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Abstract: The kurtosis-based indexes are usually used to identify the optimal resonant frequency
band. However, kurtosis can only describe the strength of transient impulses, which cannot
differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration
signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in
demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript
redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an
improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals.
Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can
adaptively determine the optimal resonant frequency band and accurately demodulate transient fault
features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm
Optimization algorithm. Analysis of both simulation data and experimental data reveal that the
improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the
proposed optimal resonant band demodulation is more accurate in identifying the optimal central
frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified
the validity and advantage of the proposed method over the traditional kurtosis-based indexes.

Keywords: fault diagnosis; squared envelope spectrum; optimal resonant band demodulation;
correlated kurtosis; rolling bearing

1. Introduction

Rolling bearings are one of the most common but the most vulnerable parts in rotating mechanical
systems. In order to ensure uninterrupted operation and avoid unexpected failures, research attention
has been focused on the extraction of weak fault features of rolling bearings which constitute a key
factor to condition monitoring and fault diagnosis of rotating mechanical systems [1]. Bearings usually
generate wide-band impulses according to their fault frequency and force the bearing system to
render an impulse attenuation response when a local fault failure occurs in the inner ring, outer ring,
rolling element or cage of a rolling bearing,. As a result, transient impulses in vibration signals of
rolling bearings occur cyclically. A popular consensus among the researchers is that the resonant band
demodulation can be an effective method in extracting fault features and diagnosing faults of rolling
bearings. The key factor of resonant band demodulation is to accurately achieve the central frequency
and the bandwith of the optimal resonant frequency band. However, transient features of rolling
bearings can be greatly compromised due to the heavy background noise and signal transmission
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paths. Consequently, it becomes difficult to identify resonant frequency bands, not to mention the
accurate diagnosis of such faults by resonant frequency band demodulation [2].

Antoni [3,4] put forward the kurtogram based on spectral kurtosis for the detection of
non-stationary transients and their frequency locations. By combining resonant frequency band
demodulation, the kurtogram can effectively diagnose faults of rolling bearings. In order to improve the
computation performance of the kurtogram, Antoni [5] further built the fast kurtogram by combining
iterative segmentation of frequency range such as binary tree and band-pass filters such as short-time
Fourier Transform. Taking advantage of the superiority of the fast kurtogram, several in-depth studies
have been done in the area of bearing vibration monitoring and fault diagnosis [6–10]. However, the
fast kurtogram has two deficiencies. Firstly, kurtosis can only characterize the strength of transient
impulses, but it cannot differentiate impulse noises and transient impulses, which are cyclically
generated in rolling bearing vibration signals. As a result, it may lead to the inaccurate resonance band
identification results, unsatisfactory fault feature demodulation results and misleading rolling bearing
fault diagnosis results [11–13]. Secondly, the fast kurtogram cannot accurately perfectly determine
the central frequencies and bandwidth of rolling bearings’ resonant frequency bands by roughly
segmenting frequency ranges [14,15], which may also lead the unsatisfactory demodulation results of
fault features. Meanwhile, some artificial intelligence algorithms are also proposed to detect bearing
faults [16–18].

In view of these deficiencies, Wang [10] proposed an enhanced kurtogram by calculating kurtosis
based on the envelope spectrum of the wavelet package transform filtered signal, which performs well
in determining resonance bands, and in demodulating the fault features of rolling bearings. Barszcz [11]
proposed the protrugram method based on the kurtosis of the envelope spectrum and narrowband
demodulation to select optimal resonant frequency band and to detect transient impulses with smaller
rolling bearing vibration signal signal-to-noise ratios. The protrugram shows a superior detection
ability of modulated signals in the presence of higher noise than in the case of the fast kurtogram.
Enlightened by thermodynamics and entropic uncertainty principle. Antoni et al. [13] proposed the
squared envelope infogram (SE infogram) and the squared envelope spectrum infogram (SES infogram)
by measuring the negentropy of the squared envelope and the squared envelope spectrum of the
short-time Fourier Transform filtered signal, respectively. The SES infogram can effectively provide
new information about repetitive transients and locate the resonant frequency bands. Experimental
results demonstrate the superiority of SE infogram and SES infogram in selecting resonant bands and
demodulating bearing fault features in comparison to the fast kurtogram. Furthermore, Li et al. [14]
proposed an optimal demodulation of bearing vibration signals by combining criterion fusion and
bottom-up segmentation of the spectral sequence, which effectively determined the optimum resonant
frequency band of rolling bearings and improved the robustness in identifying the optimal resonant
central frequency. Tse et al. [12] proposed the sparsogram, which is constructed using the sparsity
measurements of wavelet packet coefficients’ envelope power spectra at different decomposition
depths. The sparsogram effectively locates the resonant bands and shows the superior capability in
bearing fault diagnosis by comparison studies with kurtosis, smoothness index and Shannon entropy.
Furthermore, Tse et al. [15] further proposed the automatic selection of a perfectly resonant frequency
band by combining a complex Morlet wavelet filter and a genetic algorithm to enhance the sparsogram
for fault feature demodulation of rolling bearings.

The aforementioned review of related studies indicates that the identification quality of resonant
frequency bands depends on the construction of criterion used to detect transient features and on the
construction of a band-pass filter used to segment the frequency band. Among them, the construction
of criteria used to detect transient features is the key factor to determine the quality of identified
resonant frequency bands.

