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Abstract: To solve the problem on inaccuracy when estimating the point spread function (PSF) of
the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR)
reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation
of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial
resolution of the image and benefit agricultural crop visual interpolation. The PSF of the
high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the
PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image
by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and
LR images can be proven. In addition, the novel slant knife-edge method is employed, which can
improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to
reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of
two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR
algorithm. Experimental results show that the proposed method yields higher quality of reconstructed
images than that produced by the blind SR method and the bicubic interpolation method.

Keywords: super resolution; point spread function (PSF); projections onto convex sets (POCS);
remote sensing

1. Introduction

Image resolution refers to the number of pixels contained in an image per unit area. This parameter
is an important factor used to evaluate the quality of remote sensing images. The limitations of imaging
systems and the external circumstances in obtaining images, including inherent sensor sampling
frequency, defocusing, and atmospheric disturbances [1], result in low-quality images, which are
blurred, misshapen, and exhibiting random noise. To solve these problems, two methods were
proposed. First, the resolution can be enhanced by increasing the chip size. However, this approach is
costly and cannot significantly improve the image resolution. Second, super-resolution (SR) reconstruction
can be implemented using various algorithms. In the present study, time is used to compensate for
space. Certain constraints or algorithms are employed to build a high-resolution (HR) image with
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higher number of pixels, more details, and better image quality than those of the observed multiple
low-resolution (LR) images [2]. The proposed approach demonstrates the advantage of obtaining huge
information at minimum economic cost; hence, this approach has been widely used in many applications
such as military monitoring and medical diagnosis. Moreover, SR algorithms provide a wide range
of applications in agriculture. Kasturiwala reported that the SR reconstruction method can estimate
some missing high-frequency details from an infected leaf image [3]. This method is most useful to
agricultural experts in helping farmers detect exact leaf diseases and provide accurate remedial actions.
In [4], researchers introduced a SR mapping method to produce a fine-spatial-resolution land cover map
from coarse-spatial resolution remotely sensed imagery. The result of the SR reconstruction will be affected
by the accuracy of the point spread function (PSF) estimation of images. Therefore, the research in [5]
investigates the adequacy of a remote sensing instrument spatial resolution in monitoring crop growth in
agricultural landscapes with different spatial patterns. Furthermore, the studies on SR reconstruction and
the relationship between PSF in the HR and the LR images provide significant findings.

The concept of SR reconstruction was presented in 1965 when the Harris—-Goodman spectrum
extrapolation method was proposed by Harris [6] and Goodman [7], and this concept has become
a popular research topic in image processing. Reconstruction methods classified according to the
numbers of LR images can be divided into two categories: reconstruction based on a single-frame image
and reconstruction based on a sequence of images. Many of these algorithms utilize a single-frame
LR input image reconstructed into HR image by modeling; these algorithms also use the matching
mechanisms or some prior information about the image [8]. The HR image is estimated from a sequence
of LR aliased images of the same object or scene [9,10]. These algorithms generally reconstruct an
image with enhanced resolution, which exhibits tighter pixel density and better image detail, by using
the aliased information of multiple LR images.

The current study focuses on SR reconstruction by using the information obtained from multiple
LR images. The popular methods include frequency domain and spatial domain algorithms. The first
method is based on the shift property of the Fourier transform. The image is converted into
the frequency domain to eliminate spectrum aliasing, obtain much of the missing high-frequency
information, and improve the spatial resolution of the image. In particular, the popular methods mainly
include spectral de-aliasing reconstruction algorithm, recursive least square method, and generalized
sampling scheme. Frequency-domain algorithms are superior because they follow a simple theory
and can be applied completely in parallel. However, these algorithms present the limitation of
ignoring the prior knowledge in the spatial domain. The SR reconstruction approach uses complex
observation models, which consider some spatial factors affecting the quality of the image, such as
optical blur and motion blur, to reconstruct the image. Irani and Peleg [11,12] proposed the iterative
back projection (IBP) algorithm. This approach can estimate the initial value of the HR image through
some interpolation algorithms on a sequence of observed LR images. A set of simulated LR image arrays
can be obtained comprehensively from the HR image by using the blurring model. Subsequently, the
algorithm compares the observed LR images and the estimated LR images to achieve the correction value
by taking a number of iterations to obtain the final HR image. However, the accuracy of the approach is low
because the solution is not unique, and the prior information is difficult to apply. Stark and Oskoui [13]
proposed the projection onto convex sets (POCS) method in 1987. In this method, a convex model
considers a set of constraints that limit the SR feasible solutions (such as smoothness, energy boundedness,
and consistency of data observations), and the intersection of sets is the final solution. POCS has become a
significant method to solve the SR reconstruction problem. In the following years, the maximum likelihood
(ML) algorithm [14] has been explored. Statistics showed that the method can provide an HR image
through the expectation maximum algorithm. The maximum a posteriori probability (MAP) [15,16] is
another SR approach with some mixed SR reconstruction methods (MAP /POCS algorithm) [17].

