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Abstract: A fire detector is the most important component in a fire alarm system. Herein, we
present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides
as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to
make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing
the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors
(NiO, SnO2, WO3 and In2O3 NCs) is designed. When all the sensors with various metal-oxide NCs
are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl
chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC
(a hot-plate temperature of 200 ◦C), the resistances of the metal-oxide NCs are abruptly changed
and SnO2 NCs show the highest response of 2.1. However, a commercial smoke detector did not
inform any warning. Interestingly, although the NiO NCs are a p-type semiconductor, they show
the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of
350 ◦C). The response time of SnO2 NCs is much faster than that of a commercial smoke detector at
the hot-plate temperature of 350 ◦C. In addition, we investigated the selectivity of our sensors by
analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on
metal-oxide NCs for early fire detection.

Keywords: fire detection; gas sensor; nanostructures

1. Introduction

A fire alarm system is a device to sense one or more products or phenomena resulting from fire
and to immediately warn people through visual and audio appliances [1,2]. One of the most important
components of the fire alarm system is the fire detector because it determines whether a fire occurred
or not. Generally, detectors for heat, smoke, flame, and gas have been widely used as fire detectors.
In particular, gas detectors that sense only specific gaseous compounds such as NO, H2, CO, CO2, HCl,
HCN and volatile organic compounds (VOCs) have attracted great attention since the inhalation of
toxic smoke is the primary cause of death from fires [3,4].
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Polyvinyl chlorides (PVC) is the world’s third-most widely produced synthetic plastic polymer
and it is used in a variety of household products such as packaging, electrical insulation, and interior
furnishings [5–8]. Despite its usefulness, the rapid decomposition with the emission of toxic gases
makes PVC the most dangerous material in a fire environment [9]. Among the thermal decomposition
products of PVC, HCl, CO and VOCs are the major toxicants as sensory and pulmonary irritants which
cause respiratory difficulties or death in the case of inhalation for a long time [10,11]. In addition, since
these gases begin to be gradually released at relatively low temperatures below 200 ◦C, it is possible to
extinguish the fire and escape from the fire by detecting HCl, CO, and VOCs in the initial fire stage.
Hence, various gas sensors, including photoelectric and ionization sensors for detecting HCl, CO,
and VOCs, have been developed [12–16]. However, there are still problems to solve, including mass
production, small size, high response and fast response time, and low detection limit.

Recently, chemoresistive gas sensors based on metal oxides are becoming strong candidates
for high performance gas detectors due to their extraordinary advantages in simple fabrication
methods with high sensitivity and selectivity. The gas-sensing mechanism of the chemoresistive
gas sensor is based on electrical properties, including the resistance, current or voltage change
of the sensing layer. They are induced from the adsorption and desorption of the gases when
specific gases interact with its surface, which is affected by three basic factors, namely the transducer
function, utility factor, and receptor function [17–19]. For these reasons, various chemoresistive
gas sensors with large surface-area-to-volume ratios such as nanotubes [20–22], nanobamboos [23],
nanowalls [24], nanospheres [25,26], and nanocolumns [27] have been studied based on the three
basic factors to enhance the gas-sensing properties. Further, it is well known that highly ordered
one-dimensional nanostructures, which show extremely large surface-to-volume ratios, are the most
promising material platform for a good gas-sensing performance due to the excellent accessibility of
target gases and aggregation-free geometry [19]. Accordingly, our previous studies have investigated
the gas-sensing properties of metal-oxide gas sensors based on one-dimensional nanostructures,
and already demonstrated their high sensing performance in response to various gases, including
C2H5OH, NO2, SO2, H2, C7H8, CH4, CH3COCH3, C6H6, NH3, H2S, and C6H6 compared with plain
films [23,27–29]. However, despite their decent gas-sensing properties, the selectivity of gas sensors
based on metal oxides has remained challenging.