Taking advantage of the periodical features of transient impulses, McDonald et al. [19] proposed
the correlated kurtosis to detect repetitive transient impulses. As the kurtosis can only characterize
the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient
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impulses, the correlated kurtosis then becomes a potential substitution criterion for kurtosis-based
indexes in detecting repetitive transients. However, the calculation of correlated kurtosis is performed
on periodical signals, and previous research results have proved that repetitive transients of rolling
bearing are not periodic, but rather are cyclostationary [13]. As a result, the calculation of correlated
kurtosis on bearing vibration signals may lack an essential theoretical basis. Besides, the correlated
kurtosis proposed by McDonald is only a construction form, which calls for a clear physical definition.

To address these issues, the manuscript redefines the correlated kurtosis, on the basis of kurtosis
and auto-correlative function, and puts forward an improved correlated kurtosis based on the squared
envelope spectrum of rolling bearing vibration signals. Meanwhile, this manuscript proposes an
optimal resonant frequency band demodulation by combining the complex Morlet wavelet band-pass
filter and the Particle Swarm Optimization algorithm, which can adaptively identify the optimal
resonant frequency bands and demodulate transient features of rolling bearings.

The rest of the manuscript is organized as follows: the related theoretical background is presented
in Section 2, the methods proposed by the authors are discussed in Section 3, the simulation analysis
and test applications are presented in Section 4, and our conclusions in Section 5.

2. Kurtosis and Correlated Kurtosis

2.1. Kurtosis

As we know, kurtosis can represent the characteristics of signals around their mean value and
characterize the strength of transient impulses. Given a zero mean signals, kurtosis can be defined as
the ratio among the fourth central moment of the signal to the squared second central moment of the
signal [20]. Given a zero-mean filtered signal Xl,h, one can obtain its analytic signal X̃l,h as follows:

X̃l,h = Xl,h + j ·Hilbert(Xl,h), (1)

where j is the imaginary number, Hilbert(·) the Hilbert Transform function, h and l are respectively the
upper and lower cut-off frequency of the band-pass filter f h

l .
Then the kurtosis can be expressed as:

Kurtosis(X̃l,h) =
E(
∣∣∣X̃l,h

∣∣∣4)[
E(
∣∣∣X̃l,h

∣∣∣2)]2 , (2)

where E(·) is the mathematical expectation operator.
Taking a step further, the corresponding transient impulses can lead to an instantaneous energy

fluctuation in vibration signals when a rolling bearing catches local faults. The squared envelope signal
can represent the instantaneous energy fluctuation of the signal [13]. Given a zero-mean filtered signal
X̃l,h, one can express its squared envelope signal SE(X̃l,h) as follows:

SE(X̃l,h) =
∣∣∣X̃l,h

∣∣∣2 =
∣∣Xl,h + j ·Hilbert(Xl,h)

∣∣2, (3)

the variance of SE(X̃l,h) can be expressed as:

D
[
SE(X̃l,h)

]
= E

[
SE(X̃l,h)

]2
−
{

E
[
SE(X̃l,h)

]}2
, (4)
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the normalized version of D
[
SE(X̃l,h)

]
can be expressed as:

d
[
SE(X̃l,h)

]
=

E
[
SE(X̃l,h)

]2

{
E
[
SE(X̃l,h)

]}2 − 1. (5)

Substituting Equation (5) into Equation (1), a new expression of kurtosis can be expressed as:

Kurtosis(X̃l,h) = d
[
SE(X̃l,h)

]
+ 1. (6)

As we know, the resonant frequency band filtered signal contains prominent repetitive transient
fault impulses when a rolling bearing records local faults. Those repetitive transient fault impulses can
lead to instantaneous energy fluctuations in the filtered signal and amplify the normalized variance in
Equation (6). As a result, the resonant frequency band filtered signals usually have a high kurtosis
value, and resonant frequency band demodulation based on kurtosis citation can be effective in
detecting transient fault impulses and diagnosing faults of rolling bearings, such as the fast kurtogram.
However, the vibration signals of rolling bearings always contain many other components, which may
be useless for bearing diagnosis, such as discrete impulsive noises. Discrete impulsive noises also can
give rise to an instantaneous energy fluctuation of signals. The filtered signal, which may not contain
repetitive transient impulses but rather contain discrete impulsive noises, can also have a high kurtosis
value. As a result, the kurtosis can only characterize the strength of impulses, but it cannot effectively
differentiate impulsive noise and repetitive transient fault impulses. As a result, the kurtosis may lead
to the inaccurate identification results of resonant bands, the unsatisfactory demodulation results of
fault features and the misleading fault diagnosis results of rolling bearings.

2.2. Correlated Kurtosis

Thanks to the superiority of kurtosis in characterizing transient impulses, it has been widely used
in fault diagnosis of rolling bearings [6]. However, McDonald et al. [19] observed that when compared
with a signal containing repetitive periodicity of impulses, a signal with a single impulse would
generate a higher kurtosis value. He then concluded that the kurtosis is more effective in detecting a
single impulse than repetitive impulses. In reality, rotating machines’ vibration signals usually contain
repetitive impulses produced by mechanical faults, rather than a single impulse possibly produced by
heavy background noise. Consequently, the kurtosis interfered by heavy noise may correspond with
incorrect transient fault features. To address the problem, McDonald et al. [19] proposed the correlated
kurtosis (CK) with the help of the impulse periodicity existing in signals.