POCS algorithm considers a variety of degraded factors, including blur and movement; hence,
this algorithm is important in solving the problem in SR reconstruction. Recently, Ogawa [18]
proposed the POCS algorithm based on principal component analysis (PCA). Xi [19] improved
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the initial image estimation by using the wavelet bicubic interpolation for POCS reconstruction
algorithm; the experimental results are evident. Liang [20] presented a POCS algorithm based on
text features; in this method, text features are added as constraints to preserve the edge details and
smoothen the noise in the text images. Meanwhile, the blind SR method is proposed by Sroubek and
Flusser [21] can incorporates blur estimation into SR by performing an advanced deconvolution task.
The model is built by the sharpness of edge regions and the smoothness of smooth regions in the total
variance of the image, as well as the prior information of the image ambiguity function. Subsequently,
the cross-iteration method is used to solve the model, and then the PSF and HR image are obtained.
Thus, the HR image can be reconstructed even if the degradation model and the model’s parameters
of the camera sensors are unknown [22,23]. Given that the methods of estimating PSF are different,
two algorithms are used for reconstruction to compare the results.

In this work, an improved POCS SR algorithm based on PSF estimation of LR remote sensing
images is proposed. Exploration of the relationship between the PSF of the HR image and the PSF of
multiple LR images is an essential part of this algorithm. In this study, the formula is deduced
and approved by the experiments conducted. The conclusions are provided in the succeeding
section. Moreover, the estimated PSF of the HR is embedded to the original POCS SR algorithm,
and the reconstruction results of the three different SR methods (proposed method, blind SR method,
and bicubic interpolation method), in the simulated experiment and the real experiment, are compared.

2. Materials and Methods

2.1. Observation Model

Generally, SR image reconstruction techniques present an inverse problem of recovering the
HR image by degrading the LR images. The HR image is obtained under certain conditions,
such as satisfying the theory of Nyquist sampling, and is affected by some of the inherent resolution
limitations of sensors in the acquisition process [24], including warping, blurring, subsampling operators,
and additive noise. Therefore, an observation model (1) can be formulated, which relates to the ideal HR
image f to the corresponding i-th observed LR images g;. The model can overcome the inherent resolution
limitation of the LR imaging systems. The LR images display different subpixel shifts from each other
because the spatial resolution is very low to capture all the details of the original scene. Finally, a goal
image with denser pixel values and rich image information, called HR image, will be achieved:

gi = DiH;B;f +n 1)

where f is the ideal undegraded image required to be calculated, g; is the observed LR image, and H;
represents the blur matrix, including relative camera-scene motion blur, sensor blur, atmospheric
turbulence, and optical blur. Generally, the blur matrix is modeled as convolution with an unknown
PSF to estimate blurs [25]. B; is the warp matrix (e.g., rotation, translation scaling, and so on).
The relative movement parameters can be estimated using the subpixel shifts of the multiple LR
images. D; represents a subsampling matrix, and # is the lexicographically ordered noise vector.
The observation model is illustrated in Figure 1.
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Figure 1. Observation model.
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Image degradation occurs when the acquired image is corrupted by many factors. The image
egradation process can be viewed as a linear invariant system, in which the noises can be ignored.
The degradation model is described by Equation (2):

¢=Hx y+n = Hx vy 2)

The model is composed of four main attributes: the original image without degradation -,
the degraded image ¢, a PSF H, and some noises 7. * is the convolution operating symbol. To restore
the quality of the image, H can be estimated using some PSF estimation methods, such as the knife-edge
method. When the original image is processed by downsampling, the PSF h of the downsampled
image is obtained. However, i does not apply to the model (2); hence, the relationship between H and
h is derived in Section 2.3. The derived formula will be applied to the SR reconstruction model.

