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Abstract: The foot-mounted inertial navigation system is an important method of pedestrian
navigation as it, in principle, does not rely any external assistance. A real-time range decomposition
constraint method is proposed in this paper to combine the information of dual foot-mounted inertial
navigation systems. It is well known that low-cost inertial pedestrian navigation aided with both
ZUPT (zero velocity update) and the range decomposition constraint performs better than those in
their own respective methods. This paper recommends that the separation distance between the
position estimates of the two foot-mounted inertial navigation systems be restricted by an ellipsoidal
constraint that relates to the maximum step length and the leg height. The performance of the
proposed method is studied by utilizing experimental data, and the results indicate that the method
can effectively correct the dual navigation systems’ position over the traditional spherical constraint.

Keywords: inertial navigation system; ZUPT; ellipsoidal constraint; correct position

1. Introduction

Positioning and tracking systems have developed over several decades in various applications,
ranging from tracking of pedestrians to autonomous vehicles [1]. A high-precision navigation system
is often needed for urban and indoor lives where GPS is unavailable, for example, in wearable
body area networks [2]. Increasing attention for the pedestrian navigation problem can be partially
attributed to the significant progress in affordable wearable computing platforms and enhancement
in sensor quality, especially with respect to micro electro mechanical systems (MEMS) [3]. The micro
inertial measurement units (MIMU) usually consist of gyroscopes, accelerometers, magnetometers,
and pressure sensors [4].

In real-life application, however, the low-cost inertial navigation systems suffer from the
accumulation of errors while calculating the traveled distance of the objects. These errors cause
the trajectories to drift away from the actual path as time grows. An effective technique is to bind
the error growth using ZUPT [5]. In [6], the authors presented an open-source, real-time, embedded
implementation of a foot-mounted, zero-velocity-update-aided inertial navigation system (INS).

When we use the ZUPT-aided INS to track pedestrian location, the heading drift of navigation
information is unobservable [7], so it is difficult to get accurate location information only through ZUPT
in long-term navigation. Some previous works used the information fusion of multiple inertial sensors
to ulteriorly correct the position [8,9]. As shown in [8], the use of the two-feet range constraints can
significantly improve the navigation performance and a 110 m straight-line experiment showed that the
spherical constraint algorithm can reduce the mean error and covariance of the final position estimates.
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In [9], the authors proposed a method for a dual-mounted INS to reduce the systematic heading
drift. They set up a dual MIMU system with two feet, in which the maximum distance between the
two systems is derived from the calibration procedure. The proposed algorithm can obtain the walk
trajectory when the initial heading estimates are known, but the method did not significantly improve
the positioning accuracy of the system.

The experiments in [8,9] are two-dimensional (2-D) plane experiments, and the feasibility of the
algorithm in three-dimensional space was not verified. When we use the spherical constraint [8] based
on maximum step size to correct the position of the two feet, if the step size is greater than the height
of heels, the spherical constraint algorithm would have little significant effect on the height constraint
of the two feet. Therefore, in this paper we take into account different separation constraints in level
and height directions, which is shown to be more effective to correct the pedestrian location.

2. Principle and Theory

2.1. Discrete Kalman Filter

The Kalman filter addresses the general problem of estimating the state Xk of a discrete-time
process that is governed by the linear stochastic difference equation [10,11]:

Xk = Φk,k−1Xk−1 + Γk−1Wk−1 (1)

with a measurement Zk that is
Zk = HkXk + Vk (2)

where Φk,k−1 denotes transition matrix relating the state at the previous time step tk−1 to the state at
the current step tk, Γk−1 denotes the system noise drive matrix, Hk represents a measurement matrix,
Vk is series of measurement noise, and Wk represents noise excitation sequence for the system. The Wk
and Vk simultaneously meet:

E[Wk] = 0, Cov
[
Wk , Wj

]
= E

[
WkWT

j

]
= Qkδkj

E[Vk] = 0, Cov
[
Vk , Vj

]
= E

[
VkVT

j

]
= Rkδkj

Cov
[
Wk , Vj

]
= E

[
WkVT

j

]
= 0

. (3)

In practice, the process noise covariance matrices Qk and measurement noise covariance
matrices Rk might change with each time step or measurement, and we assume they are a positive
definite matrix:

X̂k = X̂k/k−1 + Kk
(
Zk − HkX̂k/k−1

)
(4)

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(5)

Pk/k−1 = Φk,k−1Pk−1ΦT
k.k−1 + Γk−1Qk−1ΓT

k−1 (6)

Pk = (I − Kk Hk)Pk/k−1 (7)

Equations (4)–(7) are the basic equations of Kalman filtering. If the initial values about X̂0 and
P0 are given, we can perform the state estimation at time k according to measurements Zk at the
same moment.