The CK of zero-mean filtered signal X̃l,h can be formally constructed as [19]:

CK(X̃l,h, T) =

N
∑

n=1

[∣∣∣x̃∗l,h(n)∣∣∣ · ∣∣x̃l,h(n− T)
∣∣]2

[
N
∑

n=1

∣∣x̃l,h(n)
∣∣2]2 , (7)

where T is the periodicity of impulses, x̃l,h(n) the nth element of the filtered signal X̃l,h.
McDonald et al. [19] later verified that CK hit a maximum at a certain period as opposed to

the kurtosis which is likely to reach a maximum with a single impulse. CK takes advantage of the
periodical features of transient impulses as well as the impulse-like vibration behavior associated with
most types of faults. Therefore, it is more effective in detecting signal repetitive transients. Owing to its
claimed superiority, some further studies have been done in bearing fault diagnosis and degradation
analysis [21,22].
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3. The Proposed Optimal Resonant Band Demodulation Method Based on an Improved
Correlated Kurtosis

In this section, the authors firstly redefine the correlated kurtosis and then propose the improved
correlated kurtosis based on squared envelope spectrum; then propose an optimal resonant band
demodulation, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization
algorithm, to adaptively identify the optimal resonant frequency bands and demodulate the transient
features of rolling bearings.

3.1. Redefinition of Correlated Kurtosis

Taking advantage of the periodical features of transient impulses, the correlated kurtosis is a
potential substitution criterion for kurtosis-based indexes in detecting repetitive transient impulses.
However, the correlated kurtosis proposed by McDonald is only a construction form, which calls for a
clear physical definition. In this manuscript, the authors redefine the correlated kurtosis as follows:

As the auto-correlative function of the filtered signal X̃ can be expressed as:

rX̃(m) = E[x̃∗(n)× x̃(n + m)], (8)

where m is the time delay coefficient. Substituting Equations (3) and (8) into Equation (2), a new
expression of the kurtosis can be obtained as:

Kurtosis(X̃l,h) =
rSE(0)[

rX̃l,h
(0)
]2 , (9)

where rX̃l,h
(0) is the auto-correlative function of X̃l,h when m equals to zero. And rSE(0) is the

auto-correlative function of squared envelope signal SE(X̃l,h) when m equals to zero.
The auto-correlative function can be used to detect hidden periodicity of signals. If the periodicity

of a finite length signal X̃ is T, the auto-correlative function rX̃(m) of X̃ will also present the periodicity
of T, and rX̃(m) contains gradual attenuation peak values only when m = 0, T, 2T....

Enlightened by the characteristic of auto-correlation function and combining Equation (9), the
authors redefine the correlated kurtosis as the ratio between rSE(T) to rX̃l,h

(0)2. Given a zero-mean

filtered signal X̃l,h, the redefined correlated kurtosis can be expressed as:

ReCK(X̃l,h, T) =
rSE(T)[

rX̃l,h
(0)
]2 = N ×

N
∑

n=1
[|x̃(n)| × |x̃(n + T)|]2[

N
∑

n=1
|x̃(n)|2

]2 , (10)

where N is the length of the filtered signal, T the periodicity of transient impulses, rSE(T) the
auto-correlative function of the squared envelope signal when m equals to T, and rX̃l,h

(0) the
auto-correlative function of the filtered signal when m equals to zero.

In comparison with the correlated kurtosis proposed by McDonald in Equation (7), the redefined
correlated kurtosis in Equation (10) has two distinctions. One is that the redefined correlated kurtosis
utilizes signal length N as its correction factor and the other is that the computation of the redefined
correlated kurtosis moves T points of the signal to right, instead of to left. Moreover, inheriting
characteristics of auto-correlative function and kurtosis, the correlated kurtosis redefined in this
manuscript can not only reduce impacts of impulsive noises and uncorrelated transient impulses on the
detection of repetitive transient fault impulses, but also overcome the drawbacks of the kurtosis-based
indexes. As a result, the redefined correlated kurtosis can be a potential substitution criterion for
kurtosis-based indexes in detecting repetitive transient fault features.
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3.2. An Improved Correlated Kurtosis

Unlike the kurtosis, the correlated kurtosis both in Equations (7) and (10) is defined on the basis
of periodic signals. However, according to cyclostationary analysis, bearing vibration signals have
typically some second-order cyclostationary characteristics, repetitive transient fault features of bearing
vibration signals are not periodic, but rather cyclostationary, which means the instantaneous energy
fluctuates rather than their waveform being periodic [13]. As a result, applying the correlated kurtosis
directly on bearing vibration signal may lack in necessary theoretical foundations. To overcome this
weakness of correlated kurtosis, the authors observe the frequency spectrum of instantaneous energy
fluctuations signal, namely the squared envelope spectrum (SES) of bearing vibration signal, which
can be expressed as:

SES( f ) = DFT
[
SE(X̃l,h)

]
= ∑ i∈ZSES( f , k)δ( f − k× ffault), (11)

where ffault is the fault feature frequency of rolling bearing, SES( f , k) the kth spectrum line of SES, and
δ the unit-impulse function.

