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Abstract: A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal
with complicated damage detection problems of mechanical systems. Nevertheless, this approach
suffers from two challenges, which are (1) the feature extraction from various types of sensory data
and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or
fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are
also highly required during these selections. To address these two challenges, we propose an adaptive
multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault
diagnosis. The proposed method can learn features from raw data and optimize a combination of
different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed
method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion
levels, single sensory data, and two traditional intelligent models, back-propagation neural networks
(BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results
demonstrate that the proposed method is able to detect the conditions of the planetary gearbox
effectively with the best diagnosis accuracy among all comparative methods in the experiment.

Keywords: fault diagnosis; multi-sensor data fusion; deep convolutional neural networks;
feature learning; planetary gearbox

1. Introduction

The planetary gearbox is a key component in mechanical transmission systems and has been
widely used in wind turbines, helicopters and other heavy machineries [1]. The wide range of gear
ratios, small room in power transmission line, and high transmission efficiency are the most significant
advantages of planetary gearboxes [2]. Planetary gearboxes generally operate in tough working
environments, which makes them suffer from a variety of failures and damages [1,3] causing unwanted
downtime, economic losses, and even human casualties [4]. Therefore, the fault diagnosis of planetary
gearboxes is necessary to guarantee a safe and efficient operation of mechanical transmission systems.

Health conditions of planetary gearboxes can be reflected by various kinds of measurements,
including vibration signal, acoustic signal, driven motor current, shaft speed, oil debris, etc.
Different measurements have different drawbacks and are sensitive to different types of damage
modes or operation conditions. Thus, combining and analyzing these measurements together should
be an appropriate approach to detect various types of faults of complex systems. This approach,
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named multi-sensor data fusion, can achieve more accurate and reliable result than approaches with
a single sensor [5–7].

Nevertheless, multi-sensor data fusion for fault diagnosis suffers from two challenging
problems [6]. (1) One is the feature extraction of multi-sensory data. Generally, conventional fault
diagnosis includes three steps [8]: signal acquisition, feature extraction, and fault classification.
In the feature extraction step, fault sensitive features are extracted and selected from raw data
through signal processing technologies and data analysis strategies, such as Fourier spectral analysis,
wavelet transformation (WT), and principal component analysis (PCA). However, the multiple types of
sensory data of multi-sensor data fusion may cause a number of issues that make the feature extraction
with multi-sensor much more difficult than with a single sensor. These issues [6,7] include more
imprecision and uncertainties in measurements, various noises, more conflicting or correlating data,
higher data dimensions, etc. Extracting features from these kinds of data will be a very challenging
and cruel task. At the same time, multiple types of sensory data also increases the difficulties and
consumes much time to choose an optimal handcraft feature or manual feature extraction method,
even though to date, the optimal handcraft feature or feature extraction method for a specific type of
sensory data still remains unanswered [8,9]; (2) The other challenge of the multi-sensor data fusion is
the selection of different fusion levels. Similarly, different fusion levels have their own advantages
and disadvantages, and the suitable one for different fault diagnosis tasks is usually different [5].
Selecting an optimal fusion level for a specific fault diagnosis task always requires domain expertise,
prior knowledge, and human labor.

Deep neural networks (DNN), also known as deep learning, have been attracting increasing
attention from researchers from various fields in recent years [10–12]. The key advantage of DNN
is the feature learning ability [11], which can automatically discover an intricate structure and learn
useful features from raw data layer by layer. A number of studies [11–13] have shown that DNN can
fuse input raw data and extract basic information from it in its lower layers, fuse the basic information
into higher representation information and decisions in its middle layers, and further fuse these
decisions and information in its higher layers to form the final classification result. It can be seen that
DNN itself is a fusion structure [11,13], which fuses the feature extraction, feature selection, data-level
fusion, feature-level fusion, decision-level fusion, and classification into one single learning body.
For this reason, a DNN-based low level fusion, e.g., data-level fusion, can not only learn features from
fused raw data automatically, but also fuse these data, features and decisions adaptively through its
deep-layered structure. DNN might be an ideal model to fuse multi-sensory data and detect faults
of a mechanical system. However, although some applications [14–18] of DNN in feature learning
and fault diagnosis with a single sensor have been found in recent years, no study, to the best of
our knowledge, has investigated the effectiveness of DNN-based feature learning and the adaptive
level fusion method for fault diagnosis. It is attractive and meaningful to investigate this adaptive
fusion method, which can learn features from raw data automatically, and select and combine fusion
levels adaptively.

