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Abstract: Recently, data privacy in wireless sensor networks (WSNs) has been paid increased
attention. The characteristics of WSNs determine that users’ queries are mainly aggregation
queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy
preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is
proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for
anonymous communication and uses homomorphic encryption technique to add noise to the data
easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the
existing privacy-preserving aggregation methods can only deal with sum() queries. For processing
sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of
privacy preservation and communication efficiency, which can be proved by theoretical analysis
and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy
preservation and has low communication overhead.
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1. Introduction

A Wireless Sensor Network [1–4] (WSN) comprises a large number of sensor nodes deployed in
the monitoring area. Each sensor node is usually a battery-powered tiny device, which is responsible
for sampling some attributes like temperature, humidity, pressure, luminous intensity, voice and
image from surrounding area. Sensor nodes use simple radio module to communicate with each
other. The nodes’ transmitting range is very limited. After being deployed, all the sensor nodes are
self-organized as an Ad-Hoc network. Data exchange between two sensor nodes usually needs to
relayed by many intermediate nodes. There is a data processing/storge center called sink or base
station, which is responsible for receiving users’ queries, distributing queries to the relating sensor
nodes, gathering data from the network and return results to users. Sensor nodes are usually deployed
where personnel are difficult to reach, and it is impractical to exchange batteries for them, so how to
save energy to prolong the life time of each sensor node becomes the main optimizing goal of WSNs.
Research results [5,6] show that among all the operations of sensor nodes, wireless communication is
the dominating factor for energy consumption. Thus, in-network query processing is necessary for
sake of communication efficiency.

In recent years, data privacy of WSNs gets more and more attention [7–10]. Many reasons make
adversaries interested about some nodes’ data in a WSN. For example, in a WSN deployed in the battle
filed, our enemies want to intercept the data of reporting enemies’ invasion; Pharmaceutical advertisers
want to get the data of people’s physiological indicators collected from the sensors worn by users;
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To know the location of wildlife, poachers want to access the data of sensor nodes deployed in the wild
for wildlife monitoring. Such application scenarios have a strong need for data privacy protection [11].

In most applications of WSNs, users are more interested in the overall situation of the data of
the whole network rather than the data of a certain node. Therefore, the queries issued by users are
mainly aggregation queries, e.g., query the average of the temperature sampled by all the nodes or
query the minimum value of the humidity sampled by the nodes in a given area. Characteristics of
WSNs determine that the processing of aggregation queries should be done in-network rather than by
the sink collecting the raw data of each node. Some privacy-sensitive application scenarios require us
to consider data privacy in addition to efficiency while dealing with aggregation queries. Data privacy
in WSNs means that the data of any node can not be obtained by the nodes other than the sink.

So far, all the existing data aggregation schemes [12–23] preserving data privacy in WSNs have
some apparent drawbacks. The data privacy of some of these schemes is easily attacked, some of these
schemes have high communication overhead and low efficiency, and all of these schemes can not deal
with min()/max() queries. In this paper, we propose a Ring-based Privacy-Preserving Aggregation
Scheme (RiPPAS). RiPPAS performs aggregation through a pre-established ring structure. It uses a
pseudonym mechanism for anonymous communication and uses a homomorphic encryption technique
to add noise to the data that can easily be disclosed. Compared with the existing schemes, RiPPAS has
three advantages: (1) It provides robust data privacy protection; (2) It is very communication-efficient;
(3) It can handle all kinds of aggregation queries including min()/max() queries. Thus, the contribution
of this paper comprises:

• Designing a ring structure used for data collection and aggregation.
• Proposing a ring-based privacy-preserving aggregation scheme (RiPPAS). RiPPAS provides robust

privacy protection and has high efficiency. Furthermore, RiPPAS can deal with all kinds of
aggregation queries.

The rest of the paper is organized as follows. Section 2 introduces the related works in this area;
Section 3 gives some necessary preliminaries; Section 4 describes the ring structure used by RiPPAS;
Section 5 and Section 6 gives details as to how RiPPAS handles sum() queries and min()/max() queries
respectively. Section 7 gives the theoretical analysis and simulation results; Section 8 concludes the
whole paper.

2. Related Works

Reference [24] gives a sketch of data aggregation techniques in WSNs. We focus on data privacy
of WSNs in this paper. A survey of privacy preservation in WSNs is given by [19]. There are some
works [12–22] that focus on processing aggregation queries with privacy preservation in WSNs.
Reference [23] designs a middleware between the network layer and MAC layer to automatically
aggregate the data from the network layer.

Reference [18] proposes two aggregation methods CPDA and SMART with privacy preservation,
both of which can only deal with additive aggregation function sum(). Other aggregation queries
like count(), average() and variance() can be converted to sum() queries. Both of these two methods
assume that a pair-wise key model has been pre-established, i.e., each pair of neighboring nodes shares
an independent key for encrypting/decrypting messages between them. Therefore, any compromised
node has no effect on the pair-wise keys shared by the other pairs of nodes. CPDA is based on a
cluster structure. After building clusters, each node generates some random numbers locally, then
gets some values calculated by a series of network-wide shared functions which take its local raw
data and the generated random numbers as arguments. One of these values remains local, and other
values are distributed within the cluster. Each node adds all the received values to its local value and
sends the additive result to the cluster head. After the cluster head receives the results from all cluster
members, it can get the sum of the private data of all cluster members by solving a linear equation.
The intra-cluster information exchange process does not reveal the raw data of any node. Next, all the
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cluster heads are organized as a tree rooted at the sink. The aggregation of all cluster heads’ results are
performed along the tree in a bottom-up manner. SMART is a tree-based aggregation method and has
three steps. For initialization, all the nodes are organized as a spanning tree rooted at the sink. In the
first step, each node divides its private data into J pieces, stores one of these pieces locally, then sends
the other J − 1 pieces randomly to different h-hop neighbors (Normally set h = 1). In the second step,
each node adds all the received pieces to the locally stored piece. In the third step, in a bottom-up
manner along the spanning tree, each node aggregates its local data and all the data from its children,
then sends the result to its parent. Both CPDA and SMART methods need to exchange a large amount
of data in the entire network to ensure data privacy, so their communication efficiency is not high.
In addition, these two methods can not handle min()/max() queries.