2.2. Principle of POCS SR Algorithm

In this work, the POCS SR reconstruction algorithm is used to obtain high-quality remote sensing
data, which can meet the requirements of agricultural data sources. The algorithm, which is simple and
effective, is a collection theory of the image reconstruction method. Given the flexible space-domain
observation model and the powerful prior knowledge embedding capability, the owned feasible region
of the reconstructed image consists of an intersection consistency projective convexity set and a convex
constraint set. The POCS algorithm [26] is an iterative operation; the operator of the corresponding
convex constraint set projects the points in the solution space to the nearest point on the surface of the
convex set. After a finite number of iterations, a solution to the intersection set that converges to the
convex constraint set is finally found. The POCS SR algorithm is detailed as follows:

Step1: Estimate the image fy by using the linear interpolation method for LR images.
Step2: Compute the motion compensation of the pixel of each LR image. The correspondence between
the LR image and the HR image is given by Equation (3):

8(’”1, myp, l) = Z f(nll 1’12) h(nlr np; m’ll m/2/ l) + n(ml/ my, l) (3)
ny,mny
where (m1,my) is the point in the LR image, and (11, np) is the corresponding point in the
HR image.

1. Obtain the position of the pixel on the LR image of each frame g(m1,mjy,1) and on the
HR image f (11, n2).

2. Calculate the parameter, 1 (nl, ny; m’l, mé, I ), which represents the range and the value of
PSF according to the position of the pixel.

3. Simulate the sampling process to obtain the simulated LR image. The observed LR image
g(my,my,1) can be constrained by a convex set C,, ,, «, as follows:

Cm,n],k = {f(ml,mz, l) : ‘7’<f)(111, I”lz,k) § 50(1’[1,1’[2,]()’}
Ognl,nng—l,k:L--- ,L

(4)

The projection P(nq, 1y, k) [x(my, my,1)] at any point x(my, my,1) on C(nq,ny, k) is defined
in Equation (5) as follows:
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0 k)—do k)
rngny, 011,12, .
x(my, ma, 1) + Yoy Yo, 12 (111,12:01,02,k) h(m, ngima, ma, 1)

) (ny,na,k) > 8o(n1,n2, k)
x(mq,my, 1)

—6o(ny,nz,k) < r(")(nl,nZ,k) < 8o(ny,np, k)

©)

P(ny,np, k) [x(mq, mp,1)] =

()¢ k) —do( k)
r\m 0\ 11,12, .
x(mlr my, Z) + Zal 202 ]12(1,[1,,12;01,02,]() h(nll np,mq, mp, Z)

7 (1,3, k) < =09 (m1, n2, k)

4. Calculate the residuals 7/ (n1,1,,k) between the real image and the simulated image.
The formula can be described by (6).

) (1, mp, k) = g(n1,m2,k) = Y f(ma,ma, 1) h(ny, ny;my, m, 1) (6)

where h(ny,ny; my, my, 1) is the impulse response coefficient, dy is the confidence level on
the observed result. In this paper, g = ¢ é,, where the point J, is the standard deviation
of the noise, and ¢ > 0 is determined by an appropriate statistical confidence range.
These settings define HR images that are consistent with the observed LR image frames
within a certain confidence range proportional to the observed noise variation.

5. Correct the pixel value of the HR image according to the residuals.

Step 3: Repeat from Step 2 until convergence

Given a projection operator, the estimated value f (17, m1,1) of the HR image f (11, my,1) can be
obtained from all the LR images g(11, np, k) through many iterations, such as Equation (7):

f(i+1) (mlrmZIZ) = T)\T[f(l) (mllmZ/l):|i - 01 1/ tt (7)

where T is the combination of all the relaxation projection operators associated with C(ny,15,k).
The initial estimate, f°(mmy,mjy,1), is obtained by bilinear interpolation of the reference frame in the
super-resolution grid.

2.3. Relationship between H and h

In this section, the relationship between H and & is deduced and validated, and the simulation
experiment is designed to verify the correctness of the formula. The derived formula is proven to be
suitable for SR reconstruction. In the process of SR reconstruction, the PSF of the HR image can be
estimated by the PSF of the LR image; and PSFy;g; = k-PSFo,,, where the downsampling ratio is k.