Deep convolutional neural networks (DCNNs), as one of the main types of DNN models,
have been successfully used in mechanical fault diagnosis with automatic feature learning from single
sensory data [9,14,19,20]. Benefitting from several unique structures, DCNN can achieve better results
with less training time than standard neural networks. Firstly, DCNN has a large set of filter kernels
in convolutional layers, which can capture representative information and patterns from raw data.
Stacking these convolutional layers can further fuse information and build complex patterns; Secondly,
DCNN is an unfully-connected network, where each filter shares the same weights. This structure
can reduce both the training time and complication of the model. In addition, the pooling layer of
DCNN further reduces the revolution of the input data as well as the training time, and improves
the robustness of the extracted patterns (a detailed introduction to the DCNN model is presented
in Section 2). Thus, DCNN should have great potential in processing the multi-sensory data of
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a mechanical system, which usually contains rich information in the raw data and is sensitive to
training time as well as model size.

Aiming to address the two problems of multi-sensor data fusion mentioned above, this paper proposes
an adaptive data fusion method based on DCNN and applies it to detect the health conditions of a planetary
gearbox. Different from conventional methods, the proposed method is able to (1) extract features from
raw data automatically and (2) optimize a combination of different fusion levels adaptively for any specific
fault diagnosis task with less dependence on expert knowledge or human labor.

The rest of the paper is organized as follows. In Section 2, the typical architecture of DCNN and
an adaptive training method are briefly described. Section 3 illustrates the procedures of the proposed
method, the design of the DCNN model, and several comparative methods introduced to further
analyze the performance of the proposed method. In Section 4, an experimental system of a planetary
gearbox test rig is used to validate the effectiveness of the proposed method. Finally, the conclusions
are drawn in Section 5.

2. Deep Convolutional Neural Networks

2.1. Architecture of Deep Convolutional Neural Networks

DCNN is a type of DNN model inspired by visual system structure [11,21], and it has
become the dominant approach for almost all recognition and detection tasks in image and speech
analysis [22–24]. DCNN contains three kinds of layers [25], which are the convolutional layer,
pooling layer, and fully-connected layer. As shown in Figure 1, the first several layers of a typical
DCNN usually consist of a combination of two types of layers—convolutional layers, followed by
pooling layers—and the last layer is a fully-connected layer. In the following part, we will describe
these three kinds of layers in more detail.
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Figure 1. A typical architecture of deep convolutional neural network (DCNN). 
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Figure 1. A typical architecture of deep convolutional neural network (DCNN).

The convolutional layer is composed of a number of two-dimensional (2D) filters with weighted
parameters. These filters convolute with input data and obtain an output, named as feature maps.
Each filter shares the same weighted parameters for all the patches of the input data to reduce the
training time and complication of the model, which is different from a traditional neural network
with different weighted parameters for different patches of the input data. Suppose the input of the
convolutional layer is X, which belongs to RA×B, and A and B are the dimensions of the input data.
Then the output of the convolutional layer can be calculated as follows [26]:

Ccn = f

(
CC

∑
cc=1

Xl−1
cc ∗W l

cn + Bl
cn

)
(1)
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where Ccn is the cn-th output of the convolutional layer, and the output number is CN, which is also
equal to the filter number; ∗ is an operator of convolution; Xcc represents the input data of cc-th channel
of previous layer l − 1, and the channel number is CC; W l

cn is the weight of cn-th filter of the current
layer l; the width and height of the filter are CW and CH, respectively; the cn-th bias is denoted with
bl

cn; f is an activation function, typically hyperbolic tangent or sigmoid function.
The pooling layer is a sub-sampling layer, which reduces the revolution of the input data and

improves the robustness of learned features. A pooling layer generally follows a convolutional layer
with a max pooling method and it outputs only the maximum of each sub-sampling patch of the
feature maps to subsample the feature maps from the previous convolutional layer. The output can be
described as follows [26]:

Pcn = max
Ccn∈S

Ccn (2)

where Pcn is the cn-th output of the pooling layer, and the output number is CN; S is the pooling block
size. This function will sum over each distinct S pooling block in the input data so that the output will
become S times smaller along both spatial dimensions.