In [12], a method named HEEPP similar to the SMART method is proposed to handle sum()

queries while preserving data privacy. Unlike the SMART method, HEEPP only lets the leaf nodes
in the spanning tree split their private data, while the intermediate nodes do not need to split their
data. Each leaf node divides its private data into R pieces, and sends R− 1 pieces to different h-hop
neighbors, where R is a random integer in [1, K] and K is the maximum number of divided pieces set
by users. HEEPP assumes that any two neighboring nodes share an independent key for point-to-point
secure communication. Like the SMART method, HEEPP also needs to exchange a large amount of
data in the network, so it has a relatively high communication overhead too. Also, HEEPP cannot
handle min()/max() queries.

By improving the SMART method, Reference [17] also proposes a method named PEPDA to
process sum() queries with privacy preservation. PEPDA improves the SMART methods in two
aspects. In the first aspect, PEPPA splits the private data of each node into items of a power series
(the former J terms). The power series is set to ensure that the first piece has the largest proportion in
the private data, and the following pieces have gradually decreased proportion in the private data.
Each node saves the first piece locally and sends the other J − 1 pieces to different neighbors. If the
data sent to a neighbor is lost, it will not affect the aggregation accuracy too much. In the second aspect,
if a node does not have J− 1 different neighbors, it performs no data division and sends its private data
directly to its parent. PEPPA also assumes that any two neighboring nodes share an independent key.
As a result of the need for massive data exchange in the network, PEPDA’s communication efficiency
is also relatively low. PEPDA can not handle min()/max() queries either.

Similar to the CPDA method, a method named PAPF is proposed in [20,21] for handling sum()

queries based on cluster structure. PAPF divides each cluster into multiple p-classes such that the size
of each p-class meets some certain restrictions. Each node generates a series of random numbers and
exchanges their random numbers within its p-class. Finally, each node constructs an µ-th order function
named p-function. The construction process guarantees that the sum of the j-th (1 ≤ j ≤ µ) order
coefficient of all the p-functions in a p-class is equal to zero. Next, each node adds a noise calculated by
its p-function to its private data, and sends the distorted data to the cluster head. The characteristics of
the p-function ensure that the sum of all the distorted data in a p-class is equal to sum of all the private
data. PAPF also assumes that any two neighboring nodes share an independent key, so point-to-point
data transmission is secure. PAPF also has low communication efficiency, because it requires a lot of
data exchange in the network. PAPF can not handle min()/max() queries either.

Based on homomorphic encryption technique, Reference [14,15] propose an approach for handling
sum() queries with privacy preservation. The proposed method completes aggregation along
a spanning tree rooted at the sink in a bottom-up manner. Each node vi holds a key Ki shared
with the sink only. Each vi encrypts its private data with function ci = Enc(mi, Ki) = mi + Ki(modM),
where mi is vi’s private data and ci is the generated ciphertext. After receiving an intermediate node
sum (modular sum) from all its children, all the received ciphertext and its locally generated ciphertext,
then sends the result to its parent. Finally, the sink gets the result cagg = ∑ ci(modM), where ∑ ci
is the sum of the ciphertext of all the nodes participating in the aggregation. Next, the sink applies
function magg = Dec(cagg, k) = cagg − k(modM) to decrypt the data. Where k = ∑ Ki is the sum of
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the keys of all the nodes participating in the aggregation. The decrypted value magg is exactly equal
to the sum of the private data of each node. In order to ensure the correctness of the calculation,
M is set to a number larger than the sum of all nodes’ private data. This method does not require
that the communication between any pair of nodes is encrypted with an independent key. However,
to let the sink know which nodes are involved in the aggregation (so the sink can decrypt the data
correctly), each aggregation value needs to be appended with the IDs of all the nodes participating
in the aggregation. If there are a large number of nodes in the network, this additional information
will involve a serious communication burden. The proposed method is only suitable for handling
sum() queries.

Reference [22] also gives a privacy-preserving aggregation technique based on homomorphic
encryption. The proposed method is both additively homomorphic and multiplicatively homomorphic,
i.e., it can be used for finding the sum or the product of the data of multiple nodes. As a result of
taking into account multiplicatively homomorphic situations, the encryption techniques are more
complicated than the ones in [14,15], and the ciphertext sent by each node is much longer. From the
perspective of data aggregation, the extra computation and communication costs are not worth it, since
finding the product of data from some nodes is not a typical aggregation query and is rarely issued
by users.

Reference [13] proposes a scheme to alleviate the network congestion by data aggregation.
When a node’s communication bandwidth is less than the rate of generating data, the node will
save the data in its buffer and upload it when the network is idle. When the data in its buffer is about
to overflow, the node will aggregate all the data in its buffer and send out the aggregation value. In the
process of data aggregation, the homomorphic encryption method proposed in [14,15] is used. Some
additional information is added to each packet for integrity verification. This additional information
makes the communication cost of the proposed method higher than that of the method in [14,15].
Furthermore, the proposed method is only suitable for handling sum() queries.

In summary, all the existing methods have two shortcomings: (1) low communication efficiency;
(2) can not handle min()/max() queries.