It can be seen from Equation (11) that the fault feature frequency ffault and its harmonics are
periodically distributed on frequency axis of SES, and the periodicity of those harmonics corresponds
with the fault feature frequency. By performing the computation of the redefined correlated kurtosis on
SES, the correlated kurtosis may remedy the weakness. Then, this manuscript proposes an improved
correlated kurtosis on the basis of the redefined correlated kurtosis in Equation (10) and SES, which
can be expressed as:

SESCK(X̃l,h, ffault) = (h− l + 1)×

h−l
∑

f=0
[SES( f )× SES( f + ffault)]

2

[
h−l
∑

f=0
SES( f )2

]2 (12)

where h and l are upper and lower cut-off frequency of band-pass filter f h
l .

Comparing Equation (10) with Equation (12), one can learn that Equation (12) is the
implementation of Equation (10) on SES. The improved correlated kurtosis can approach a higher
value when the SES of filtered signal contains higher peak values of the fault feature frequency,
more harmonics, and wider filtered bandwidth. On the contrary, the improved correlated kurtosis
approaches an especially small value when the SES contains lower peak values of the fault feature
frequency, less harmonics, and narrower filtered bandwidth, or even doesn’t contain any fault
feature frequency, nor its harmonics. As a result, it also can overcome the drawbacks of the
kurtosis-based indexes.

3.3. Performance Comparison

In previous subsections, the authors have redefined the correlated kurtosis and proposed an
improved correlated kurtosis based on SES. In order to verify the superiority of the redefined correlated
kurtosis and the improved correlated kurtosis against the kurtosis, spectral kurtosis and the correlated
kurtosis originated by McDonald, several discrete testing signals, shown in Figure 1, are constructed
as follows:

Signal Y1: a unit-impulse function δ(20) and its length equals to 40.
Signal Y2: a Dirac comb function composed by unit-impulse functions δ(20), δ(40) and δ(60), its

length equals to 80.
Signal Y3: a Dirac comb function composed by unit-impulse functions δ(20), δ(40), δ(60), δ(80)

and δ(100), its length equals to 120.
Signal Y4: a sine function and its length equals to 200.
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Signal Y5: a Gaussian noise function and its length equals to 200.
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Figure 1. Testing signals.

As is mentioned in references [11,13], a Dirac comb stands as an idealization of a series of repetitive
transients and a single impulse is a particular instance of a Dirac comb, though they are unlikely to
occur in practice. The characteristic of repetitive transients in time is also a series harmonic in SES.
Fortunately, a Dirac comb has the same structure in both time domain and SES. Therefore, Dirac
comb functions can be utilized herein to compare performances of different indexes in detecting
repetitive transients.

As the kurtosis, the original correlated kurtosis and the redefined correlated kurtosis are all
defined in the time domain, in order to compare their performances in detecting repetitive transient
impulses, firstly, treating testing signals in Figure 1 as time singles. The results calculated by the
kurtosis, the correlated kurtosis originated by McDonald and the redefined correlated kurtosis are
shown in Table 1.

Table 1. The results of testing signals in time domain calculated by the kurtosis (K), the correlated
kurtosis originated by McDonald (CK) and the redefined correlated kurtosis (ReCK).

Signal K CK ReCK

Y1 15.0526 0 0
Y2 15.0526 0.2222 13.3333
Y3 15.0526 0.16 16
Y4 0.2928 0.0048 0.9694
Y5 −1.5 0.0068 1.35

From Table 1, one can learn that, the results of Y1, Y2 and Y3 calculated by the kurtosis have the
same value, even if Y1, Y2 and Y3 contain different quantities of repetitive transient impulses. As a
result, the kurtosis in the time domain cannot differentiate a single impulse and a series of repetitive
impulses, the latter of which is usually believed to be more helpful in fault diagnosis. The result of Y2

calculated by the correlated kurtosis originated by McDonald is larger than other signals, especially
larger than Y3, which is the optimal repetitive impulses with more obvious periodicity than Y2. Such
is the case, the correlated kurtosis originated by McDonald might fail in identifying the optimal
filtered signal which contains more repetitive impulses. Finally, the result of Y3 calculated by the
redefined correlated kurtosis is larger than other signals. Thus, the redefined correlated kurtosis claims
the superiority over other methods in identifying the optimal filtered signal which contains more
repetitive impulses.
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As a Dirac comb has the same structure in both time domain and SES, treating testing signals
Y1, Y2 and Y3 in Figure 1 as SES of themselves. Then computation results of Y1, Y2 and Y3 calculated
by spectral kurtosis and the improved correlated kurtosis are shown in Table 2. Due to the same
construction of kurtosis and spectral kurtosis, the same construction of the redefined correlated kurtosis
and the improved correlated kurtosis based on SES. The computation results in Table 2 have same
values as is shown in Table 1 when treating testing signals as their SES. Then, one can come a same
conclusion that, the spectral kurtosis cannot differentiate a single impulsive frequency and a series
of repetitive impulse harmonics, the improved correlated kurtosis can identify the optimal filtered
frequency band, which contains optimal repetitive impulsive harmonics in SES.

Table 2. The results of testing signals in SES calculated by the spectral kurtosis (SK), and the improved
correlated kurtosis (SESCK).

Signal SK SESCK

Y1 15.0526 0
Y2 15.0526 13.3333
Y3 15.0526 16

As is mentioned above, the redefined correlated kurtosis can detect the optimal repetitive transient
impulses in time domain and the improved correlated kurtosis can detect the optimal repetitive
impulsive harmonics in SES. Consequently, the performance comparison can verify the superiority of
the redefined correlated kurtosis and the improved correlated kurtosis.