The fully-connected layer is the last layer of the DCNN model. It follows several combinations
of the convolutional layers and the pooling layers, and classifies the higher-level information from
the previous layers. A fully-connected layer is similar to a traditional multilayer neural network with
a hidden layer and a classification layer, typically using a softmax regression. Assuming that the task
is a K-label problem, the output of the softmax regression can be calculated as follows:

Oj =


P(y = 1|x; θ)

P(y = 2|x; θ)

. . .
P(y = k|x; θ)

 =
1

∑K
j=1 exp

(
θ(j)x

)


exp
(

θ(1)x
)

exp
(

θ(2)x
)

. . .

exp
(

θ(K)x
)

 (3)

where θ(1), θ(2), . . . θ(K) are the parameters of the model, and Oj is the final result of the DCNN.

2.2. Training Method

It can be seen from the previous description that wl
i , bl

cn, and θ(j) are the learnable parameters
and will be optimized through model training with gradient decent algorithms. Since a gradient
decent algorithm is easily trapped into local optima, we introduce several enhancement methods,
including stochastic gradient decent (SGD), cross-validation, and adaptive learning rate, to solve
this problem. SGD updates gradient [27] based on a few training data instead of the entire training
set. This approach not only increases the training speed, but also improves the training reliability.
Cross-validation selects a validation set from training data to test the performance of the parameters
of the model to avoid overfitting. Since a global constant learning rate easily causes either a slow
convergence with a lower learning rate or a serious fluctuation of the convergence with a higher
learning rate, an adaptive learning rate is employed. The adaptive learning rate has a high rate at
first and decreases with the increase of the training epochs adaptively to obtain a fast and reliable
convergence result.

3. Adaptive Multi-Sensor Data Fusion Method Based on DCNN for Fault Diagnosis

3.1. Procedure of the Proposed Method

An adaptive multi-sensor data fusion method based on DCNN is presented to learn features from
raw data automatically and combine fusion levels adaptively to detect faults of a planetary gearbox.
Through its deep-layered structure, DCNN can fuse input data and extract basic features in the lower
layers, fuse basic features into high level features and decisions in the middle layers, and further fuse
these features and decisions in the higher layers to obtain the final diagnosis result.
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Figure 2 displays the flowchart of the proposed method: (1) four types of signals, including vibration
signal [3,28,29], acoustic signal [4,30], current signal [31–33], and instantaneous angular speed (IAS)
signal [34,35], are selected according to published studies and acquired from a planetary gearbox;
(2) data preprocessing is applied to standardize each signal and divide them into segments; (3) each of
the four segments of the four signal types are combined together simply as one data sample to form
the data-level fused input data of the DCNN model; (4) DCNN is trained and tested with these fused
input data, and its output will be the diagnosis result of the planetary gearbox. The testing accuracy of
the output result is used to evaluate the effectiveness of the proposed method. It should be noted that
although we use a data-level fusion in the third step, data is fused again in the starting layers of the
DCNN model to further optimize the data structure. The DCNN implicitly contains data-level fusion,
feature-level fusion, and decision-level fusion through the deep-layered structure and it optimizes
a combination of these fusion levels adaptively according to the characteristic of the data itself.

Sensors 2017, 17, 414 5 of 15 

 

speed (IAS) signal [34,35], are selected according to published studies and acquired from a planetary 

gearbox; (2) data preprocessing is applied to standardize each signal and divide them into segments; 

(3) each of the four segments of the four signal types are combined together simply as one data 

sample to form the data-level fused input data of the DCNN model; (4) DCNN is trained and tested 

with these fused input data, and its output will be the diagnosis result of the planetary gearbox. The 

testing accuracy of the output result is used to evaluate the effectiveness of the proposed method. It 

should be noted that although we use a data-level fusion in the third step, data is fused again in the 

starting layers of the DCNN model to further optimize the data structure. The DCNN implicitly 

contains data-level fusion, feature-level fusion, and decision-level fusion through the deep-layered 

structure and it optimizes a combination of these fusion levels adaptively according to the 

characteristic of the data itself. 