3. Preliminaries

Before sensor nodes are deployed, the sink assigns each node vi: (1) a fixed ID (also denoted by vi);
(2) an independent key Ki; (3) m pseudonyms {PN1

i , PN2
i , . . . , PNm

i }; (4) an identical function R(K, t).
Different nodes do not have any pseudonyms in common. R(k, t) is a function taking K and t as seeds
to generate a pseudo random number, where K is the key assigned to the node and t is the query’s
sequence number. The notations we use in this paper and their meanings can be found in Table 1.
The sink uses a table to record the keys and pseudonyms assigned to each node. At regular intervals,
the sink reassigns pseudonyms for all nodes. The new pseudonyms assigned to vi are encrypted with
Ki. The table maintained by the sink is as shown in Table 2. The information of each node is recorded
by a tuple in the table. After the ring structure used for data collection and aggregation has just been
established, each node vi encrypts its location with Ki and uploads it to the sink. The sink decrypts vi’s
location using Ki, and saves its location into the table.

We assume that all the nodes use one public channel to communicate with each other. All the
links in the given network are bidirectional, i.e., if v can receive the signal from u then u can receive
the signal from v. After the nodes are deployed, each pair of neighboring nodes share an independent
key to encrypt/decrypt the messages between them. Refer to [25–27] for how to generate pairwise
shared keys amongst neighboring nodes. It should be noted that when building ring structure and
processing min()/max() queries, there is no need to encrypt point-to-point communications.
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Table 1. Notations table.

Notation Explanation

n number of sensor nodes
vi the i-th sensor node, also denotes its ID
Ki key shared by vi and the sink

PN1
i , PN2

i , . . . , PNm
i m pseudonyms the sink assign to vi

R(K, t) function each node use to generate pseudo random number
t sequence number of query

level(vi) vi’s level in the ring
Pred(vi) = {vj, vk, . . . } set of vi’s predecessors in the ring

SN(vi) number of vi’s successors in the ring
hear(vi) number of packets vi hears from its successors

di private data of vi
M a constant satisfying M ≥ ∑n

i=1 di
ci noisy data integrated by vi

NLi set of the pseudonyms of the nodes who add noise into ci
maxi vi’s local maximum value

sourcei source of maxi in form of pseudonym
qb probability that a link is broken

Pv(qb) probability that node v’s data is disclosed under the setting of qb

Table 2. Table maintained by the sink.

Node ID Location Key Pseudonym 1 . . . Pseudonym m

We assume that the goal of adversaries is to get the private data of some certain nodes. Adversaries
may attack data privacy in two ways: eavesdropping on the communication channel or capturing
nodes. Adversaries launches eavesdropping attack by deploying some wireless communication devices
in the network area which can eavesdropping on nearby data transmissions. If data transmission is
done using cryptographic encryption techniques, adversaries can not get the real content of the data
only through eavesdropping. Adversaries launch a capturing attack by capturing some sensor nodes
in the network physically. Once adversaries capture a node, they get the data of the node and all the
keys maintained by the node for encryption/decryption, so the node becomes a compromised node
and adversaries can decrypt all the packets sent to the node. Furthermore, adversaries can launch a
collusion attack by gathering all the data from the eavesdropping devices and the compromised nodes.
Moreover, we assume that adversaries can not approximate the sender’s location by measuring signal
strength in a collusive way.

4. Ring Structure

In this section, we describe the ring structure we used for data aggregation.

4.1. Building Ring Structure

We want to build a sink-centered ring structure as shown in Figure 1, which is similar to the
sink-rooted tree structure. The main difference between the ring and tree is that a node in a tree has
only one parent whereas a node in a ring can have more than one predecessor (equivalent to the parent
in the tree). In the ring structure, nodes are organized in levels. The level of the sink is 0 and the level
of the sink’s direct neighbor is 1. The farther a node is from the sink, the higher level the node is.
We use level(vi) to denote vi’s level. vi has one or more predecessors in level(vi)− 1, each of which
can forward the messages that vi sends to the sink. We use Pred(vi) = {vj, vk, . . . } to denote the set of
vi’s predecessors. vi has some successors in level(vi) + 1 and vi can forward the messages they send to
the sink. vi uses variable SN(vi) to record the number of its successors. A node vi with no successors
(i.e., SN(vi) = 0) is called an outer node. A node who has successors is called an inner node.
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sink

...
level i-1

level i

level i+1

level 0

Figure 1. Ring Structure.

After all the nodes are deployed, the sink broadcasts a BUILD-RING message < sink, 0 >

including its ID and level to initialize the process of building a ring. When a node vi receives
a BUILD-RING message (let the message be < vj, level(vj) >) for the first time, vi sets its own level
to level(vi) = level(vj) + 1 and records vj as one of its predecessors, then broadcasts a BUILD-RING
message < vi, level(vi) >. While vi receives another BUILD-RING message < vk, level(vk) > after
broadcasting BUILD-RING message, it checks level(vk). If level(vk) = level(vi)− 1, then vi records
vk as one of its predecessors. If level(vk) = level(vi) + 1, it means that vk is vi’s successor, so vi adds
1 to its SN(vi). After the ring is established, each node vi knows: (1) its level level(vi); (2) the set of its
predecessors Pred(vi); (3) the number of its successors SN(vi). The detail pseudo-codes for building
the ring are given by Algorithm 1.

Algorithm 1: Building Ring Structure
Input: a sensor network
Output: a ring structure centered at the sink
/* Codes for each node vi 6= thesink. The process starts with the sink

broadcasting a BUILD-RING message < sink, 0 >. */
1 while vi receives a BUILD-RING message < vj, level(vj) > do
2 if level(vi) = NULL then
3 level(vi)← level(vj) + 1;
4 Pred(vi)← {vj};
5 Broadcast a BUILD-RING message < vi, level(vi) >;
6 else
7 if level(vj) = level(vi)− 1 then
8 Pred(vi)← Pred(vi) ∪ {vj};
9 else if level(vj) = level(vi) + 1 then

10 SN(vi)← SN(vi) + 1;

4.2. Data Collection/Aggregation in the Ring

The built-up ring structure can be used for data collection/aggregation of the whole network.
The header of each packet used for data collection/aggregation contains the following information:
(1) the receiver’s ID (which can be a broadcast address); (2) the sender’s ID; (3) the sender’s
level. The header of a packet is always being transmitted in plaintext. The process of data
collection/aggregation is as follows.