3.4. The Optimal Resonant Band Demodulation

The resonant frequency band demodulation is an effective method for extracting fault features
and diagnosing faults of rolling bearings, and the key factor of resonant frequency band demodulation
is to accurately identify the central frequency and the bandwith of the optimal resonant frequency
band. However, the identification quality of resonant band depends on the construction of criterion
used in detecting transient features and on the construction of band-pass filter used in segmenting
frequency band.

Firstly, as is demonstrated in previous subsections, the improved correlated kurtosis on the basis
of SES can not only reduce the impacts of impulse noises in detecting repetitive transient fault features,
but also can remedy the drawbacks of the kurtosis-based indexes. Thus, the improved correlated
kurtosis can be a substitution criterion for kurtosis-based indexes in detecting repetitive transient
fault features.

Secondly, the complex Morlet wavelet is a kind of band-pass filter. Its wavelet function contains
exponential attenuation components, which correspond with transient characteristics of rolling bearing
faults. The wavelet function of complex Morlet wavelet ϕ(t) can be expressed as [23–26]:

ϕ(t) =
α√
π

exp(−α2π2) exp(j2π fct), (13)

its Fourier Transform ψ( f ) can be expressed as:

ψ( f ) = ψ∗( f ) = exp
[
−π2

δ2 ( f − fc)
2
]

, (14)

where α is the envelope factor and fc the central frequency of the complex Morlet wavelet.
Taking normalized central frequency fc = 0.25 Hz and envelope factor α = 0.06 Hz as an

example, the Morlet wavelet waveform both in time and frequency domain are shown in Figure 2.
The filtered bandwidth is defined as β, and it equals to the frequency range between the upper cut-off
frequency and lower cut-off frequency, which correspond with the

√
2/2 times maximum Morlet
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wavelet amplitude in frequency domain [26], as shown in Figure 2b. As a result, the filtered range of
the complex Morlet wavelet is from fc − β/2 to fc + β/2, and β = α

√
2 ln 2/π.Sensors 2017, 17, 360 9 of 19 

 

 
Figure 2. (a) Time waveform of the Morlet wavelet; (b) frequency waveform of the Morlet wavelet. 
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Figure 2. (a) Time waveform of the Morlet wavelet; (b) frequency waveform of the Morlet wavelet.

Then the complex Morlet wavelet filtered signal can be expressed as:

Wx( fc, β) = F−1[X( f )ψ∗( f )], (15)

where F−1 is the inverse Fourier Transform function, X( f ) the Fourier Transform of signal x(t) and
Wx( fc, β) the filtered signal of x(t) by the complex Morlet wavelet filter.

Finally, an optimal resonant band demodulation method, by combining the improved correlated
kurtosis and the complex Morlet wavelet filter, is proposed for the purpose of diagnosing faults
of rolling bearings in this manuscript. Coupled with the Particle Swarm Optimization algorithm,
the proposed method can adaptively identify the optimal resonant bands and demodulate transient
features of rolling bearings.

The flowchart of the proposed method is shown in Figure 3, and the detailed steps are as follows:

(1) Calculating the fault feature frequency according to the geometric parameters of the rolling
bearing and operation conditions of the mechanical system.

(2) Determining the searching range of the resonant bandwidth. As the band-pass filtered bandwidth
should be greater than three times of the fault feature frequency, the searching range of the
resonant bandwidth can be set as 3× ffault ≤ β ≤ 10× ffault.

(3) Determining the searching range of the resonant central frequency. As the filtered range of the
Morlet wavelet filter is [ fc − β/2, fc + β/2], the searching range of the resonant central frequency
can be set as βmin/2 ≤ fc ≤ fs/2− βmin/2, where fs represents the sampling frequency.

(4) Initializing the Particle Swarm Optimization algorithm. The dimension of the particle swarm is
set as 2, the size of the particle swarm is set as 30. The initial particle swarm can be achieved in
line with the searching settings in step (2) and step (3).

(5) Performing SES analysis on the initial particle swarm, calculating their values of the improved
correlated kurtosis and achieving the individual maximum and global maximum.

(6) Updating speed and location of the particle swarm iteratively until the maximum iterations.
Achieving the optimal resonant central frequency fc_opt and bandwidth βopt.
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(7) Setting the central frequency of the optimal complex Morlet wavelet filter as fc_opt, the bandwidth
of the optimal complex Morlet wavelet filter as βopt. Achieving the optimal resonant band
filtered signal.

(8) Performing the SES of the optimal resonant band filtered signal and diagnosing faults of
rolling bearings.
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4. Analysis

4.1. Simulation Analysis

A numerical simulation model of rolling bearing vibration is used to construct bearing failure
simulation signals to verify the validity of the proposed method. The numerical simulation model is
expressed as follows: 

x(t) = s(t) + n(t)
s(t) = ∑j h(t− j× T − τi) + p(t + t1) + p(t + t2)

h(t) = A0 exp(−Ct) cos(2π fnt)
p(t) = M0 exp(−Dt) cos(2π fmt)

(16)

where the rolling bearing simulation signal x(t) includes impulse series s(t) and noise signal n(t). T is
the average period of impulse series; fi is the impulsive feature frequency which equals to the reciprocal
of T and set to 100 Hz; τi is the tiny random fluctuation of the i-th impulse and τ ∼ N(0, 0.05T); C is the
damping coefficient which equals to 900; fn is the resonant frequency of the simulated rolling bearing
system which equals to 4000 Hz; A0 is the vibration amplitude which equals to 1; p(t) is additional
impulsive noise; D is the damping coefficient of the impulsive noise which equals to 600; fm is the



Sensors 2017, 17, 360 11 of 19

resonant frequency of the impulsive noise which equals to 2500 Hz; and M0 is the vibration amplitude
of the impulsive noise which equals to 5. Two impulse noise components are added to s(t) at the
moment of t1 = 0.125 s and t1 = 0.225 s, respectively. The noise signal n(t) is white Gaussian noise
with noise variation equaling to 1. The sampling frequency of simulation signal is set to 12,800 Hz
while the sampling points are set to 6400.