Fully connected 

layer

Input data 

samples
Convolutional and 

pooling layer

Multi-sensor Data preprocessing Data level fusion
Deep convolutional neural networks 

based feature learning and data fusion
Diagnosis result

Accelerometer 

Microphone

Current sensor

Optical encoder

Divide signals into segments Combine four segments 

into one data sample

 

Figure 2. Flowchart of the proposed method. 

3.2. Model Design of DCNN 

The model of DCNN is adjusted to satisfy the characteristics of mechanical fault diagnosis. 

Although most applications of DCNN in image recognition chose a 2D convolutional structure 

[11,22,36], and some researchers [20,37] also used the same way to diagnose mechanical faults, we 

select a one-dimensional (1D) convolutional structure with a 1D filter bank as the kernel of the 

DCNN model. In our opinion, the main reason behind the applications of the 2D convolutional 

structure of DCNN in image analysis lies in the natural 2D space correlation in images. However, 

most of the measurement data for mechanical fault diagnosis only correlate with time, which is a 1D 

parameter. Thus, 1D convolutional structure should be an appropriate choice for a DCNN-based 

fault diagnosis problem. In addition, we choose a larger filter size than conventional ones used in 

image recognition. While a larger size of the filter may be more expensive in terms of computation, a 

larger filter can capture more information between the data farther away from each other [38], which 

may be the features in the frequency domain. 

In spite of the many benefits of the deep-layered structure of DCNN, a “deep” structure also 

means complicated hyper-parameters as well as various choices of architectures, which increases the 

difficulty to build an appropriate and efficient model. Although there are several researches [39,40] 

about the automatic optimization of parameters of DCNN, the optimized process is usually 

time-consuming and easily converges into a local optimum due to the large number of parameters of 

DCNN. Thus, we build the DCNN model initially based on a few general design principles [38,41]. 

Then several configurations of the network are tested using the experimental data, and the one with 

best performance is selected as the setting of the final model.  

Figure 2. Flowchart of the proposed method.

3.2. Model Design of DCNN

The model of DCNN is adjusted to satisfy the characteristics of mechanical fault
diagnosis. Although most applications of DCNN in image recognition chose a 2D convolutional
structure [11,22,36], and some researchers [20,37] also used the same way to diagnose mechanical
faults, we select a one-dimensional (1D) convolutional structure with a 1D filter bank as the kernel of
the DCNN model. In our opinion, the main reason behind the applications of the 2D convolutional
structure of DCNN in image analysis lies in the natural 2D space correlation in images. However,
most of the measurement data for mechanical fault diagnosis only correlate with time, which is a 1D
parameter. Thus, 1D convolutional structure should be an appropriate choice for a DCNN-based fault
diagnosis problem. In addition, we choose a larger filter size than conventional ones used in image
recognition. While a larger size of the filter may be more expensive in terms of computation, a larger
filter can capture more information between the data farther away from each other [38], which may be
the features in the frequency domain.

In spite of the many benefits of the deep-layered structure of DCNN, a “deep” structure also means
complicated hyper-parameters as well as various choices of architectures, which increases the difficulty
to build an appropriate and efficient model. Although there are several researches [39,40] about the
automatic optimization of parameters of DCNN, the optimized process is usually time-consuming and
easily converges into a local optimum due to the large number of parameters of DCNN. Thus, we build
the DCNN model initially based on a few general design principles [38,41]. Then several configurations
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of the network are tested using the experimental data, and the one with best performance is selected
as the setting of the final model.

3.3. Comparative Methods

Several comparative methods are employed to further test and confirm the performance of the
proposed method. The flowcharts of comparative methods are shown in Figure 3.