2.2. Inequality Kalman Filter

The inequality Kalman filter appears in solving practical problems between state variables where
there are inequality relationships [12]. The inequality relationship can be expressed as a constraint
equation and combined with the Kalman filter, as a result of which the optimal solution strictly
conforms to the inequality constraints between state variables, and a better result could be obtained.
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The inequality-constrained Kalman optimal solution [13] is expressed as

min
x̂

(x̂k − xk)
TT(x̂k − xk)

Lxk ≤ d

}
(8)

where xk is the unconstrained (standard) Kalman filter estimate and T is a symmetric positive definite
weighting matrix [14,15]. As such, the weighted error of the constrained filter is minimized [16].
Expanding the first type of Equation (8):

(x̂k − xk)
TT(x̂k − xk) = x̂T

k Tx̂k − 2xT
k Tx̂k + xT

k Txk (9)

Thus, the inequality constrained problem can be further simplified as

min
x̂

(
x̂T

k Tx̂k − 2xT
k Tx̂k

)
Lxk ≤ d

}
(10)

3. Methods

3.1. Generalized Likelihood Ratio Test (GLRT)

The output of MIMU can be expressed as

xk =
[

xa
k xω

k

]T

where the specific force measurement vector xa
k ∈ Ω3 and the angular rate measurements vector

xω
k ∈ Ω3. Assuming a series of measured value yn = {xk}n+N−1

k=n . We employ a double hypothesis
testing as such, H0 : MIMU stationary, H1 : MIMU moving. The false alarm probability is expressed as

PFA = P{H0|H1} = α

The detection probability is PD = P{H0|H0}. Two hypotheses' observation data probability
density functions are, respectively, defined as p(yn; H0) and p(yn; H1).

The mathematical sensor model can be expressed as xk = sk(θ) + vk, where sk(θ) =[
sa

k(θ) sω
k (θ)

]T
and vk =

[
va

k vω
k

]T
, the force of MIMU is sa

k(θ) ∈ Ω3, and MIMU angular

rate is expressed as sω
k (θ) ∈ Ω3. The symbol θ denotes the vector of unknown elements va

k ∈ Ω3

accelerometers noise, vω
k ∈ Ω3 gyroscopes noise. Assume the noises follows zero mean Gaussian

distribution, with noise covariance matrix Z = E
{

vkvT
k
}
=

[
σ2

a I3×3 03×3

03×3 σ2
ωI3×3

]
, where σ2

a and σ2
ω,

respectively, represent accelerometers and gyroscopes noise variance.
Since the sensor measurement can be obtained from the joint probability density as

p(yn; θ, Hi) = ∏
k∈Ωn

p(xa
k ; θ, Hi)p(xω

k ; θ, Hi) (11)

where:

p(xa
k ; θ, Hi) =

1

(2πσ2
a )

3/2 exp
{
− 1

2σ2
a
‖xa

k − sa
k(θ)‖

2
}

p(xω
k ; θ, Hi) =

1

(2πσ2
ω)

3/2 exp
{
− 1

2σ2
ω
‖xω

k − sω
k (θ)‖

2
}
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GLRT is determined by the hypothesis H0 if

LG(yn) =
p
(
yn; θ̂0, H0

)
p
(
yn; θ̂1, H1

) > λ (12)

where λ denotes the threshold. In Equation (12), θ̂0 and θ̂1 represent the maximum likelihood estimate
of the unknown element under the assumptions H0 and H1, respectively. Equation (12) can be
simplified as

LG(yn) = exp

(
− 1

2σ2
a

∑
k∈Ωn

‖xa
k − g

xa
k

‖xa
k‖
‖

2

− 1
2σ2

ω
∑

k∈Ωn

‖xω
k ‖

2

)
(13)