In line with Equation (16), a simulation signal is generated as is shown in Figure 4. The simulation
signal only includes impulsive series and impulsive noise components is shown in Figure 4a.
The repetitive transient impulsive series, additional impulsive noise components and their transient
features are distinct in the signal. When the simulation signal includes noise signal and noise variation
equals to 1, the signal-to-noise ratio of the simulation signal is −14.9 dB. And the simulation signal
waveform both in time domain and in frequency domain are respectively shown in Figure 4b,c.
One can learn that, because of the influence of heavy background noise, none obvious signal feature
can be captured both in time domain and in frequency domain. The squared envelope spectrum (SES)
of the simulation signal by conducting envelope analysis directly on the simulation signal is shown in
Figure 4d, where we cannot recognize any transient fault features in the SES.
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Figure 4. (a) Repetitive transient impulses and impulsive noises in the simulation signal; (b) the
simulation signal with white Gaussian noise; (c) the spectrum of the simulation signal; (d) the SES of
the simulation signal.

Firstly, utilizing the proposed optimal resonant band demodulation method to analyze the
simulation signal, which is shown in Figure 4b. According to the algorithm flow in Figure 3,
the impulsive feature frequency fi equals 100 Hz; the central frequency searching range of the optimal
resonant band is set between 50 Hz and 6350 Hz; and the bandwidth searching range of the optimal
resonant band is set between 100 Hz and 1000 Hz. By initializing the Particle Swarm Optimization
algorithm, the calculation result after 30 times’ interactive computation is shown in Figure 5a, where
the maximum of the improved correlated kurtosis occurs at 26th calculation, which equals 2.617, and
the acquired optimal center frequency and bandwidth of resonant frequency band are 4015 Hz and
760 Hz, respectively.
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Figure 5. Analysis results of the proposed optimal resonant band demodulation based on the improved
correlated kurtosis. (a) The iterative computation results of the PSO; (b) the filtered signal by optimal
Morlet wavelet filter; (c) the spectrum of the filtered signal; (d) the SES of the filtered signal.

Constructing the complex Morlet wavelet filter based on the optimal resonant frequency band
parameters, the filtered simulation signal both in time domain and in frequency domain are shown
in Figure 5b,c, respectively. The signal filtered by the optimal complex Morlet filter roughly shows
transient impulse feature. The filtering central frequency of the optimal complex Morlet filter is almost
identical to the resonant central frequency of the simulation signal, which equals to 4000 Hz, and the
filtering frequency range can properly cover the resonant frequency band. The SES of the simulation
signal performed by the proposed method is shown in Figure 5d, where the fault feature frequency
fi and its harmonic frequencies are easy to identify. In the meanwhile, fault feature frequencies are
dominant in frequency domain. Consequently, the improved correlated kurtosis can conquer the
disturbance of impulsive noise, identify the repetitive transient impulse series. Combining complex
Morlet filter and PSO optimization algorithm, the proposed optimal resonant band demodulation
method can adaptively identify the optimal resonant band and demodulate fault features.

To compare the improved correlated kurtosis with kurtosis and spectral kurtosis, the kurtosis and
spectral kurtosis of squared envelope signal are used to substitute the improved correlated kurtosis,
respectively. According the same algorithm flow in Figure 3 and the same initialization parameters
used in Figure 5, analysis results of the same simulation signal obtained by kurtosis and spectral
kurtosis are shown in Figures 6 and 7, respectively.

One can learn from Figure 6a that the maximal kurtosis of the squared envelope signal occurs at
the 26th iterative calculation and the acquired optimal center frequency and bandwidth of resonant
band are 3115 Hz and 723 Hz, respectively. Constructing complex Morlet wavelet filter based on the
acquired optimal resonant frequency parameters, the filtered signal is shown in Figure 6b and its
frequency spectrum shown in Figure 6c. From Figure 6b, it can be learned that, there are two prominent
impulsive components in the filtered signal, which are consistent with the impulsive noise components.
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From Figure 6c, the filtering central frequency of the optimal complex Morlet filter is approaching
to the resonant central frequency of the impulsive noise components, which equals to 2500 Hz. As a
result, the filtered signal contains prominent impulsive noise components. From Figure 6d, the SES of
the filtered signal cannot extract any distinct fault features.Sensors 2017, 17, 360 13 of 19 
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Figure 6. Analysis results of optimal resonant band demodulation based on kurtosis of the squared
envelope signal. (a) The iterative computation results of the PSO; (b) the filtered signal by optimal
Morlet wavelet filter; (c) the spectrum of the filtered signal; (d) the SES of the filtered signal.