To evaluate the ability of learning features from the raw data of the proposed method,
manual feature extraction is used as a replacement and comparison of the feature learning in each
comparative method. Eight time-domain features and several frequency-domain features are extracted.
Root mean square (RMS), kurtosis, crest factor, skewness, mean, minimum, maximum, and variance
are chosen as the handcraft features in the time domain [34,37,42]. The characteristic frequencies of
the planetary gearbox [1], including the rotating frequencies of the sun gear, planetary gear and the
carrier, the pass frequency of the planetary gear and the meshing frequency of the planetary gearbox,
are selected as the handcraft features in the frequency domain as well as their ten sidebands for all
types of the sensor signals [34,43,44] except for the current signal. For the current signal, the line
frequency and its sidebands [45] generated by the modulation of the characteristic frequencies of the
planetary gearbox are chosen as its frequency-domain features. In addition, the fast Fourier-transform
(FFT) energy of each sample, which is obtained by splitting the frequency spectrum of each sample into
32 average bands and calculating the RMS of each band [46], is also added into the handcraft features in
the frequency domain. While all the domain features are processed together as the “handcraft features”,
the “time-domain features” and “frequency-domain features” are also tested respectively to reflect
more information about the sensitivity of the data. The comparison between the learning features from
raw data and the handcraft features is marked in orange in Figure 3.
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As a comparison of the DCNN model of the proposed method, two intelligent models,
back-propagation neural networks (BPNN) and support vector machine (SVM), are introduced as
replacements of DCNN in each comparative method. BPNN is built into a three-layer model with
sigmoid activation functions. SVM uses Gaussian radial basis function (RBF) as the kernel function
and the grid search method to optimize the parameters of the kernel. The three comparative models,
DCNN, BPNN, and SVM, are marked in green in Figure 3.

For testing the performance of the different fusion levels, manual-selected feature-level fusion and
decision-level fusion are explored and compared with the data-level fusion of the proposed method.
For feature-level fusion with feature learning from raw data, only DCNN and BPNN are applied to
learn features from the raw data of each sensor, respectively. The outputs of the second-last layers of
DCNN are extracted as the learned features of each sensory data. Then, all the learned features from
the four types of sensors are combined together as the feature-level fused features and used as the
input of another DCNN for classification. In the same way, the outputs of the second-last layers of
BPNN are extracted and fused. Then, the fused features are used as the input of both BPNN and SVM
for classification. The comparison of different fusion levels is marked in red in Figure 3.

As a comparison of the multi-sensory input data of the proposed method, fault diagnosis with
single sensory data is also applied to evaluate the effectiveness of the proposed method, which is
marked in purple and shown in Figure 3d.

4. Experiment and Discussion

4.1. Experiment Setup

An experimental system of a planetary gearbox test rig is established to evaluate the effectiveness
of the proposed method. As shown in Figure 4, it consists of a one-stage planetary gearbox, a driven
motor and a magnetic brake. The planetary gearbox contains one 20-tooth sun gear and three 31-tooth
planetary gears, and transmits torque from the sun gear to the planetary carrier of the planetary gears
with a standstill ring gear.

Figure 5 presents the four types of sensors employed in the experiment, including an accelerometer,
microphone, current sensor, and optical encoder. Vibration signal, acoustic signal, and motor current
signal are measured by their corresponding sensors and acquired through a data acquisition box with
a sampling frequency of 20 kHz and data length of 320 k points. The IAS of the output shaft is calculated
based on counting the number of high resolution pulses of the encoder [47]; and down-sampling, using
the data acquisition box with the same sampling frequency and data length as the other three signals.
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Figure 5. Four types of sensors and their installations.

Seven health conditions of the planetary gearbox are tested, including normal, pitting tooth,
chaffing tooth, chipped tooth, root crack tooth, slight worn tooth, and worn tooth. As shown in
Figure 6, all the faults occurred in the planetary gears. In each experiment, only one planetary gear
with one kind of health condition is examined, and all the other gears are normal. Experiments are
conducted under three motor speeds (600 rpm, 1200 rpm and 1800 rpm) and a load-free condition.
The detailed description for the datasets and pattern labels of the experiment is shown in Table 1.
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Figure 6. Faulty planetary gears: (a) Pitting tooth; (b) Chaffing tooth; (c) Chipped tooth; (d) Root crack
tooth; (e) Slight worn tooth; and (f) Worn tooth.