When knife-edge areas are extracted from a remote sensing image with gray values from 0 to 1,
the original signal along the gradient direction is represented by the unit step signal E. Given the PSF
H and degrading and downsampling operator D, ¢’ is finally expressed as the signal in the image.
Equation (8) can be determined in the first downsampling model:

¢/(x) = Dy*[E(x) x H(x)] ®)

where * is the downsampling operating symbol, the downsampling operator Dy can be taken as a
calculation of one-dimensional downsampling multiples of k, which is the equivalent of k compression
from this function. The formula is shown in (9):

D (x) = £(%) ©

Therefore, when the variable is less than 0, the signal value of E is 0; when the variable is greater
than 0, the signal value is 1. With general downsampling using the convolution operation method,
the knife-edge areas can be mathematically formulated as follows:
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¢(x) =E(5)*H(})
= [TOE(X —t)H(t) dt

o)

= [LLVH() de+ [0 H(tde (10)
= [, H(t)dt
— [ HH()a

According to the first downsampling model, Equation (11) can be deduced:

g(x,y) = Dyx[F(x,y) x H(x,y)]
= DF [ [T F(x — u,y — 0)H(u,0)du do a
_ (oo preo 1

1p(x—u y—ov\yu o
=270 k2F< Tk )H(k,k)dudv

Based on the principle of knife-edge method, the PSF can be obtained from the derivative
function of the edge spread function (ESF). The PSF is calculated as shown in Equation (12) by the
knife-edge method:

h(x) = ds‘;g(X) (12)
~ili)

We can assume that the original signal can be restored effectively by the PSF with the values
calculated by the knife-edge method. Deconvolution is used in the downsampling image g and the
PSF initially. The deconvolution image requires rise sampling, so that the original image F can be
obtained, as shown in Equation (13):

F(x,y) = Urx[g(x,y) @ h(x,y)] (13)

1

k

where ® is the deconvolution operation. Upsampling operator /1 can be taken as the calculation of
k

one-dimensional upsampling multiples of kl—z, which is the equivalent of the 1/k compression from the
two-dimensional function of two coordinate axes, as shown in (14):

Urxf(x,y) = fkx,ky) (14)
If Equation (14) is correct, Equation (15) must exist:

g(x,y) = [Dy*F(x,y)] * h(x,y) (15)

Moreover:

[DFF(x )| xhxy) = F(T, ) xh(xy)

_ r+oo oo X—U y—U
=[T>2 F( ko )h(u,v)dudv (16)

_ o pree Lpfx—uy—v) pou o
~ Je e k2F< k' k >H(k’k)d”d”

Hypothesis (13) can be proven as tenable because Equations (11) and (16) yield the same results;
hence, Equation (15) is correct.

The original signal can be restored effectively by the PSF of the existing degraded image proof.
The signal can be applied in the process of image SR reconstruction. The PSF of the LR image calculated
by the knife-edge method can be applied in the SR reconstruction process.
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The PSF is approximated by Gaussian functions with appropriate parameters because the PSF
follows a Gaussian distribution [27-29]. The PSF H; of the HR image can be written as follows:

Hix) = L o m?
i(x)—iﬁe = (17)

The PSF h; of the LR image can be expressed using Equation (18):

1 _ 1,2
o2

2ntor

hi(x) =

(18)

Therefore, the relationship between the Gaussian function parameters and the PSF of the H; and
h; images can be deduced from Equation (12), as shown in Equations (20), where X. is the Gaussian
function parameter of H;, and o is the Gaussian function parameter of h;:

1 _ 12 1 1 — L (x)?
e 227 = _ e 22k 19
V2o k\2ns 19)
c=kX (20)

The simulation experiment is conducted to verify the proposed computation formula.
A man-made knife-edge figure is drawn using computer language, and the figure is degraded by
convolution by using the PSF, which is estimated by Gaussian functions. The selection process of the
knife-edge area is shown in Figure 2. The seven Gaussian function parameters were set at 0.5, 0.75,
1.0,1.5,1.75, 2.0, and 2.5. The resized image by resampling is presented with different multiples of k
setat 0.5, 1.5, 2.0, 2.5, and 3.0. The knife-edge area must be selected to obtain the Gaussian function
parameter of the sampled image; the size of the region is 15 x 15 pixels. According to the formula
derived, the result is in correspondence with the original parameter. The results are summarized in
Table 1, and Figure 3 shows that the Gaussian function parameters between the original and scaled
image basically meet the linear relationship.