T(yn) = −
2
N

ln LG(yn) =
1
N ∑

k∈Ωn

(
1
σ2

a
‖xa

k − g
xa

k
‖xa

k‖
‖

2

+
1

σ2
ω
‖xω

k ‖
2

)
. (14)

T(yn) < λ means that the pedestrian is in a stationary state.
In practice, ZUPT can effectively aid inertial navigation system to remove long-time accumulated

errors [5,17]. The velocity error of carrier is used as a concept [18,19]. When pedestrians stay static, the
MIMU measured velocity is regarded as an error to correct the system using Kalman filtering.

The state error vector is defined as

δX =
[

δφT δωT δrT δvT δaT
]T

which, respectively, represents the three-dimensional attitude error, gyro drift, position error, velocity
error and accelerometer bias.

The zero-velocity correction Kalman filter model is{
δXk = ΦkδXk−1 + Wk−1
δZk = HkδXk + Vk

. (15)

When the MIMU is stationary, the speed is zero, in theory; thus, the ZUPT speed measurement
equation is

δZv,k = ∆vb
k = vb

k −
[

0 0 0
]T

(16)

where the state transition matrix is given as

Φk =


I3×3 −∆tCn

bk|k−1 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 ∆tI3×3 03×3

∆tS
(

f n
k
)

03×3 03×3 I3×3 ∆tCn
bk|k−1

03×3 03×3 03×3 03×3 I3×3

 (17)

S( f n
k ) =

 0 −an
zk an

yk
an

zk 0 −an
xk

−an
yk an

xk 0

 (18)

where S
(

f n
k
)

is the specific force anti-symmetric matrix, and Hk =
[

03×3 03×3 03×3 I3×3 03×3

]
.
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3.2. The Ellipsoidal Constraint Method

Each foot are fixedly mounted by a MIMU. For regular human kinematics, the separation distance
between the right and left feet cannot be larger than a quantity known as foot-to-foot maximum
separation [8,9]. The maximum step size is a typical feature of pedestrian to walk and can be used to
constrain the navigation error [20,21], namely, in addition to using ZUPT to improve the accuracy of
pedestrian navigation. In specific, we decompose the constraint into three degrees of freedom and
then use the obtained sub-constraints to correct the navigation system. Based on this intuition, we
constrain the position estimate of right and left foot-mounted ZUPT-aided INSs.

According to the coordinate system identified of the MTI-G-700 units (3D motion tracking system,
from Xsens Technologies B.V., Enschede, The Netherlands), the carrier coordinate system, as shown in
Figure 1, shows the Xb axis is parallel to the surface of the MIMU, in the forward direction, and the Zb
axis is perpendicular to the MIMU surface, in the upward direction. In this dual-MIMU integrated
navigation system, the navigation coordinate system’s Xn axis is forward, the Yn axis points to the
right, and the Zn axis perpendicular to the XnOYn plane, upwards. The coordinates of the navigation
subsystem bound to the feet are defined in the same way.
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Figure 1. (Left) The two MIMU are mounted to the feet separately, the OXbYbZb coordinate
system are the carrier coordinates; (right) side view, the OXnYnZn coordinate system are the
navigation coordinates.

For two MIMU navigation systems, the i = L, R, system real state is described as xi
k (including

position, velocity, and attitude), the estimated state as x̂i
k at the time k, where xi

k ∈ Rni , x̂i
k ∈ Rni .

The joint state vector is defined as xk
de f
=
[ (

xL
k
)T (

xR
k
)T
]T

x̂k
de f
=
[ (

x̂L
k
)T (

x̂R
k
)T
]T

where x̂k ∈ Rm(n1 + n2 = m).
Letting the maximum step size of the pedestrian be given by Γ, the real displacement difference

between the two navigation systems should be less than or equal to Γ. As the leg height is subject
to certain constraints, during the pedestrian normal walking state, the positions of the right and left
foot can be approximately constrained in a ellipsoid (Figure 2). The position of one foot is constrained
within the circle of radius Γ in the XOY plane, and is confined within the circle with leg-related radius
h in XOZ and YOZ planes, both centered at the other foot (Figure 3).
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Assuming that left foot is on the ground and the right foot is in movement at moment k (Figure 3),
then we can calculate α, defined as the angle between the position of the two feet in the XOY plane (in
navigation coordinate system):