Table 1. Description of the pattern labels of planetary gearbox data.

Pattern Label Gearbox Condition Input Speed (rpm) Load

1 Normal 600, 1200 and 1800 Zero
2 Pitting tooth 600, 1200 and 1800 Zero
3 Chaffing tooth 600, 1200 and 1800 Zero
4 Chipped tooth 600, 1200 and 1800 Zero
5 Root cracked tooth 600, 1200 and 1800 Zero
6 Slight worn tooth 600, 1200 and 1800 Zero
7 Worn tooth 600, 1200 and 1800 Zero

4.2. Data Processing

The acquired vibration signal, acoustic signal, current signal, and IAS signal are preprocessed
following the steps in Section 3.1. For the proposed method, the collected signals are standardized and
divided into segments at first. A total of 1024 points are selected as a segment, so each type of signal
will contain 312 segments for each health condition under one motor speed and 6552 segments in total
for seven health conditions under three motor speeds. Next, each of the four segments of the four
signal types are combined together as one data sample to form the input vectors of the DCNN model.
In this way, each data sample will be a 4096-dimensional vector (four times the size of segments),
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and there will be 6552 data samples in total. A total of 40% of the 6552 data samples are selected
randomly as the training data set, 10% are used as the validation set, and the remaining 50% are
selected as the testing data set. Eight trails are carried out to avoid particularity and contingency of the
diagnosis result. The average testing accuracy of the eight trails is calculated as the final result.

4.3. Model Design

The model of the DCNN is developed using the principles described in Section 3.2. For different
input data, different model settings are tested, and the one with the best performance among
all the tested settings is selected to process this input data. The model setting of the proposed
method is displayed in Table 2, which consists of three convolutional layers, two pooling layers,
and a fully-connected layer with softmax regression. The convolutional layer corresponds to
Equation (1), the pooling layer to Equation (2) and the fully-connected layer to Equation (3). The DCNN
model is developed based on C++.

Table 2. Variables of parameters and structures of the deep convolutional neural networks.

Layer Type Variables and Dimensions Training Parameters

1 Convolution CW = 65; CH = 1; CC = 1; CN = 10; B = 10 SGD minibatch size = 20
2 Pooling S = 2 Initial learning rate = 0.05

3 Convolution CW = 65; CH = 1; CC = 10; CN = 15; B = 15 Decrease of learning rate
after each ten epochs = 20%

4 Pooling S = 2 Momentum = 0.5

5 Convolution CW = 976; CH = 1; CC = 15; CN = 30; B = 30 Weight decay = 0.04
6 Hidden layer Relu activation function Max epochs = 200
7 Softmax 7 outputs Testing sample rate = 50%

SDG = stochastic gradient decent; CW = filter width; CH = filter height; CC = filter channel; CN = number of filter
in the bank; B = bias; S = sub-sampling rate; No overlapping of convolutional window and no padding.

4.4. Experimental Results

4.4.1. Results of Single Sensory Data

Following the flowchart shown in Figure 3d in Section 3.3, methods with three intelligent models,
feature learning and manual feature extraction methods, and four types of single sensor data are tested
in the experiment. The results are displayed in Table 3.

Table 3. Average testing accuracy of comparative methods with single sensory data.

Sensory Data Model Feature Learning
from Raw Data

Manual Feature Extraction

Time-Domain
Features

Frequency-Domain
Features

Handcraft
Features

Vibration signal
DCNN 81.45% 55.84% 70.74% 73.64%
BPNN 42.56% 55.62% 69.03% 72.36%
SVM 45.11% 56.35% 72.23% 73.86%

Acoustic signal
DCNN 66.23% 31.42% 76.45% 76.02%
BPNN 19.80% 35.89% 76.04% 75.79%
SVM 26.54% 33.62% 77.36% 76.32%

Current signal
DCNN 85.68% 60.73% 61.45% 76.85%
BPNN 52.36% 60.47% 61.21% 76.43%
SVM 51.64% 63.74% 63.53% 78.76%