The size of the region is 15 x 15

Figure 2. Selection process of knife-edge area. The resized image by resampling with multiples of k.

The results in Figure 3 and Table 1 show the PSF Gaussian function parameters between the
images before the downsampling and after satisfying the linear relationship when the image is scaled
at different scales of k. The ratio of the scaling parameter variation to the original parameter variation
is similar to k. The ratio satisfies the formula which was just deduced in Equation (20).
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Figure 3. Relationship between the two parameters.

Table 1. Gaussian function parameters before and after scaling.

k k=05 k=15 k=2 k=25 k=3

0.5 0.3154 0.8556  1.1164 1.401 1.6878
0.75 0.4375 11739  1.5565 1.944 2.3341
1 0.5476 15337 20346 25461  3.0514
15 0.7861 22715  3.0206  3.7757 45295
1.75 0.9101 2.642 35195 43967 52731
2 1.0336 3.0144  4.0175 5.019 6.0212
2.5 1.2775 37623  5.0135 62669  7.5232

The correctness of Equation (20) in the real image can be proven by the following experiments.
The experimental images with some knife-edge areas can be selected by the ADS 40 remote sensing
image with the size of 200 x 200 (Example 1) and the unmanned aerial vehicle (UAV) image with the
size of 800 x 800 (Example 2). The experimental data are shown in Figure 4.

(b)

Figure 4. Cont.
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L S
o |3

I

Figure 4. Experimental data. (a) Original ADS 40 image, the image enclosed in red box is the knife-edge
area which is used to estimate the Gaussian function parameter (¢); (b) Four downsampled LR images
of the ADS 40 image; (c) Original UAV image; (d) Four downsampled LR images of the UAV image.

First, four LR images must be acquired from the downsampling model, as shown in Figure 5,
in which the original image becomes a series of LR image sequences with size of 100 x 100.

180 » 181 » 181

Lc ol c o8 < [ < o)

8 B

e[ I < [ < (R

) )

clolclolclolc

clolclolclolclo] lll. ﬂﬂﬂﬂ
(a)

Figure 5. Graphic of a downsampling model. (a) Original image; (b) four downsampled LR images.

Second, the knife-edge areas with four LR images and the experimental image are estimated using
the PSF estimation based on slant knife-edge method. The PSFs can be obtained separately.

Finally, an oversampling rate is set at 2, indicating that the original image is zoomed out in
half in the experiment. Based on the relationship between the images before the downsampling and
after deducing, the Gaussian function parameter o, after downsampling, must be half of the original.
The results are shown in Table 2. The value coincides with the equation, proving that SR image
reconstruction based on the PSFs of LR images is possible.

Table 2. Gaussian function parameter () of the image before and after downsampling.

Original Image (¢) Estimate of Downsampling Real Result of Each
& & Image (0/2) Downsampling Image
0.2979
Example 1 0.5894 0.2992 03102

0.3098
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Table 2. Cont.

Original Image (¢) Estimate of Downsampling Real Result of Each
& 8 Image (0/2) Downsampling Image
0.2235
0.2158
Example 2 0.3809 0.1905 0.1884
0.1923

2.4. PSF Estimation of Low-Resolution Remote Sensing Images

The optical information of the remote sensing image is blurred in the process of the image capture
because of the relative motion between the object being photographed and the satellite and the CCD or
the atmosphere turbulence. The PSF of an imaging platform can represent the response of an imaging
system to a point source. Therefore, the calculation of the PSF in the acquired image is a significant
step to restore the ideal remote sensing images. The blurring process [30], as a convolution of an image,
is shown in Equation (21):

+oo +00
g(ry) = ey shey) = [ [ fl,B)h(x—n,y - p)dadp e

where * is the convolution operator, /1(x, y) represents the PSFE, f(x,y) is the original image, ¢(x,y) is
the degradation of the image, and a and B are the blurring filters.