In this paper, in order to identify the feasibility of metal-oxide gas sensors as a fire detector
and to improve the gas-sensing properties such as sensitivity and selectivity, we fabricated multiple
sensors composed of NiO, WO3, SnO2 and In2O3 nanocolumns (NCs). GLAD using an electron beam
evaporator which is a facile and effective method for mass production is employed to synthesize the
highly ordered NiO, WO3, SnO2 and In2O3 NCs. PVC is used as a fire source and placed on a hot-plate
with elevated temperatures to investigate the gas-sensing properties of our sensors. When the hot-plate
temperature reaches 200 ◦C, the PVC is decomposed and emits product gases. The SnO2 NCs firstly
responded to the gases, and their response time was much faster than that of a commercial smoke
detector for fire detection. At the further elevated temperature of 350 ◦C, NiO NCs showed the highest
response compared with other metal-oxide NCs.

2. Experimental Procedure

2.1. Fabrication of Sensors

It is well known that GLAD method leads to a variety of columnar nanostructures such as
nanorods, nanozigzags, and nanohelixes by controlling the angle of vapor flux with the self-shadowing
region [30–32]. In order to make the gas sensors based on metal-oxide NCs, we used as the electron
beam evaporator, as shown in Figure 1a. Before depositing the sensing films, Pt/Ti (150 nm/30 nm
thick) interdigitated electrodes (IDEs) were fabricated on a SiO2/Si substrate (1 µm/550 µm thick)
using photolithography (followed by an etching procedure) and were cleaned in acetone and ethanol
followed by drying in nitrogen gas. Figure 1b,c shows the design of fabricated sample and distances
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between the Pt/Ti IDEs that are commonly used for sensor’s electrodes to obtain reliable electrical
signal (current, resistance, and voltage) are approximately 5 µm with the IDEs area of 0.3 mm × 0.7 mm.
The number of sensors on a 4 in wafer is 732, which shows that our fabrication method is possible
for mass production, as shown in Figure 1d. For measuring the gas-sensing properties, metal-oxide
NCs deposited 4 in SiO2/Si was precisely cut by a dicing saw and placed on the Pt heater-patterned
alumina substrate. Figure 1e shows the thermographic image of Pt heater and the temperature of Pt
heater reached approximately 250 ◦C at an applied bias of 5 V.
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respectively. The morphologies of the fabricated metal-oxide NCs after annealed at 550 °C for 2 h 
were observed by a field emission scanning electron microscope (FESEM: SU-70, Hitachi) using an 
acceleration voltage of 15 kV and a working distance of 10 mm. Figure 2a–f show the top-view and 
cross-sectional FE-SEM images of all samples, respectively. The thicknesses of metal-oxide NCs are 
controlled by thickness monitor based on Quartz crystal (6 MHz Gold). Although we put the exact 
literature value into material density and acoustic impedance, there occurs the deviation of 
thickness. However, metal-oxide NCs with porous structure are successfully formed. In order to 
measure the thickness of metal-oxide NCs, we used the measurement tool in the SEM system. 
Interestingly, despite same deposition angle, thicknesses of the NiO, WO3, SnO2 and In2O3 NCs are 
189.4, 272.44, 301.6 and 335.1 nm, respectively. Also, diameters of the NiO, WO3, SnO2 and In2O3 NCs 
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Figure 1. Schematics of (a) the wafer-scale fabrication procedure for highly sensitive gas sensors
based on metal-oxide NCs; (b) a design of Pt IDEs with sensing area; and (c) metal-oxide NCs grown
I the direction of the vapor flux; (d) Photograph of 4 in wafer fully covered with Pt-IDEs patterns;
(e) Thermographic images showing temperature variation in the Pt-IDEs-patterned substrate at 4 V.
Inset shows photograph of our sensor on micro-heater and its cap.