α = arctan

∣∣∣∣∣ xR
k − xL

k
yR

k − yL
k

∣∣∣∣∣. (19)

As we can see from Figure 2, there is a space azimuth β between the right and the static left foot,
we can calculate this angle by the positional relationship between the feet:

β = arctan

∣∣zR
k − zL

k

∣∣√
(yR

k − yL
k )

2
+ (xR

k − xL
k )

2
(20)
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Therefore, the ellipsoidal constraint correction algorithm between the feet can be defined as

[
Ls

Lh

]
· xk ≤

 Γx

Γy

hz

 (21)

Defining the matricies,

Ls =

[
1 0 0
0 1 0

02×6
−1 0 0
0 −1 0

02×6

]

Lh =
[

0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
]

where Γx represents the real-time constraint value of the ellipsoid constraint on the Xn axis,
so Γx = Γ sin α; Γy represents the real-time constraint value of the ellipsoid constraint on the Yn axis,
so Γy = Γ cos α; hz represents the real-time constraint value of the ellipsoid constraint on the Zn axis,
so hz = h tan β.

We assume that two navigation systems attitude is accurate in the current moment when the

decompose step size constraint. When ‖Ls ·xk‖2

Γ2 + ‖Lh ·xk‖2

h2
z

> 1 can constraint the state to be satisfied

with
{

x ∈ Rm : ‖Ls ·xk‖2

Γ2 + ‖Lh ·xk‖2

hz
2 ≤ 1

}
the state modification is recommended as

 p(x̂k)
de f
= argxmin(x̂k − x)TP−1

k (x̂k − x)
‖Ls ·xk‖2

Γ2 + ‖Lh ·xk‖2

h2
z
≤ 1

(22)

where P−1
k denotes the Kalman filter estimated covariance matrix state.

Defining L =

 1/Γx 0 0
0 1/Γy 0
0 0 1/hz

03×6

−1/Γx 0 0
0 −1/Γy 0
0 0 −1/hz

03×6

,

Equation (22) can be written as{
p(x̂k)

de f
= argxmin(x̂k − x)TP−1

k (x̂k − x)
xT

k LTLxk ≤ 1
. (23)

The covariance matrix of the process measurement noise of the dual-MIMU integrated navigation
system is

Qk =


Qa 03×3 03×3 03×3

03×3 Qω 03×3 03×3

03×3 03×3 Qa 03×3

03×3 03×3 03×3 Qω

 (24)

where Qa =

 σ2
ax 0 0
0 σ2

ay 0
0 0 σ2

az

 , Qω =

 σ2
ωx 0 0
0 σ2

ωy 0
0 0 σ2

ωz

 , σa =
[

0.5 0.5 0.5
]T

,

and σω =
[

0.5 0.5 0.5
]T
× π/180.
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The covariance matrix of the measurement noise of the dual-MIMU integrated navigation
system is

Rk =



σ2
vx 0 0 0 0 0
0 σ2

vy 0 0 0 0
0 0 σ2

vz 0 0 0
0 0 0 σ2

vx 0 0
0 0 0 0 σ2

vy 0
0 0 0 0 0 σ2

vz


(25)

where σv =
[

0.01 0.01 0.01
]T

.
The sampling rate of the filter is 400 Hz.

4. Experiment

To compare the performance of the proposed algorithm with the existing in [8] (the spherical
constraint method). Experiments are carried out using two MTI-G-700 units and the performance
parameters of them are shown in Table 1. The procedure is summarized as follows:

(1) In a complex 2D environment: some closed trajectory containing a straight line path and turning
eight times (turning angle: 90◦).

(2) In a complex 3D environment: a six-story staircase, and parts of corridors in the Sheng-Hua
building at the Central South University. The walk strats at the first floor and ends at the
sixth floor.

Table 1. The performance parameters of MTI-G-700.