If node vi is an outer node, i.e., SN(vi) = 0, then vi sends its data to its predecessor(s). There are
two ways to send the data:

• Real-name ciphertext unicasting. vi randomly pick a predecessor vj from Pred(vi), encrypts its
data with the key shared by vi and vj, and sends out a packet with the encrypted data in its data
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field. The header of the packet is set as follows: the receiver’s ID is set to vj; the sender’s ID is
set to vi; the sender’s level is set to level(vi). After receiving this packet, by reading the packet’s
header, vj can know that the sender is vi, so vj uses a corresponding key to decrypt the data field
of the packet and gets vi’s data.

• Anonymous plaintext broadcasting. vi constructs a packet and puts its data in the packet’s
data field in plaintext, then broadcasts the packet. The header of the packet is set as follows:
the receiver’s ID is set to the broadcast address; the sender’s ID is set to blank; the sender’s
level is set to level(vi). In this way, every node receiving the packet is able to obtain vi’s data
but has no way of distinguishing the packet’s sender. As stated in [28,29], we assume that the
sensor nodes have ability to obfuscate address fields in their Medium Access Control (MAC) layer
header, so that a compromised node can not know the sender’s identity by parsing a packet’s
MAC layer header.

While node vi hears a packet sent from level(vi) + 1, no matter the receiver is vi or not, vi adds
1 to its hear(vi), where hear(vi) indicates the number of the packets vi hears from its successors in the
current round of collection/aggregation. The characteristics of radio transmission determine that the
nature of all data transmission is broadcasting. Therefore, even if a packet’s destination address is not
vi, as long as vi is in the sender’s communication range, it can hear the packet and know the sender’s
level by reading packet header. If hear(vi) = SN(vi), it means that all the successors of vi have sent
data in this round of data collection/aggregation, so vi integrates all the received data (decrypts first if
it is encrypted) into a packet and sends the packet to its predecessor(s) by either real-name ciphertext
unicasting or anonymous plaintext broadcasting.

In the process of collection/aggregation, the failures or compromises of nodes may cause that
some intermediate nodes keep waiting for hearing from its successors. For this reason, we set a timer
for each node. The duration of each node’s timer is determined by the size of the network and the
node’s level. When the timer expires, no matter if a node has heard from all its successors or not, it will
upload its local result anyway.

4.3. Advantages of Ring-Based Collection/Aggregation

Compared with tree-based collection/aggregation, ring-based collection/aggregation has
an important advantage such that the data of each node goes to the sink along unfixed path. Even if
adversaries can get the data in some packets, it is very difficult for them to trace the sources of the data.
Here, we also stipulate that each node vi refuses to answer any query about a packet’s source unless vi
receives a message from the sink encrypted with Ki.

Suppose that we collect data by real-name ciphertext unicasting. In a tree structure, if adversaries
capture a node vi, they will be able to parse the data of all the nodes in the subtree rooted at vi.
Since the subtree rooted at vi is fixed, adversaries can perform long-term behavior analysis for the
nodes in the subtree. In a ring structure, even if adversaries capture node vi, because vi receives data
from an uncertain set of nodes, it is very hard for the adversaries to perform a long time analysis for
some nodes.

When processing a min()/max() queries, each data is appended with a pseudonym to indicate
the source of the data. Ring structure is very beneficial to the designed pseudonym mechanism.
Suppose that adversaries have captured a node vi. If we use tree structure for aggregation, since the
sub-tree rooted at vj is fixed, by listening messages for a long time, vi can easily associate a node in
the subtree with a set of pseudonyms, especially when there are fewer nodes in the subtree. If we use
ring structure for aggregation, it is very hard for adversaries to know the corresponding relationship
between pseudonyms and the nodes.

As with the tree structure, the ring structure does not require synchronization in the network.
The process of data collection/aggregation is entirely message-driven.
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5. Handling sum() Queries

In this section, we describe how RiPPAS handles sum() queries. Some other types of queries
like count(), average() and variance() can be converted to sum() queries [14,15]. While performing
aggregation in the ring structure, RiPPAS uses homomorphic encryption technique to add noise
to outer nodes’ private data. Let di denote the private data generated by node vi in this round of
aggregation. The procedure for RiPPAS handling sum() queries is given by Algorithm 2.

Algorithm 2: Dealing with sum() queries
Input: a sensor network with ring structure established
Output: the sum of all nodes’ data

1 Codes for vi 6= sink :
2 if SN(vi) = 0 then
3 ci ← di + R(Ki, t) (mod M);
4 Randomly pick PNx

i from {PN1
i , . . . , PNm

i };
5 NLi ← {PNx

i };
6 Randomly pick vh from Pred(vi);
7 Send < ci, NLi > to vh by real-name ciphertext unicasting;
8 else
9 ci ← di;

10 NLi ← ∅;
11 while hears a packet P sent by vj do
12 if level(vj) = level(vi) + 1 then
13 hear(vi)← hear(vi) + 1;
14 if P is sent to vi then
15 Decrypt P to get < cj, NLj >;
16 ci ← ci + cj (mod M);
17 NLi ← NLi ∪ NLj;

18 if hear(vi) = SN(vi) then
19 Randomly pick vh from Pred(vi);
20 Send < ci, NLi > to vh by real-name ciphertext unicasting;

21 Codes for the sink :
22 cagg ← 0;
23 ragg ← 0;
24 while receives a packet P sent by vj do
25 decrypt P and get < cj, NLj >;
26 cagg ← cagg + cj (mod M);
27 for each pseudonym pn ∈ NLj do
28 Look up the maintained table and find out which node pn is assigned to;