Instantaneous angular
speed (IAS) signal

DCNN 90.23% 75.34% 84.42% 88.34%
BPNN 51.37% 75.36% 85.22% 89.82%
SVM 48.22% 75.68% 85.65% 89.85%

DCNN = deep convolutional neural network; BPNN = back-propagation neural networks; SVM = support
vector machine.
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4.4.2. Results of Multi-Sensory Data

Following the flowcharts shown in Figure 3a–c in Section 3.3, methods with three fusion levels,
three intelligent models, two feature extraction methods, and multi-sensory data are tested in the
experiment. The results are displayed in Table 4, in which the result of the proposed method is marked
in bold. Figure 7 presents the testing results of the eight trails of the top three methods, which are
the proposed method, the DCNN model with feature learning and feature-level fusion, and the SVM
model with handcraft features and feature-level fusion.

Finally, the average testing accuracies of all the comparative methods in the experiment are shown
together in Figure 8 for a clearer comparison between each other.

Table 4. Average testing accuracy of comparative methods with multi-sensory data.

Fusion Level Model Feature Learning
from Raw Data

Manual Feature Extraction

Time-Domain
Features

Frequency-Domain
Features

Handcraft
Features

Data-level fusion
DCNN 99.28% 66.08% 87.63% 90.23%
BPNN 53.28% 65.95% 87.89% 91.22%
SVM 51.62% 67.32% 87.28% 90.67%

Feature-level fusion
DCNN 98.75% 86.35% 92.34% 94.08%
BPNN 64.74% 86.81% 92.15% 94.04%
SVM 56.27% 86.74% 94.62% 95.80%

Decision-level fusion
DCNN 93.65% 84.65% 90.23% 92.19%
BPNN 77.62% 84.47% 91.19% 93.42%
SVM 76.17% 86.32% 90.98% 93.44%
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4.5. Principal Component Analysis of the Experimental Data and Learned Features

PCA is employed to analyze and visualize the learned features of the proposed method. As shown
in Figure 9, the labels 1 to 7 correspond to the seven conditions of the planetary gearbox described
in Table 1, and the first two principal components (PCs) are obtained by PCA to represent the useful
information hidden in the data. Figure 9a shows the result of the input data of the testing dataset of
the proposed method along the first two PCs. Figure 9b illustrates the result of the learned features
with adaptive fusion levels of the proposed method for testing the dataset, which are extracted from
the output of the second-last layer of the DCNN. For comparison, the results of feature-level fused
features learned through DCNN and feature-level fused handcraft features along the first two PCs are
shown in Figure 9c,d, respectively. It should be noted that we only display the first two PCs of the
data for a clearer visualization, which means that there may be overlaps between some categories and
many of them can be divided into higher PCs.
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4.6. Discussion

1. The experimental results show that the proposed method is able to diagnose the faults of the
planetary gearbox test rig effectively, yielding the best testing accuracy in the experiment. It can
be seen from Table 4 and Figure 8 that the proposed method achieves the best testing accuracy
99.28% among all the comparative methods. We think that this result is significantly correlated
with the deep architecture of the DCNN model of the proposed method. DCNN can fuse input
data and learn basic features from it in its lower layers, fuse basic features into higher level
features or decisions in its middle layers, and further fuse these features and decisions to obtain
the final result in its higher layers. Although there is a data-level fusion before DCNN in the
proposed method, DCNN still actually fuses the data again in its starting layers to further
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optimize the data structure. Optimized features and combinations of different level fusions are
formed through this deep-layered model, which provides a better result than with manually
selected features or fusion levels.

2. The ability of automatic feature learning of the DCNN model with multi-sensory data is proven
through the experiment. It can obviously be seen from Figure 8 that both the proposed method
and the feature-level fusion method with feature learning through DCNN obtain a better result,
99.28% and 98.75%, than any other comparative methods with handcraft features or feature
learning through BPNN. This result proves that the feature learning through DCNN with
multi-sensory data can improve the performance of the multi-sensor data fusion method for
fault diagnosis. In addition, the result also implies that the proposed method with adaptive
fusion-level selection can achieve a better result 99.28% than the result 98.75% of the method with
manual-selected feature-level fusion, which is the only difference between these two methods.