However, even when the PSF [31] is measurable, it is influenced by some unpredictable conditions;
hence, many methods are proposed to solve the problem. The most common methods in PSF estimation
are the knife-edge [32], spotlight [33], and pulse [34] methods. In addition, the knife-edge method
is the most commonly employed method. The principles of the typical knife-edge method [35,36]
and the ideal knife-edge area are shown in Figure 6. The knife-edge area is assumed as a square area,
and the knife edge goes through the center of the area. Each row of the knife-edge satisfies formula
(22), in which the value of the image greater than the edge boundary line xg is 1, and the value less
than x is zero [36,37]. However, the typical knife-edge method for point spread function estimation is
limited by edge slant angle. The knife-edge in the image must be parallel to the sampling direction
and the slant angle should be within 8° [32]. Under most circumstances, slant knife-edges have certain
slope to the direction of the ideal ones; thus, the ideal knife-edge cannot be determined in all situations.
Qin et al. [38] estimated the PSF by a robust method to solve this problem in the typical knife-edge
method; they built a mathematical model of the relationship between the line spread function (LSF)
estimated by the typical knife-edge method and the real PSE. Although an accurate PSF is obtained,
the computed PSF still contains an error because the algorithm uses the discrete function to derive the
subpixel error:

1x>xg

flxy) = { 0x < xo (22)

Figure 6. Ideal knife-edge area.

In this study, a novel slant knife-edge method is used because this method fits the LSF directly
and ensures the evenness of the edge spread function (ESF) sample to improve the accuracy of the
PSF estimation. Figure 7 illustrates the process of the novel slant knife-edge method in a simplified
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sequence flow diagram. However, the area can be searched using several methods, and the three
following requirements must be satisfied:

e  The area cannot be extracted from the borders of the image to avoid the noise around the borders.

e  The area must be excellent in linearity to ensure the accuracy of the PSF estimation.

e Evident gray value differences between two sides of the edge to reduce the influence of the noise
must be obtained.

The novel slant knife-edge method

T}fe knife-edge Sampling of Stratgﬁ ed | Sampling and ,The tv.vo-
line segment t ESF » resampling of fitting of LSF dimensional
detection : ESF g PSF
|
|

Figure 7. Process of the novel slant knife-edge method in a simplified sequence flow diagram.

The original data and results of the experiment are displayed in Figure 8. The measurement
area and three examples of extracted knife-edge areas are also shown. Most of the knife-edge areas
extracted successfully and the process of removing the weak-related areas are displayed. Follow ups
are described in detail. ESF sampling, ESF denoising, ESF resampling, and LSF sampling results are
shown in Figure 9.

(b) (d)

Figure 8. (a) Measurement area; (b); (c); and (d) are some examples of extracted knife-edge areas.
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Figure 9. (a) Results of ESF sample; (b) ESF denoised sample; (c) ESF resample; (d) LSF sample.

3. Results and Discussion

3.1. Examples of Simulated Images

The experimental results did not demonstrate the effectiveness of the SR reconstruction algorithms
qualitatively because of the lack of the ideal HR image. Therefore, the design of a simulation experiment
is necessary by applying three different SR approaches and comparing the difference between these
reconstructed images and the original image by the peak value signal-to-noise ratio (PSNR) and the
mean square error (MSE) [39].

In this section, two series of comparative experiments are designed to evaluate the correctness
of the deduced formula presenting the relation of the PSF Gaussian function parameter before and
after SR reconstruction, as well as to compare the differences among the three reconstruction methods,
namely, the proposed method, blind SR method, and bicubic interpolation method, on the original
HR image. Moreover, given PSNR and MSE as the performance evaluation indicators, the experiment
verifies the efficiency of the SR image reconstructed by the modified algorithm.

The experimental process is designed as follows:

The experimental image with some knife-edge areas can be selected by the ADS 40 remote sensing
image with the size of 314 x 314, as shown in Figure 10a.
to the SR observation model, the original blurred image with given low pass and downsampled
with factor 2 generated four LR images with the size of 157 x 157, as shown in Figure 10b. One of
the LR simulated images is shown in Figure 10c. These four images correspond to the actual
transformation parameters of the reference image, as shown in Table 3, where Dx represents the
actual offset in the horizontal direction of the simulated LR image, and Dy is the actual offset
in the vertical direction. D# is the rotation angle because this experiment mainly considered
translation; hence, the rotation angle is 0. The default units are pixels and degrees.
The knife-edge areas with four LR images are estimated using the PSF estimation based on slant
knife-edge method, which is an accurate method. PSFs can then be obtained separately.
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4. According to the derived formula (20), the PSF must be multiplied by the downsampling factor 2.
Afterward, the POCS method with the estimated 2*PSF is used to reconstruct the HR image from
these four downsampling LR images.