// let the node be vx
29 ragg ← ragg + R(Kx, t) (mod M);

30 if have received from all the nodes in level 1 then
31 dagg ← cagg − ragg (mod M);
32 return dagg;

For an outer node vi: it adds noise R(Ki, t) to its the private data di and generates noisy data

ci = di + R(Ki, t) (mod M)

where R is a function used by nodes to generate a pseudo random value, t is the sequence number of
the current query, and M is a predetermined constant satisfying M ≥ ∑for all vi

di. Next, vi randomly
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picks a pseudonym from its pseudonym set {PN1
i , PN2

i , . . . , PNm
i } and adds it to the set NLi (Line 4–5

in Algorithm 2). NLi records which nodes have added noise to the result ci in form of pseudonym.
Finally, vi sends the data < ci, NLi > to a randomly selected successor vh by real-name ciphertext
unicasting (Line 6–7 in Algorithm 2).

For an inner node vi: if vi hears a packet P sent from its next level (confirmed by checking the
sender’s level in P’s header), it adds 1 to its local variable hear(vi) (Line 12–13 in Algorithm 2). If P is
sent to vi (confirmed by checking the receiver’s ID in P’s header), according to the sender’s ID (let the
sender be vj), vi finds the corresponding key to decrypt P and gets its data < cj, NLj > (Line 14–15 in
Algorithm 2). Let < cj1 , NLj1 >, . . . ,< cjk , NLjk > be all the data received by vi. Then vi sets

ci = di +
k

∑
x=1

cjx (mod M)

and

NLi =
k⋃

x=1

NLjx

If all its successors have uploaded their data, i.e., hear(vi) = SN(vi), vi sends < ci, NLi > to
a randomly selected predecessor vh by real-name ciphertext unicasting (Line 19–20 in Algorithm 2).

The sink does the following: decrypt each received packet to get its data < cj, NLj >, and use
variable cagg to aggregate all the received cj, i.e.,

cagg =
n

∑
i=1

ci (mod M)

For each pseudonym pn in each received NLj, look up the maintained table and find out which
node pn is assigned to (let the node be vx). Calculate the noise R(Kx, t) that vx adds to the result.
Use variable ragg to record the sum of all the added noise (Line 28–29 in Algorithm 2), i.e.,

ragg = ∑
for each outer node vi

R(Ki, t) (mod M)

If has received from all the nodes in the first level, de-noise the result cagg by the function

dagg = cagg − ragg (mod M)

Return the result dagg to users(Line 31–32 in Algorithm 2). dagg is the sum of each node’s private data.
In the whole aggregation process, the local aggregation result ci uploaded by each node vi has

constant length. Only outer nodes need to add noise to their results and append their pseudonyms.
All inner nodes do not need to add noise or append pseudonyms. Therefore, the communication
efficiency for RiPPAS handling sum() queries is very high.

6. Handling min()/max() Queries

In this section, we describe how RiPPAS handles min()/max() queries. By issuing a min()/max()
query, users are concerned with the minimum/maximum value of the data in the entire network,
as well as the node that generates the value and its location. When processing a min()/max() query,
RiPPAS focuses on protection of the source of the minimum/maximum value. It uses a pseudonym
mechanism for anonymous communication. The process for RiPPAS handling max() queries is given
by Algorithm 3.
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Algorithm 3: Dealing with max() query
Input: a sensor network with ring structure established
Output: the maximum value of all nodes’ data, the node generating the maximum value and

its location
1 Codes for vi 6= sink :
2 if SN(vi) = 0 then
3 maxi ← di;
4 Randomly pick PNx

i from {PN1
i , . . . , PNm

i };
5 sourcei ← PNx

i ;
6 Send < maxi, sourcei > to all predecessors by anonymous plaintext broadcasting;
7 else
8 maxi ← di;
9 Randomly pick PNx

i from {PN1
i , . . . , PNm

i };
10 sourcei ← PNx

i ;
11 while hears a packet < maxj, sourcej > sent by vj do
12 if level(vj) = level(vi) + 1 then
13 hear(vi)← hear(vi) + 1;
14 if maxj > maxi then
15 maxi ← maxj;
16 sourcei ← sourcej;

17 if hear(vi) = SN(vi) then
18 Send < maxi, sourcei > to all predecessors by anonymous plaintext

broadcasting;

19 Codes for the sink :
20 max ← −∞;
21 while receives a packet < maxj, sourcej > sent by vj do
22 if max < maxj then
23 max ← maxj;
24 source← sourcej;

25 if have received from all the nodes in level 1 then
26 Look up the maintained table to find out which node source is assigned to and the

node’s location;
// let the node be vx, its location is Locx

27 return < max, vx, Locx >;

The nodes in the ring upload their local results level by level. Data packets are transmitted by
anonymous plaintext broadcasting, so the receiver of a packet has no information about the sender
except for its level in the ring. The data packet uploaded by node vi has the form < maxi, sourcei >,
where maxi is vi’s local maximum value (the maximum value of the data received by vi and its private
data), sourcei is the pseudonym of the node who generate maxi. sourcei is uploaded so that the sink
can know the source of the maximum value by looking up the pseudonym table.

