context model.
These sets of parameters are used by the Optimizer to build a representative model of process relying
on empirical data using data mining techniques. The parameters considered to build the model are the
pressure and the temperature, speed frequencies of drives and pumps, proper material mix ratio and
filling of materials into shoe forms etc.

The Context Extractor continuously tries to identify changing contexts. In case a changed context
is identified, this context is sent to the Optimizer. The Optimizer starts an adaptation process, which
results in a proposal for a set of production parameters to be changed. These Adaption proposal
is evaluated by a human operator. Based on the results of adaptation and operator’s feedback,
the learning services learn how changing cycle times and ambient conditions are influencing the
production process (e.g., above explained valve synchronization) and update the rules for context
identification, adaptation and extension. As learning algorithms, again ID3 Learner and Naïve-Bayes
Learner have been applied and both provided similarly good results, while the application of the
Support Vector Machine algorithm has not provided satisfactory results.

The prototype solution was tested in a demonstration set up of a real production environment.
The results of the initial experiment for automatic valve synchronization are shown in Figure 9
(see also [4]). It is shown, that the opening times of the five valves that are used for injecting two types
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of materials (three valves for material A, two valves for material B) are continuously adapted to assure
an “optimum” working range.Sensors 2017, 17, 455  16 of 20 
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As it can be seen in the Figure 8, the “optimal” adjustments are achieved after an initial training
phase. In further experiments the context model was extended to take into account additional
machine/process parameters, such as Material Temperature, Pressure, Pump Speed, etc. The results of
the “advanced” valve synchronization experiment (taking into account more input parameters) are
shown in Figure 10 and confirm the results of the initial experiment. Both experiments demonstrate
considerable improvements with respect to current practice in the industrial sector.
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The experiments have proven that the proposed solution when applied in control of FMS in shoe
industry may assure keeping of the process parameters inside the optimum working range under
wide spectrum of changes in conditions under which FMS operate. Applying the proposed solution
for self-adaptation of machine parameters, leads to an increased efficiency and availability, i.e., it may
assure high utilization of machines and the product quality. Thereby changing ambient conditions are
taken into account (identified changes in context).

7. Conclusions

The research presented in the paper resulted in an innovative context sensitivity solution to
support run-time optimization of a wide scope of FMSs using run time information from various
sensors and CPS, as complex intelligent sensor systems. The main benefit of the proposed generic
solution is that it is easily adaptable to specific conditions of each system. The applicability of
the solution for optimization of various parameters in two different manufacturing systems is
demonstrated. The generic innovative context model has been proposed.

The building and maintenance of the optimization solutions in both applications using the
proposed approach is considerably more effective than building classical scattered solutions. Contrary
to e.g., classical adaptive control solutions, the generic solution bringing intelligence into the
manufacturing processes, are easily applicable to various machines/processes, gaining a higher
benefit for the manufacturer:

• The time/efforts spent for building the both above described applications is estimated to be more
than 60% less than time/efforts needed to build individual solution for each optimization.

• The biggest advantages are seen in maintenance and extensibility of the solution: if the
processes and conditions change (which is often in FMS processes) the solution can be easily
maintained/updated by extending the context model and perhaps adding/modifying certain
monitoring services and rules for better context extraction and adaptation, but the overall structure
of the optimization solution needs not to be changed. It is estimated that the costs for maintenance
of such solution is more than 80% lower than for maintenance of classical solutions.

• The benefit is that the proposed solution can be applied for a number (all) of optimization
processes within a factory, i.e., the company does not need to apply a high number of
various solutions, which in turn may radically reduce development and maintenance costs
of such solutions.

New applications of such approach for run-time optimization in FMS are elaborated. Many
research problems, however, are still under consideration. The decisions about which raw data are
worthy to on-line collect/provide by monitoring services (which means efforts/costs to integrate
services with various systems that hold these data) in order to better extract the context and support
optimization, have to be made on case basis and are specific for each application. The proposed
approach shall be integrated in the emerging Reference Architecture for Industry 4.0—RAMI 4.0 [43].
The methodology on how to analyze cost/benefit ratio for various applications is developed. The more
complex rule based solutions, such as probabilistic reasoning and diverse learning algorithms have to
be further explored experimentally. The key research issues to be solved are how to refine the context
models. Automatic update of the context model based on the observed changes in environment is
a subject of the further research. Another problem under study is how to assure better automatic
evaluation and validation of the results to make learning process more autonomous.

It is likely that the proposed context sensitivity and self-learning approach, based on the advanced
CPS as complex, intelligent sensors, providing information not available up to now and needed for
context sensitivity, can be effectively applied in various application domains (e.g., logistics, health etc.).
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