3. However, the method with automatic feature learning of DCNN from the raw signal of a single
sensor cannot achieve a better result than methods with handcraft features. Table 3 displays the
diagnosis results using signals from a single sensor. Only with a vibration signal and current
signal, can the DCNN-based feature learning method achieve better results than conventional
methods with handcraft features. By contrast, the results of the DCNN-based feature learning
method with an acoustic signal and IAS signal are worse than that of conventional methods.
This implies that the DCNN-based method with learned features from single sensory data cannot
provide stable improvements for all kinds of sensory data. We think that the performance of the
DCNN-based feature learning is influenced by the characteristics of the input data. As can be
seen from the results shown in Table 3, the performance of feature learning has a stronger positive
correlation with the performance of time-domain features than frequency-domain features,
which infers that the DCNN-based feature learning from a raw signal may be more sensitive to
time-correlated features than frequency-correlated features.

4. The effectiveness of the automatic feature learning and adaptive fusion-level selection of the
proposed method is further confirmed through PCA. As can be seen from Figure 9a, most of the
categories of the input raw data overlap each other, which makes it difficult to distinguish them.
After the processing of the proposed method, the learned features with adaptive fusion levels
along the first two PCs become distinguishable in Figure 9b. Meanwhile, Figure 9c,d presents the
results of PCA with feature-level fused learned features and handcraft features as comparisons,
respectively. The feature-level fused features learned through DCNN have just a slightly worse
distinction between each category than the features of the proposed method, which not only
verifies the feature learning ability of DCNN used in both methods, but also proves the better
performance of the adaptive-level fusion of the proposed method than that of the manual-selected
feature-level fusion. On the contrary, the fused handcraft features show a much worse distinction
between different categories than the learned features of the proposed method. These analyses
further demonstrate the effective performance of the automatic feature learning and adaptive
fusion-level selection of the proposed method.

5. While DCNN has a much better feature learning ability than BPNN, the three comparative models,
DCNN, BPNN and SVM, obtain similar results with handcraft features. Figure 8 shows clearly
that feature learning through DCNN achieves much better testing accuracies than through BPNN.
Nevertheless, with handcrafts features, these three intelligent models provide similar accuracies,
which suggests that DCNN cannot achieve much more improvements than conventional methods
without using its ability of feature learning.

6. Methods with multi-sensory data provide better results than those with single sensory data. It can
be seen from Figure 8 that methods with multi-sensory data achieve higher testing accuracies
than with single sensory data, no matter which fusion level or intelligent model is selected.
This phenomenon indicates that multi-sensory data can improve the reliability and accuracy for
fault diagnosis.
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5. Conclusions and Future Work

This paper presents an adaptive data fusion method based on DCNN to detect the health conditions
of planetary gearboxes. The processes of data-level fusion, feature-level fusion, decision-level fusion,
feature learning, and fault diagnosis are all fused into one DCNN model adaptively. The proposed
method can learn features from raw data, and fuse data, features, and decisions adaptively through the
deep-layered structure of DCNN with fewer requirements of expert knowledge or human labor for
feature extraction and fusion-level selection. The performance of the proposed method is evaluated
through the experiment of the planetary gearbox fault test rig. As comparisons, feature-level fusion,
decision-level fusion, handcraft features, single sensory data, and two traditional intelligent models,
BPNN and SVM, are also tested in the experiment. The comparative results of the experiment verify
the effectiveness of the proposed method, which achieves the best testing accuracy among all the
comparative methods in the experiment.

Our future work will focus on testing the DCNN model-based feature learning and data fusion
approaches on more mechanical objects, fault modes, operation conditions, and sensor types, which can
further confirm the effectiveness of approaches and help us to find out other useful application
guidance. Moreover, due to the large number of parameters of deep learning models, manual parameter
optimization often takes many trials-and-errors to find the best one, and conventional automatic
searching methods are usually very time-consuming and easily converge into a local optimum.
It is meaningful to investigate more effective and faster approaches to optimize the parameters
automatically. Finally, combinations of different deep learning architectures should improve the effect
of fault diagnosis. Adding recurrent architecture may make the model suitable to predict future fault
conditions, and combining with auto-encoder architecture may improve the feature learning ability to
capture more complex features.
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