First, each outer node sends its data with a randomly picked pseudonym to all its predecessors by
anonymous plaintext broadcasting (Lines 3–6 in Algorithm 3). After an inner node receives data from
all its successors, it gets the maximum value from the set including all the received data and its own
data, attaches the corresponding pseudonym (if the maximum value is vi’s own data, vi randomly
picks a pseudonym and appends it to the data), then sends the maximum value to all its predecessors
by anonymous plaintext broadcasting (Lines 8–18 in Algorithm 3). Finally, the sink gets the maximum
value of the entire network and its source’s pseudonym. By looking up the maintained table, the sink
will know the source’s ID and location (Lines 21–27 in Algorithm 3).
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When processing a min()/max() query, RiPPAS guarantees that as long as adversaries do not
capture the source node of the maximum/minimum value, it is impossible for them to know the
source node’s ID and its location. The shortcoming of RiPPAS is that adversaries can get the
maximum/minimum value by eavesdropping even if they do not capture any nodes. However,
As we have stated before, the most import information of min()/max() aggregation is not the
maximum/minimum value itself, but the node who generates the maximum/minimum value and its
location. Thus, to process min()/max() queries, each node upload its data by anonymous plaintext
broadcasting. If users want to prevent the disclosure of the maximum/minimum value information,
we can modify RiPPAS and let each node upload its data by real-name ciphertext unicasting.

7. Evaluation

The performance of RiPPAS is evaluated in this section. The evaluation is done in three aspects:
(a) privacy preservation; (b) communication overhead; (c) aggregation accuracy.

For sum() queries, we compare RiPPAS with three other aggregation methods: (1) the SMART
method proposed in [18]; (2) the HEEPP method proposed in [12]; (3) the method based on
homomorphic encryption proposed in [14,15] (denoted by “HOMOENC”). All the other three methods
can not deal with min()/max() queries.

For min()/max() queries, we compare three aggregation schemes: (1) the RiPPAS scheme
that each node uploads data by anonymous plaintext broadcasting (denoted by RiPPAS_APB);
(2) the RiPPAS scheme that each node uploads data by real-name ciphertext unicasting (denoted
by RiPPAS_RCU); (3) the tree-based aggregation scheme proposed in [30] (denoted by EADAT)
with the improvement that each pair of neighbors use an independent key to encrypt/decrypt the
communication between them. In EADAT, all the nodes are organized as a spanning tree rooted at
the sink. In a bottom-up manner, each node sends its local maximum/minimum value with the ID of
the data’s source to its parent. Note that EADAT deals with min()/max() queries without any data
privacy concern. Since all the existing methods can not deal with min()/max() queries with privacy
preservation, we choose the most typical method to compare with the proposed methods.

We use a simulator written in C++ to do the evaluation. The simulation environment is set as
follows: 2500 sensor nodes are randomly deployed in a 1500 m × 1500 m area. Each node is assigned
m = 20 pseudonyms. As a result, the sink uses a 120 M table to records the information of all the
sensor nodes. The effective transmitting range of each sensor node is set to 50 m, so each node has
8.7 neighbors on average. We divide the time into equal-sized time slots. The transmission of any data
packet can be done in one time slot. Each node can only send or receive one data packet (can not both
send and receive) in one time slot. Each data packet has a 7-byte header containing the information of
packet type (1 byte), receiver’s ID (2 bytes), sender’s ID (2 bytes), sender’s level in the ring (1 byte)
and packet length (1 byte). The data field of each packet contains up to 50 bytes. We synthesize the
sampled data for each node according to the data set in [31]. Each node samples four kinds of data:
temperature, humidity, light, voltage. To get each point in the result figures, we conduct 10 simulations
and take their average value. When pair-wise encrypted communication is required in SMART, HEEPP,
RiPPAS_RCU and EADAT, we use the encryption/decryption technique in [32].

7.1. Privacy Preservation

Next, for an arbitrary node v in the given network, we will analyse the probability that v’s private
data is disclosed to adversaries in different aggregation schemes. Here, we assume that v itself is
not captured by adversaries. As we stated in Section 3, adversaries can launch collusion attack by
gathering all the data from the eavesdropping devices and the captured nodes. As a result, for each
wireless link in the given network, adversaries has a certain probability to break the link. “Break a link”
means that adversaries know the key used for encryption/decryption, so they can get all the data
transmitted on the link. We use qb to denote the probability that any link is broken by adversaries.
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7.1.1. Privacy Preservation for sum() Queries

Let us analyse the privacy preservation for RiPPAS processing sum() queries. For an outer node v,
since it adds noise to its private data and only the sink has the key to de-noise the data, adversaries can
not get v’s private data if they do not capture v. Let Pv(qb) be the probability that v’s data is disclosed
under the setting of qb. For outer node v in RiPPAS, we have

Pv(qb) = 0 (1)

For an inner node v, let PreSuc(v) be the set including v’s successors who upload their aggregation
reults to v and v’s predecessor to whom v upload its result, i.e.,

PreSuc(v) = {u | u uploads its results to v} ∪ {u | v uploads its result to u} (2)

Adversaries can only get the v’s data by breaking all the links connecting v and the nodes in
PreSuc(v). Therefore, for inner node v in RiPPAS, we have

Pv(qb) =
max_d

∑
k=1

Pr{|PreSuc(v)| = k} · qk
b (3)

where Pr{|PreSuc(v)| = k} is the probability that |PreSuc(v)| = k and max_d is the maximum degree
in the network.

For sum() queries, SMART organizes all the node as a spanning tree. Each node divides its private
data into J pieces, then sends J − 1 pieces to different neighbors. Define node set InOut(v) as

InOut(v) = {u | u sends its piece to v} ∪ {u | v sends its piece to u} (4)

In SMART, adversaries can only get v’s data by breaking all the links connecting v and the nodes
in InOut(v). Therefore, for any node v in SMART, we have

Pv(qb) =
max_d

∑
k=1

Pr{|InOut(v)| = k} · qk
b (5)

HEEPP is similar to SMART. In HEEPP, only leaf nodes in the spanning tree split their private data.
Each leaf node divides its private data into R pieces, and sends the R− 1 pieces to different neighbors,
where R is a random integer in [1, K]. Similar to SMART, for a leaf node in HEEPP, the probability
that adversaries can get v’s private data is given by Equation (5). In HEEPP, adversaries can get
an intermediate node’s private data by getting all the data its children send to the node and the data
the node send to its parent. Define node set PaCh(v) as