One can learn from Figure 7a that the maximal spectral kurtosis of the squared envelope signal
occurs at 24th iterative calculation and the acquired optimal center frequency and bandwidth of
resonant band are 4560 Hz and 1000 Hz, respectively. Constructing complex Morlet wavelet filter
based on the acquired optimal resonant frequency parameters, the filtered signal is shown in Figure 7b
and its frequency spectrum is shown in Figure 7c. From Figure 7c, the filtering central frequency of
the optimal complex Morlet filter is not identical to the resonant central frequency of the simulation
signal, but the filtering frequency band still can properly cover the resonant central frequency of the
simulation signal. Consequently, from Figure 7d, the SES of the filtered signal can extract distinct
fault features.

As mentioned in this subsection, kurtosis can only characterize the strength of transient impulses,
it cannot differentiate impulse noises and repetitive transient impulses, the SES of the filtered signal
in Figure 6d cannot extract any useful fault features. The SES of the filtered signal in Figure 7d
can extract correct fault features, but it contains smaller fault feature frequency and less harmonics.
The SES of the filtered signal in Figure 5d can extract optimal fault features, which contains clear
fault feature frequency and its harmonics. As a result, the improved correlated kurtosis can overcome
shortcomings of kurtosis-based indexes, and the proposed optimal resonant band demodulation can
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identify the natural resonance frequency of rolling bearing vibration signals. Analysis results of the
proposed method can clearly extract fault features and correctly diagnose rolling bearing faults, that is,
the analysis results verify the validity and superiority of the proposed method.Sensors 2017, 17, 360 14 of 19 
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Figure 7. Analysis results of optimal resonant band demodulation based on spectral kurtosis of the
squared envelope signal. (a) The iterative computation results of the PSO; (b) the filtered signal by
optimal Morlet wavelet filter; (c) the spectrum of the filtered signal; (d) the SES of the filtered signal.

4.2. Experimental Analysis

Vibration data from the Case Western Reserve University (CWRU) Bearing Data Center are
utilized to verify the validity of the proposed method. The bearing test rig of CWRU [27] is shown in
Figure 8, which consists of a two horsepower Reliance Electric motors, a torque transducer/encoder, a
dynamometer and control electronics. Motor bearings are seeded with faults using electro-discharge
machining. Faults ranging from 0.007 inches to 0.021 inches in diameter are introduced separately on
the inner ring. Faulty bearings are then reinstalled into the test rig with motor loads ranging from zero
to three horsepower and motor speeds rotating at a rate between 1797 and 1720 RPM. Vibration data
are collected using accelerometers, which are mounted at the 12 o’clock position at both the drive end
and fan end of the motor housing. Vibration data sets are recorded using a data acquisition system and
the sampling frequency is set to 12 KHz. According to the geometric parameters of the rolling bearing,
the fault feature frequency of inner ring faults can be calculated as fbpfi = 5.415× fr, where fbpfi is
the fault feature frequency and fr is the rotating frequency of the motor drive shaft. Data sampling
conditions and their fault feature frequencies are listed in Table 3. Further details regarding the test
setup can be found on the CWRU Bearing Data Center Website [27].
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Table 3. Data sampling conditions and fault feature frequencies.

No. Fault
Depth/mm

Fault
Diameter/mm

Motor
Load/kW

Rotating
Speed/rpm

Fault Feature
Frequency/Hz

IR007-0

2.7940 0.1778

0 1797 162
IR007-1 0.7355 1772 159
IR007-2 1.4710 1748 157
IR007-3 2.2065 1721 155

IR014-0

2.7940 0.3556

0 1796 162
IR014-1 0.7355 1774 160
IR014-2 1.4710 1752 158
IR014-3 2.2065 1728 156

IR021-0

2.7940 0.5334

0 1797 162
IR021-1 0.7355 1774 160
IR021-2 1.4710 1752 158
IR021-3 2.2065 1728 156

In line with the algorithm flow in Figure 3, three kinds of indexes, the improved correlated
kurtosis (SE-SCK), the kurtosis of squared envelope signal (SE-K) and the spectral kurtosis of the
squared envelope signal (SE-SK), are utilized to identify the optimal resonant frequency band of
CWRU data. According to data sampling conditions and fault feature frequencies, the searching range
of the optimal resonant frequency bandwidth is set as fbpfi ≤ β ≤ 10× fbpfi; the searching range of
the optimal resonant central frequency is set as βmin/2 ≤ fc ≤ fs/2− βmin/2. Initializing the Particle
Swarm Optimization algorithm and performing 30 times’ interactive computation. The identified
resonant central frequency and bandwidth are shown in Figure 9a,b, respectively.

One can learn from Figure 9a,b that for the improved correlated kurtosis, the identified resonant
central frequencies are centering around 3000 Hz, and the identified resonant frequency bandwidth is
centering around 1600 Hz. For the kurtosis of squared envelope signal, the identified resonant central
frequencies are around 5000 Hz, but the identified resonant frequency bandwidth is dispersed. For the
spectral kurtosis of squared envelope signal, the identified resonant central frequencies are around
1500 Hz, and the identified resonant frequency bandwidth is around 160 Hz. Data IR007-0, which
represents the minimal fault level and minimal motor load, and data IR021-3, which represents the
maximal fault level and maximal motor load, are utilized to perform optimal resonant frequency band
demodulation to verify the effectiveness of the identified resonant frequency bands in Figure 9.

Analysis results of IR007-0 and IR021-3 are shown in Figures 10 and 11, respectively.