5. The blind SR and bicubic interpolation methods are used for the comparative experiments.
The similarity between the experimental image and the resulting images of the three methods
are observed.

6.  Evaluation of experimental results.

D[‘I

(b)

Figure 10. Simulation results. (a) Original image; (b) four simulated LR images; (c) one of the LR

(©)

interpolated images, with the same size as that of the original image.

Table 3. Transformation parameters of the simulation image.

Dx Dy Do
1 0.5 0.5 0
2 1.2 1.2 0
3 0.4 0.4 0
4 1.8 1.8 0

No significant detailed difference between the original image and the modified reconstructed
image in Figure 11 can be observed. The results testify that the algorithm can effectively reconstruct
images. However, the details of the resulting images of the blind SR reconstruction algorithm and
the bicubic interpolation algorithm are inconsistent with the original image in terms of heavy noise,
aliasing, excessive sharpening, and so on. Nevertheless, both algorithms can sharpen edges and receive
large amounts of information.

7
(a) (b)

Figure 11. Cont.
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© @

Figure 11. Simulation results of experiments with the three methods. The images enclosed in red box
are the details of the three different algorithms. (a) Original image; (b) image based on the proposed
algorithm; (c) image based on the blind SR reconstruction algorithm; and (d) image based on the
bicubic interpolation algorithm.

Table 4 demonstrates that the proposed method contains less signal distortion and substantially
surpasses the blind SR reconstruction and the bicubic interpolation algorithms in terms of the highest
PSNR and the minimum MSE. Moreover, the results prove that the POCS method with the estimated
PSF can improve the recovery image information and achieve a good performance of SR reconstruction.

Table 4. Evaluation results of the experiment.

Image PSNR MSE
Image based on the proposed algorithm 96.7904 1.3616 x 107>
Image based on the blind SR reconstruction algorithm 54.5366 22884 x 1071
Image based on the bicubic interpolation algorithm 81.8529 4.2441 x 104

3.2. Examples of Real Images

In this section, the proposed algorithm is applied in practice. The experiments are designed
to investigate the effect of SR reconstruction of the POCS method with the estimated PSF in the
agricultural application. Given that data sources in agriculture use HR remote sensing images,
the agricultural region of the GF-2 image is selected as the experimental data with the image size of
400 x 400. The set of LR inputs are the overlapped areas of two adjacent images. The other data are the
UAV images with size of 500 x 500 to prove the stability of the proposed algorithm. The experimental
results are compared with the blind SR reconstruction and the bicubic interpolation reconstruction to
verify the effectiveness. Because the reference image is unavailable, the quality metrics PSNR or MSE
cannot be used to compare the advantages of the three algorithms. Therefore, we choose a no-reference
metric Q, which can react in a natural way to the presence of noise and blur, to provide a quantitative
measure of true image. And its value drops means the variance of noise rises, and the image becomes
blurry [40]. Simultaneously, manual visual interpretation also is a criterion method.

In the first set of experiments, the knife-edge areas are extracted using the novel slant knife-edge
method. The experimental data and details are shown in Figure 12. However, the edge of the
agriculture land is unclear, and the house is fuzzy, thereby preventing the researchers from surveying
the area accurately.
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(o) (e)

Figure 12. (a,b) are the experimental data; (c) detail of the road; (d) detail of the house; (e) detail of the
paddy fields.

The knife-edge areas are shown in Figure 13. The knife-edge region selection is based on the
relevant center coordinate of the knife-edge area. Two knife-edge areas are selected (c) from a total of
six knife-edge areas (b), as shown in Table 5. Experimental data show that the center coordinates [36,
320] of the region is the most clear knife-edge area. Therefore, with the point as the center, a square is
drawn with a radius of 7 pixels to select the area, which is shown in (d). Given these data, the PSF is
calculated for subsequent reconstruction experiments.

Figure 13. Process of extracting the edge region by using the novel slant knife-edge method. (a) Edge

detection by canny algorithm; (b) all knife-edge areas are described in white boxes; (c) preferred
knife-edge areas; (d) selected knife-edge area.