PaCh(v) = {u | u is v ’s child or u is v’s parent} (6)

Therefore, for intermediate node v in HEEPP, we have

Pv(qb) =
max_d

∑
k=1

Pr{|PaCh(v)| = k} · qk
b (7)

HOMOENC uses homomorphic encryption to process sum() queries. Each node encrypts its
private data and only the sink can decrypt the data. All the aggregation is done on ciphertext.
Adversaries can not get a node’s private data anyway (if they do not capture the node itself). Thus,
for any node v in HOMOENC, we have

Pv(qb) = 0
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Both RiPPAS and HOMOENC use homomorphic encryption for secure data aggregation.
In HOMOENC, every node encrypts its local result before uploading it. The additively homomorphic
encryption function used by HOMOENC can be seen as adding some noise to the real data. The noise
is generated by a pseudo random function taking node’s key as seed. For a node who add noise to its
private data, only the sink can de-noise the noisy data, so adversaries have no way to get the node’s
private data (except for capturing the node itself). From the perspective of data privacy, letting every
node use additively homomorphic encryption function to encrypt its local result is very safe. However,
to let the sink de-noise the result correctly, each node adding noise to the result has to append its ID to
the result, which poses a heavy burden on communication.

The encryption technique used in RiPPAS is almost as same as the one used in HOMOENC.
The only difference is that in RiPPAS, the function used by each node to generate a pseudo random noise
takes both the node’s key and the query’s sequence number as seeds, which makes the homomorphic
encryption in RiPPAS is more secure. In the process of aggregation, the outer nodes in the ring have
to upload their private data, so their data privacy is vulnerable to attack. On the contrary, the data
uploaded by an inner node is the aggregation result of its private data and the data from its successors,
so it is very difficult for adversaries to attack their data privacy. In RiPPAS, we only let the outer nodes
encrypt their data. For an outer node, adversaries have no way to get its private data. For an inner
node, the only way adversaries can get its private data is by getting the data the node sends out and all
the data sent into the node, which is still a very hard task for adversaries. Compared to HOMOENC,
RiPPAS is a little more vulnerable. However, only the outer nodes in RiPPAS have to append its ID to
the aggregation result, which makes RiPPAS much more communication efficient than HOMOENC.

In our simulation we set J = 3 for SMART and set K = 5 for HEEPP. The effectiveness of
privacy preservation is measured by the percentage of the nodes whose data is disclosed to adversaries.
The comparison results of privacy preservation performance for processing sum() queries on
temperature is given by Figure 2a. Except for HOMOENC, the larger qb, the weaker privacy
preservation. HOMOENC always gives the best performance. Since HOMOENC uses homomorphic
encryption technique, it is impossible for adversaries to obtain a node’s private data. RiPPAS
outperforms SMART and HEEPP in this aspect. In RiPPAS, outer nodes’ data can not be disclosed
anyway. Adversaries cannot get an inner node’s data unless they get all the data the node receives
and the data the node sends out. In SMART and HEEPP, it is relatively easier for adversaries to get
a node’s private data.
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Figure 2. Privacy preservation performance. (a) Handling sum() queries on temperature; (b) Handling
min()/max() queries on temperature.

By ring-based aggregation, RiPPAS has more advantages in addition to the simulation results
shown. Suppose that adversaries want to make sure to get a certain node v’s private data. For an outer
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node v, if v is not captured, adversaries can not get v’s private data anyway. Recall that each node
uploads its aggregation result to a randomly picked predecessor. Adversaries will never know which
nodes upload their results to v and to which node v uploads its result. Therefore, for an inner node v, if v
is not captured, to make sure to get v’s private data, adversaries have to break all the links connecting
v with all its predecessors and successors. Apparently, it is a very hard task for adversaries. Compared
with a tree-based method, the ring-based aggregation scheme makes it harder for adversaries to attack
data privacy. Furthermore, as we state in Section 4.3, ring-based aggregation can effectively prevent
attackers from performing long-term behavior analysis on some nodes.

7.1.2. Privacy Preservation for min()/max() Queries

For a min()/max() query, it is not very meaningful to know the maximum/minimum value in
the whole network without knowing its source. For such kind of queries, the disclosure of node v’s
data privacy is defined as adversaries can get v’s private data and know that v is the source of the data.
In the following, we only discuss the case of processing a max() query. The case of processing a min()
query is similar.

In the RiPPAS_APB scheme, nodes upload their data by anonymous plaintext broadcasting.
By eavesdropping, adversaries can easily get the data in a packet by eavesdropping, but they cannot
know who the sender of the packet is. On the other hand, during the aggregation process, each node
uploads its local maximum value with the pseudonym of the value’s source and only the sink knows
which node the pseudonym corresponds to. By eavesdropping on the transmission of a packet,
adversaries cannot determine the source of the maximum value in the packet, i.e., adversaries can not
relate any data to its real source. Thus, in RiPPAS_APB, the probability that any node v’s data privacy
is disclosed is given by

Pv(qb) = 0

In the RiPPAS_RCU scheme, nodes upload their data by real-name ciphertext unicasting.
Ciphertext transmission makes it relatively difficult for adversaries to break a link. However,
once adversaries beak a link and get a packet transmitted on the link, they can know the real ID
of the packet’s sender, which gives them opportunities to attack a node’s data privacy. If v’s private
data is its local maximum value, v will append a randomly selected pseudonym to its private data
and send its real-name. In this case, if adversaries can get all the packets v receives and the packet
v sends out, they can distinguish that the pseudonym in the packet v sends out is different from all
the pseudonyms in the packets v receives, and know that the data v sends out is generated by v itself.
Therefore, if v’s private data is its local maximum value, adversaries can get v’s private data and know
that v is the source of the data by breaking all the links connecting v and the nodes in PreSuc(v). Here,
PreSuc(v) is the node set defined by Equation (2). For any node in the RiPPAS_RCU scheme, we have

Pv(qb) = Pmax
v ·

max_d

∑
k=1

Pr{|PreSuc(v)| = k} · qk
b (8)

where Pmax
v is the probability that v’s private data is its local maximum value.