Sensors 2017, 17, 360 16 of 19
Sensors 2017, 17, 360 16 of 19 

 

 

 

Figure 9. Identification results of optimal resonant frequency bands. (a) The optimal central 
frequencies; (b) the optimal bandwidth. 

Analysis results of IR007-0 and IR021-3 are shown in Figures 10 and 11, respectively. 

 
Figure 10. Analysis results of data IR007-0. (a) The result based on the improved correlated kurtosis; 
(b) the result based on the kurtosis of squared envelope signal; (c) the result based on the spectral 
kurtosis of squared envelope signal. 

SE-SCK SE-SK SE-K

0

2000

4000

6000

C
en

tr
al

 f
re

qu
en

cy
 [

H
z]

 

 

IR
007

-0

IR
007

-1

IR
007

-2

IR
007

-3

IR
014

-0

IR
014

-1

IR
014

-2

IR
014

-3

IR
021

-0

IR
021

-1

IR
021

-2

IR
021

-3

(a)

500

1000

1500

2000

B
an

dw
id

th
 [

H
z]

 

 

IR
007

-0

IR
007

-1

IR
007

-2

IR
007

-3

IR
014

-0

IR
014

-1

IR
014

-2

IR
014

-3

IR
021

-0

IR
021

-1

IR
021

-2

IR
021

-3

(b)

0 100 200 300 400 500 600 700 800
0

0.01
0.02
0.03
0.04
0.05

Frequency [Hz]

A
m

pl
itu

de
 [

m
·s

-2
]

0 100 200 300 400 500 600 700 800
0

1

2
x 10

-5

Frequency [Hz]

A
m

pl
itu

de
 [

m
·s

-2
]

0 100 200 300 400 500 600 700 800
0

1

2
x 10

-5

Frequency [Hz]

A
m

pl
itu

de
 [

m
·s

-2
]

2×f
r

(a)

(b)

(c)

2×f
bpfi

f
bpfi

f
bpfi

Figure 9. Identification results of optimal resonant frequency bands. (a) The optimal central frequencies;
(b) the optimal bandwidth.
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Figure 10. Analysis results of data IR007-0. (a) The result based on the improved correlated kurtosis;
(b) the result based on the kurtosis of squared envelope signal; (c) the result based on the spectral
kurtosis of squared envelope signal.
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Figure 11. Analysis results of data IR021-3. (a) The result based on the improved correlated kurtosis;
(b) the result based on the kurtosis of squared envelope signal; (c) the result based on the spectral
kurtosis of squared envelope signal.

One can learn from Figures 10a and 11a that the identified resonant frequency bands based
on the improved correlated kurtosis can steady extract fault feature frequency and its harmonics.
The SES of optimal resonant frequency band filtered signals contain highlighted fault feature frequency,
the value of fault feature frequency is higher than the value of rotating frequency, and fault feature
frequency and its harmonics are dominant in frequency domain. As a result, the proposed optimal
resonant frequency band demodulation based on the improved correlated kurtosis can clearly diagnose
rolling bearing faults. From Figures 10b and 11b, the identified resonant frequency bands based on
the kurtosis of squared envelope signal can also recognize the fault feature frequency. However, for
data IR007-0, harmonics of the fault feature frequency is too small to capture. For data IR021-3, values
of fault feature frequencies and its harmonics are smaller than the value of rotating frequency, fault
feature frequency and its harmonics are not dominant in frequency dominant. As a result, the optimal
resonant frequency band demodulation based on the kurtosis of squared envelope signal cannot clearly
diagnose rolling bearing faults. From Figures 10c and 11c, the identified resonant frequency bands
based on the spectral kurtosis can hardly recognize the fault feature frequency as for the extreme high
value of rotating frequency. As a result, the optimal resonant frequency band demodulation based on
the spectral kurtosis of squared envelope signal cannot clearly diagnose rolling bearing faults.

As is mentioned above, the proposed optimal resonant frequency band demodulation based on
the improved correlated kurtosis can steady identify the optimal resonant bands, clearly demodulate
fault feature frequencies and their harmonics, and effectively diagnose rolling bearing faults.
Comparison analysis with kurtosis and spectral kurtosis have verified the superiority of the improved
correlated kurtosis.

5. Conclusions

As to the drawbacks of kurtosis in detecting repetitive transient impulses and diagnosing rolling
bearing faults, this manuscript firstly redefines correlated kurtosis based on auto-correlation function
and the kurtosis. Then, it proposes an improved correlated kurtosis on the basis of squared envelope
spectrum, which has been proved more effective in detecting repetitive transient impulses. Regarding
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the improved correlated kurtosis, it can not only characterize the strength of repetitive transient
impulses, but also feature the cyclical occurrence of repetitive transient impulses, that is, the improved
correlated kurtosis is effective in differentiating impulsive noises and repetitive transient impulses,
and in reducing the noise impact on the detection of repetitive transient impulses as opposed to
kurtosis-based indexes. Finally, this manuscript puts forward an optimal resonant band demodulation
method based on improved correlated kurtosis by combining complex Morlet wavelet filter and
the Particle Swarm Optimization algorithm. Analysis of both simulation signals and CWRU data
demonstrate that, the proposed optimal demodulation method based on the improved correlated
kurtosis can be more robust in identifying resonant frequency bands of rolling bearings and more
accurate in demodulating transient fault features of rolling bearing. Analysis of data from experiment
verify the validity and advantage of the proposed method over traditional kurtosis-based indexes.
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