Table 5. List of the center coordinates of knife-edge areas.

Number [X, Y] Relevant
1 [36, 320] 0.9825
2 [249, 207] 0.9763
3 [144, 146] 0.9748
4 [180, 157] 0.9722
5 [261, 338] 0.9557
6 [306, 28] 0.9187
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Subsequently, the two selected PSFs are taken into the POCS algorithm to obtain the reconstructed
image. The nominal values of metric Q of three reconstructed images as shown in Table 6. Metric Q of
the image based on the proposed algorithm are the maximum number, it shows that the algorithm
has a good visual performance and detail preservation. What’s more, Figure 14 shows the results and
details of the HR image reconstruction. In region A, the edges of the building are clear and distinct
in (e) and (f). The bicubic interpolation method can only interpolate, but the interpolation is unclear.
Moreover, the images reconstructed by the blind SR reconstruction method present jagged edges.
Therefore, the proposed method and the blind SR reconstruction method can effectively reconstruct
the details of the building. In summary, the results indicate that all these algorithms can effectively
produce robust SR images. However, the proposed method demonstrated better effect than the
other algorithms.

Table 6. The nominal values of metric Q of three reconstructed images in the first set of experiments.

Image Reconstructed by Different Algorithms The Value of Q
the proposed algorithm 24.2285
the blind SR reconstruction algorithm 21.6771
the bicubic interpolation algorithm 17.3591

(e ) )

Figure 14. Actual results of the experiments using the three methods. The images enclosed in a red
box are the details of the three different algorithms. (a) Original LR image; (b) image based on the
proposed algorithm; (c) image based on the blind SR reconstruction algorithm; (d) image based on
the bicubic interpolation algorithm; (e) is the detail of reconstruction in region A by the proposed
algorithm; (f) is the detail of reconstruction in region A by the blind SR reconstruction algorithm;
and (g) is the detail of reconstruction in region A by the bicubic interpolation algorithm.

In the second set of experiments, we choose the most clear knife-edge area [114, 329] in real
images according to the previous experimental procedure. The UAV images, as well as the results and
details of the HR image reconstruction, are shown in Figure 15 and the values of metric Q are shown
in Table 7. The reconstruction results of the proposed method are the most natural; the image becomes
clearer with the increase in the amount of image information. Although the blind SR algorithm can
achieve a certain reconstruction effect, the edge of the reconstructed image is not sharper than the
image obtained using the proposed method.
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Figure 15. Actual results of the second set of experiments using the three methods. The images enclosed
in a red box are the details of the three different algorithms. (a) Original LR image; (b) image based on
the proposed algorithm; (c) image based on the blind SR reconstruction algorithm; (d) image based
on the bicubic interpolation algorithm; (e) is the detail of reconstruction in region A by the proposed
algorithm; (f) is the detail of reconstruction in region A by the blind SR reconstruction algorithm;
(g) is the detail of reconstruction in region A by the bicubic interpolation algorithm; (h) is the detail of
reconstruction in region B by the proposed algorithm; (i) is the detail of reconstruction in region B by
the blind SR reconstruction algorithm; and (j) is the detail of reconstruction in region B by the bicubic
interpolation algorithm.

Table 7. The nominal values of metric Q of three reconstructed images in the second set of experiments.

Image Reconstructed by Different Algorithms The Value of Q

the proposed algorithm 40.1082
the blind SR reconstruction algorithm 34.8491
the bicubic interpolation algorithm 28.3006

4. Conclusions

In summary, the POCS method with the estimated PSF based on multiple LR images describes
a number of key initiatives including the improvement of the accuracy of the PSF of LR images
by a novel slant knife-edge method. The validity and reliability of the formula, which derives the
relationship between the images before and after downsampling, have been proven. The value of the
downsampling multiplied by the PSF of LR images is equal to the estimated PSF of the HR image.
The formula can be applied in image restoration and SR reconstruction. The formula can also enhance
the clarity in agricultural remote sensing images. Finally, the estimated PSF was combined with the
POCS method to improve the accuracy of the SR reconstruction process. Our experimental results show
that the deduced formula of PSF is accurate and significant in the development of the restoration and
reconstruction processes. However, some problems remain to be solved. The quality of the knife-edge
area significantly influences the estimation accuracy of the PSF, leading to some errors.
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