2.2. Characterization of Metal-Oxide NCs

The density of the metal-oxide NCs influences the accessibility of the target gases. In order to
form the porous structures, we fixed the angle of the substrate at 80◦ and deposited all the films.
The substrate was located 30 cm away from the crucible and shadow masks were used to deposit the
films only on the IDEs patterns. The base pressure and growth rates were 5 × 10−6 Torr and 1 Å·s−1,
respectively. The morphologies of the fabricated metal-oxide NCs after annealed at 550 ◦C for 2 h
were observed by a field emission scanning electron microscope (FESEM: SU-70, Hitachi) using an
acceleration voltage of 15 kV and a working distance of 10 mm. Figure 2a–f show the top-view and
cross-sectional FE-SEM images of all samples, respectively. The thicknesses of metal-oxide NCs are
controlled by thickness monitor based on Quartz crystal (6 MHz Gold). Although we put the exact
literature value into material density and acoustic impedance, there occurs the deviation of thickness.
However, metal-oxide NCs with porous structure are successfully formed. In order to measure the
thickness of metal-oxide NCs, we used the measurement tool in the SEM system. Interestingly, despite
same deposition angle, thicknesses of the NiO, WO3, SnO2 and In2O3 NCs are 189.4, 272.44, 301.6
and 335.1 nm, respectively. Also, diameters of the NiO, WO3, SnO2 and In2O3 NCs were measured
to be ~40 nm, ~57 nm, ~63 nm and ~66 nm, respectively, which can be attributed different diffusion
coefficients of adatoms depending on materials [30,31].
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Figure 2. Plain-view SEM images of the (a) NiO; (b) WO3; (c) SnO2 and (d) In2O3 NCs; (e–h) show
cross-sectional SEM images of (a–d), respectively.

The NCs were characterized by X-ray Diffraction (XRD: DMax2500, Rigaku, Japan) films with 2θ
scan from 20◦ to 80◦, where CuKα radiation (wavelength = 1.5418 Å) was used for the X-ray source
and the fixed incident angle of 2◦. The diffraction peaks indexed as NiO (JCPDS no. 47-1049), WO3

(JCPDS no. 85-2460), SnO2 (JCPDS no. 41-1445), In2O3 (JCPDS no. 06-0416) and substrate (SiO2/Si)
indicate that all the nanocolumns are polycrystalline. From the XRD results, no remarkable difference
in crystallinity is observed, as presented in Figure 3a–c.
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Figure 3. X-ray diffraction pattern of the (a) NiO; (b) WO3; (c) SnO2 and (d) In2O3.

2.3. Gas-Sensing Measurement of Metal-Oxide NCs and Fire Detection Method

A diagram and a flow chart of the fire detection module are shown in Figure 4. The module
contains analog signal conditioning circuitry which is composed of four different gas sensors, their
potentiometric circuits, a 12-bit analog-to-digital converter (ADC), a microcontroller unit (MCU) and
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a communication unit such as Ethernet or wireless local area network (WLAN). The signal conditioning
circuitry plays a role of data acquisition in measuring the output of sensors at 1 s intervals for further
processing. The MCU performs pre-signal processing and makes a decision on whether a fire occurred
or not. The fire detection module is a sensor node which integrates sensors and a communication unit.
This is a base unit of surveillance sensor network system for the whole house. For the fire decision, the
measured sensor data are preprocessed using a low pass filter and a normalization operation, and then
decision making is performed as described in Figure 4b. The interface circuitry measures voltage level of
each sensor to obtain changes of the sensor resistance (RS). This typically consists of a simple voltage
divider. Because the measured magnitude is the output voltage (VOUT[i]), we can easily transform the
metal-oxide resistance changes RS[i] by solving Equation (1).

RS[i] =
RL × (VDD −VOUT[i])

VOUT[i]
, (1)

where VDD is the circuit voltage and RL is the load resistance. The obtained data have temporal noise
due to the electronics of the detection module. To suppress noise, the sensor data are filtered using
an Exponential Weighted Moving Average (EWMA) filter [33]. This filter is suitable for time series
data and the data can be calculated recursively using the following equations:

s[0] = x[0]
s[n] = α · s[n− 1] + (1− α) · x[n], ∀n ≥ 1,

(2)

where x[0], x[n] is the sensor resistance, s[0], . . . , s[n] is the filtered sensor resistance and α is
a smoothing factor. The factor has to set a value between 0 and 1. Values which are close to 1 results
in an aggressive smoothing while values which are close to 0 nearly preserve the original data.
The metal-oxide gas sensors have a different dynamic range due to differences in the sensor material
and structure. When highly sensitive sensors respond to target gases, their resistance drops to 1/10,000
from 1/1000 compared to their resistance in air ambient. Thus, before decision making process, we
convert the dynamic ranges of the sensors comparable by unity-based normalized data of each sensor
to the interval [0,1] using the following linear transformation [34,35]:

s′[i] =
s[i]− Smin

Smax − Smin
, 0 ≤ i ≤ n, (3)

where s′[i] is the normalized sensor response and Smin, Smax are minimum, maximum value of filtered
data among s[0], . . . , s[n], respectively. In most cases, Smax indicates baseline sensor resistance where
sensor is in air ambient and Smin indicates sensor resistance exposed to maximum concentration of
toxic gases. However, in a fire accident, the sensor module does not know the maximum concentration
of generated gases because the concentration of the gases varies on various conditions such as burning
material, building structure, etc. And as explained before, Smin is very small value compared to Smax.
So Smin has minor influence in Equation (3). Thus, the equation is approximated to the following equations:

s′[i] =
s[i]

Smax
=

s[i]
1
N ·∑

HeaterOn
k=HeaterOn−Nsec s[k]

, ∀i ≥ N. (4)

This equation also transforms data of other type sensors to normalized data by linear scaling.
That means that performance evaluation with other sensors is possible. A decision making is a process
of determining the fire using the change of the signal. The decision making of this module uses a simple
threshold decision method. Although there are many sophisticated decision methods, they use the
characteristics of a sensor itself to improve their performance. Thus, instead of these methods, the
threshold decision method is used for decision making as a general performance evaluation of sensors.
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sensors; (b) flow chart of the decision process.

3. Results and Discussion

3.1. Gas Response of Metal-Oxide NCs as a Function of the Hot-Plate Temperature

In order to investigate the gas-sensing properties of our sensors, we prepared a hot-plate with 5 g
PVC and a sensor module in glass boxes (90 cm × 45 cm × 45 cm), as shown in Figure 5a,b. Generally,
the gas-sensing properties of metal oxides are affected by the amount of ionized oxygen species (O2

−,
O−, O2−) on the surface, and we fixed the operating temperature of our sensors at approximately
250 ◦C under consideration for the adsorption of oxygen species and power consumption, as shown
in Figure 1e [36]. Firstly, we increased the hot-plate temperature to observe the decomposition of
the PVC. Figure 5c–f shows the photographs of PVC deformation at different hot-plate temperatures.
For hot-plate temperatures of 50 ◦C and 100 ◦C, there was no change in the PVC. However, when the
hot-plate temperature reached 200 ◦C, the PVC started to melt and it emitted smoke at a hot-plate
temperature at 350 ◦C. Figure 6a–d shows the real-time response curves as a function of the hot-plate
temperatures. To obtain thermal stability, all samples were aged for 30 min after each sensing
measurement. Upon exposure to air ambient (off-state of hot-plate), the base resistances of SnO2, NiO,
WO3, and In2O3 were approximately 3 × 104, 1 × 105, 1 × 107 and 3 × 103 Ω, respectively. There were
no resistance changes in all samples at hot-plate temperatures of 50 ◦C and 100 ◦C. However, when
the PVC was exposed to a hot-plate temperature of 200 ◦C, the resistances of samples were slightly
changed, which indicates that the PVC emitted gases such as HCl, CO, VOCs and various compounds
due to decomposition by applied heat. In addition, the shape of the response curves shows that SnO2,
WO3, and In2O3 are n-type semiconductors and NiO is a p-type semiconductor, respectively, which
means the reducing gases such as CO and VOCs were mainly emitted from the PVC. Upon exposure
to a hot-plate temperature of 350 ◦C, the resistance changes of the samples were gradually increased
and saturated. Figure 6e,f shows the responses of each sample at hot-plate temperatures of 200 ◦C and
350 ◦C. The response is defined as RHF/RHO for n-type semiconductors and RHO/RHF for the p-type
semiconductor, where RHF and RHO denote resistances in the off-state and on-state of the hot-plate,
respectively. The responses of NiO, WO3, In2O3 and SnO2 were 1.2, 0.5, 2.1 and 1.1 at the hot-plate
temperature of 200 ◦C, respectively. At the hot-plate temperature of 350 ◦C, the responses of NiO,
WO3, In2O3 and SnO2 were 557.1, 4.0, 21.0 and 294.9, respectively.
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Figure 5. Photographs of test environment and results; (a) a chamber for gas-sensing measurement
and (b) the signal processing circuits with the integrated sensors; (c–f) PVC deformation at varying
hot-plate temperatures (50 ◦C, 100 ◦C, 200 ◦C and 350 ◦C).
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We infer that these results are attributed to the detection ranges and the selectivity to the target
gases of all the materials [17]. Firstly, the correlation between the response and the gas concentration can
be understood with the Langmuir adsorption isotherm theory of dissociated gas [37]. When emitted
gas molecules react with pre-absorbed oxygen, the variation of the resistance changes might be
proportional to the fraction (θ) of the active site that is covered by the pre-absorbed oxygen and linearly
affects the effective carrier concentration in the sensing material. Therefore, the resistance change of
a sensor is proportional to θ. The adsorption rate of emitted gases is κ1 p(1− θ)2 and the desorption
rate is κ2θ2, where κ1 and κ2 are the adsorption and desorption constant, respectively, and p represents
the partial pressure of the emitted gases from the PVC. When the resistance reaches equilibrium, the
adsorption rate equals the desorption rate:

κ1 p(1− θ)2 = κ2θ2 , or (5)

θ/(1− θ) = (κ1/κ2)
1/2 p1/2 (6)

At low coverage of the emitted gases (θ � 1), the resistance changes, is expected to be proportional
to the square root of the emitted gas concentration, and eventually becomes partially saturated when θ

is close to 1. Thus, the response cannot be highly enhanced for partial saturation state as increase the
emitted gas concentration.

∆R/R0 ∝ θ ≈ (κ1/κ2)
1/2 p1/2 (7)

In this case, the (κ1/κ2)
1/2 value determines the slope of the response. Since many other papers

show that SnO2 has a superior sensing property to NiO, we can infer that [38–40]:

[(κ1/κ2)
1/2]SnO2

> [(κ1/κ2)
1/2]NiO (8)

From the results, we can explain that SnO2 NCs were saturated earlier than NiO, and had
an enhanced adsorption and catalytic capability towards the emitted gases from the PVC. Therefore,
as the gas concentration increased, it seems that the active areas of the SnO2 surface were partially
saturated. In contrast, the response of NiO NCs showed a constant increase up to 350 ◦C. Hence, at the
hot-plate temperature of 350 ◦C, NiO NCs showed the highest response value.

Secondly, it is well-known that the response of p-type semiconductors is as low as the square root
of that of n-type semiconductors when structural factors are equal, and a low response can yield to poor
selectivity of various gases [41]. Interestingly, the response of NiO NCs at the hot-plate temperature
of 200 ◦C was higher than that of WO3 and In2O3 NCs. Furthermore, NiO NCs exhibited the highest
response at the hot-plate temperature of 350 ◦C. To the best of our knowledge, there are no reports
that the responses of sensors based on p-type metal oxides are higher than those of sensors based on
n-type metal oxides. From the results, we carefully inferred that the PVC emits the reducing gases
which dominantly react with NiO NCs.

3.2. Early Fire Detection of Metal-Oxide NC–Based Gas Sensor

Figure 7 shows the normalized transient response curves of the metal-oxide gas sensors and
a commercial smoke detector (NIS-05A, NEMOTO) at different hot-plate temperatures. The threshold
level (Ref.) was set to 0.5, represented by a gray line. Upon exposure to air ambient, the baselines of
SnO2, NiO, WO3, In2O3 NCs and the smoke sensor were approximately 1. When the PVC was exposed
to a hot-plate temperature of 200 ◦C at a time transient of 750 s, then the normalized transient response
of the samples and the smoke sensor changed, as shown in Figure 7a. The response of SnO2 NCs met
the threshold at 1007 s, while other responses did not meet the threshold. When the PVC was exposed
to a hot-plate temperature of 350 ◦C at a time transient of 725 s, then the normalized transient response
of the samples and the smoke sensor drastically changed, as shown in Figure 7b. The response of
SnO2, NiO, WO3, In2O3 NCs and the smoke sensor met the threshold at 948, 1105, 1029, 997 and 1039 s,
respectively. The metal-oxide gas sensors, except the NiO NCs, reacted faster than the smoke sensor.
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Further, the difference in the transient response between the SnO2 NCs and the smoke sensor from
temperature elevation was 91 s. These results also show that the transient response of the NiO NCs
continued their reaction to the gases until saturation at approximately 1270 s, which means that the
fire can be more quickly detected by using SnO2 NCs than the smoke sensor, and the fire detection
module using the NiO NCs can measure a higher concentration of generated gas than the others since
they can maintain their reaction for a longer time.
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4. Conclusions