Sensors Accelerometer Gyroscope

Typ Max Typ Max

Standard full range 50 m/s2 - 450◦/s -

Bias repeatability (1 year) 0.03 m/s2 0.05 m/s2 0.2◦/s 0.5◦/s

In-run bias stability 40 µg - 10◦/h -

Noise density 80 µg/
√

hz 150 µg/
√

hz 0.01◦/s/
√

hz 0.015◦/s/
√

hz

Non-linearity 0.03% FS 5% FS 0.01% FS -

According to the experimenter gait characteristics, we set Γ = 0.6 m and h = 0.3 m, respectively.
In the 2-D closed experiment, the ZUPT-aided INS can track the pedestrian feet positions (Figure 4),

but the distance of two feet reaches about 6 m, which is unreasonable in pedestrian navigation.
Comparing the three different sets of trajectories, the position estimation information under the
ellipsoidal restriction can obtain the position estimates more accurately. Figure 5 shows the relative
positions of the two feet in the z axis direction. Since hz constrains the altitude difference, the feet height
difference can be reduced near to the true value and the pedestrian location can be more accurate.

For estimation evaluation, we have chosen the root mean square error (RMSE) as an accuracy
measure in this work. This is used to measure the difference between the actual values and the output
of an estimator. For quantitative comparison, we only checked the starting and final positions, both in
2D and 3D, in all walking tests. We assume the starting position of the left foot and right foot as (0, 0.1,
0) and (0, –0.1, 0), hence, only the final estimates are inserted into the RMSE formula. Both of these
quality indicators are given in comparison Table 2. Note that the unconstrained method represented
the results of only ZUPT corrections. Both spherical and ellipsoidal constraint methods can reduce the
2D and 3D trajectories error, but the latter obviously reduces the proportion more, and the correction
effect is more obvious.
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Figure 5. Left and right feet altitude difference in 2D the closed path experiment. (a) the height
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Table 2. RMSE deduction by using the ellipsoidal constraint method for a closed path test.

Method (L/R) 2D RMSE (m) (L/R) 3D RMSE (m) Remarks

Unconstraint 1.2640/0.9493 1.5473/1.2293 Time: 73 s
Distance: 61.6 m

Error rate(%): 0.93
Spherical constraint 0.6533/0.6194 0.8732/0.8482

Ellipsoidal constraint 0.5709/0.5953 0.6977/0.7174

In the 3D upstairs experiment, the result shows the maximum step ellipsoidal constraint method
reduces the error accumulation in the z-axis direction effectively. From the results presented in Figures 6
and 7, we can observe that the proposed method in this paper can reduce the altitude difference of the
feet position from 2.6 m to 0.56 m. Comparing to the spherical constraint method, the relative positions
concentrate between –0.3 to 0.3 m which are obviously smaller than the spherical confinement results
and are more suitable to the characteristics of the feet height on the stairs. By analyzing the results
obtained in Figures 6 and 7, we observe that the proposed algorithm can track the feet trajectory more
accurately than the spherical constraint method.
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Figure 7. The left and right feet position altitude difference in the upstairs experiment. (a) the height
difference of the two feet without constraint; (b) the height difference of the two feet with spherical
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In the indoor upstairs test, because of the objective factors of the irregular staircase, we are unable
to accurately know the horizontal coordinate of the end point. However, the position in the Zn axis
can be accurately measured, so, in this experiment, we only analyze the root mean square error in the
Zn axis direction. The numerical results are given in Table 3.

Table 3. RMSE deduction by using ellipsoidal constraint method for indoor upstairs test.

Method Left-3D RMSE (m) Right-3D RMSE (m) Remarks

Unconstraint 1.6712 0.8249 Time: 157 s
Height: 31.75 m

Error rate(%): 1.71
Spherical constraint 0.7676 0.7874

Ellipsoidal constraint 0.6537 0.5414
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5. Results

Low-cost inertial pedestrian navigation aided with both ZUPT and the range decomposition
constraint performs better than those in their own respective method. In this paper, we decompose the
maximum step length along the navigation coordinate axes in real time, and establish an ellipsoidal
constraint more suitable for actual walking situations. Each sub-constraint changes along with different
times and makes the aiding scheme of the step size more specific and accurate. Experimental tests
on different paths show that the proposed ellipsoidal constraint method can effectively improve the
position accuracy of pedestrian navigation.
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