Highly ordered metal-oxide NCs were fabricated using a facile and effective method based on
GLAD. Upon exposure to a fire ambient, their sensing behaviors were significantly different depending
on the sensing materials. All sensors started to react with the gases emitted from the PVC at a hot-plate
temperature of 200 ◦C. The response of SnO2 NCs was 2.1, which was the highest response among the
four different sensors at 200 ◦C. At the hot-plate temperature of 350 ◦C, the PVC emitted smoke and
the response of all samples dramatically increased. Interestingly, the response of NiO NCs was two
times greater than that of SnO2 NCs. Moreover, the response time of SnO2 NCs was much faster than
that of the smoke sensor at the hot-plate temperature of 350 ◦C. Although we did not know the exact
concentrations and types of gases emitted from the PVC, these results indicate that NiO NCs are more
effective for detecting the high concentration of the gases emitted from the PVC at high temperatures
and SnO2 NCs are able to detect fire early. The excellent gas-sensing properties of metal-oxide NCs
could be explained by two effects. Firstly, the large surface-to-volume ratios of metal-oxide NCs
enhanced the reaction site of the target gases, leading to a high response. Secondly, the optimal density
of metal-oxide NCs improved the accessibility of the target gases, which is related to the response time.
Consequently, we believe that our sensors are very promising for early fire detection or detection at
various stages of fire. In the future, if multi-sensors sensitive to other fire factors are applied to the
proposed system, it can immediately respond to diverse fire risks.
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41. Hübner, M.; Simion, C.E.; Tomescu-Stǎnoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on
CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [CrossRef]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C5TA03293H
http://dx.doi.org/10.1021/acs.nanolett.6b01713
http://www.ncbi.nlm.nih.gov/pubmed/27304752
http://dx.doi.org/10.1016/j.snb.2009.04.026
http://dx.doi.org/10.1002/adfm.201202332
http://dx.doi.org/10.1021/am402456s
http://www.ncbi.nlm.nih.gov/pubmed/24090094
http://dx.doi.org/10.1021/acsami.6b03256
http://www.ncbi.nlm.nih.gov/pubmed/27456161
http://dx.doi.org/10.1038/srep00588
http://www.ncbi.nlm.nih.gov/pubmed/22905319
http://dx.doi.org/10.1116/1.2764082
http://dx.doi.org/10.1116/1.580562
http://dx.doi.org/10.1116/1.590019
http://dx.doi.org/10.3390/s121216404
http://www.ncbi.nlm.nih.gov/pubmed/23443385
http://dx.doi.org/10.3390/s130302967
http://www.ncbi.nlm.nih.gov/pubmed/23529119
http://dx.doi.org/10.3390/s151127804
http://www.ncbi.nlm.nih.gov/pubmed/26540056
http://dx.doi.org/10.1016/0039-6028(79)90411-4
http://dx.doi.org/10.1002/adma.200602975
http://dx.doi.org/10.5369/JSST.2016.25.3.184
http://dx.doi.org/10.3390/s100302088
http://www.ncbi.nlm.nih.gov/pubmed/22294916
http://dx.doi.org/10.1002/adfm.201101154
http://dx.doi.org/10.1016/j.snb.2010.10.046
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Procedure 
	Fabrication of Sensors 
	Characterization of Metal-Oxide NCs 
	Gas-Sensing Measurement of Metal-Oxide NCs and Fire Detection Method 

	Results and Discussion 
	Gas Response of Metal-Oxide NCs as a Function of the Hot-Plate Temperature 
	Early Fire Detection of Metal-Oxide NC–Based Gas Sensor 

	Conclusions 