In EADAT, each node in the spanning tree sends its local maximum value and the ID of the value’s
source to its parent. Let u be one of v’s ancestors in the tree. Adversaries can get node v’s private data
by breaking the link between u and u’s parent in the context that v’s private data is the local maximum
value of u. Therefore, for any node v in EADAT, we have

Pv(qb) = ∑
u∈AN(v)

Pmax
v,u · qb (9)

where AN(v) is the set of v’s ancestors in the tree and Pmax
v,u is the probability that v’s private data is

the local maximum value of u.
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The privacy preservation performance for processing min()/max() queries on temperature is
given by Figure 2b. We can see that, except for RiPPAS_APB, the larger qb is, the weaker the privacy
preservation is. In RiPPAS_APB, it is impossible for adversaries to get any node’s private data unless
they capture the node itself, so RiPPAS_APB outperforms RiPPAS_RCU. Since EADAT does not concern
the data privacy, it is much worse than the proposed two schemes in the aspect of privacy preservation.

7.2. Communication Overhead

We compare the communication overheads for different schemes processing aggregation
queries on different attributes. Recall that SMART, HEEPP, HOMOENC and EADAT all require
a pre-established tree structure, and RiPPAS requires to build a ring structure before aggregation.
We also compare the communication overheads for different schemes building the pre-established
structures. Communication overhead is represented by average number of bytes sent and received by
each node.

The communication overheads for SMART, HEEPP, HOMOENC and RiPPAS to process sum()

queries on different attributes are given by Figure 3a, in which “building” denotes the communication
overheads for building the pre-established structures. We can see that HOMOENC has the lowest
building communication overhead. This is because HOMOENC does not require pair-wise key
exchanging for secure point-to-point communication. The building communication overhead of
RiPPAS is a little higher than the one of SMART and HEEPP, because the ring structure is a little
more complex than the tree structure. The communication overheads for each scheme to process
queries on different attributes are almost the same. RiPPAS always gives the best performance and
is apparently better than the other three methods in this aspect. RiPPAS gains its communication
efficiency because only the outer nodes add noise to their data and each node only uploads its local
result once. In SMART and HEEPP, nodes split their data into pieces and exchanging data pieces
among neighbors, which introduces a considerable communication overhead. HOMOENC has the
worst performance. In HOMOENC, each aggregation data is uploaded with the IDs of all the nodes
that participate in the aggregation. In a large-scale network, the ID list sent by a node near the sink
will be extremely long.

building temperature humidity light voltage
0

50

100

150

200

250

300

350

400

450

500

550

600

650

A
ve

ra
ge

 b
yt

es
 s

en
t &

 R
C

V
D

 b
y 

ea
ch

 n
od

e

Sum queries on different attributes

 SMART
 HEEPP
 HOMOENC
 RiPPAS

building temperature humidity light voltage
0

20

40

60

80

100

120

140

160

180

200

 min / max queries on different attributes

A
ve

ra
ge

 b
yt

es
 s

en
t &

 R
C

V
D

 b
y 

ea
ch

 n
od

e  RiPPAS_APB
 RiPPAS_RCU
 EADAT

(a) (b)

Figure 3. Communication overhead for processing aggregation queries on different attributes.
(a) For sum() queries; (b) For min()/max() queries.

The communication overheads for RiPPAS_APB, RiPPAS_RCU and EADAT to process
min()/max() queries on different attributes are given by Figure 3b. The building communication
overhead of RiPPAS_APB is much lower than the ones of RiPPAS_RCU and EADAT. Since RiPPAS_APB
does not use point-to-point encrypted transmission, there is no pair-wise key exchanging
phase in RiPPAS_APB. Compared with RiPPAS_RCU and EADAT, RiPPAS_APB has apparently
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lower communication overhead for processing min()/max() queries on different attributes.
Since RiPPAS_APB does not require encrypted transmission of data packets, the packets in
RiPPAS_APB are much shorter. EADAT outperforms RiPPAS_APB a little bit because there are fewer
receiving activities using a tree structure to perform aggregation compared with using a ring structure.

7.3. Aggregation Accuracy

In ideal situations when there is no data loss in the network, all the compared schemes give 100%
accurate results. However, in reality, data loss is inevitable due to the node dying, wireless interference,
signal collision and processing delay. We need to measure how an aggregation scheme is affected by
data loss. The comparison is conducted by aggregating on different attributes.

The aggregation accuracy for SMART, HEEPP, HOMOENC and RiPPAS to process sum() queries
on different attributes is given by Figure 4a. Each scheme has almost the same performance on
different attributes. HEEPP gives the best performance in this aspect. RiPPAS gives almost the same
performance with negligible gap. SMART is a little wore than HEEPP and RiPPAS, but the gap is
not apparent. HOMOENC is much worse than the other three schemes. In HOMOENC, since each
aggregation data is uploaded with the IDs of all the nodes who participate in the aggregation, there
are many very long packets in the area near the sink. These packets are very easily to lose due to their
length. Once a packet near the sink area is lost, we lose the data of a large part of the network.

The aggregation accuracy for RiPPAS_APB, RiPPAS_RCU and EADAT to process min()/max()
queries on different attributes is given by Figure 4b. RiPPAS_APB gives the best performance
in this aspect. Since each node uploads its local result by broadcasting in RiPPAS_APB,
the maximum/minimum value can reach the sink along different paths, and data loss at a node
or on a link will not affect the final result with great probability. EADAT gives the worst performance.
By using tree structure for aggregation in EADAT, once a node fails to upload its data to its parent,
we lose the result derived from all the data in the subtree rooted at the node.
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Figure 4. Aggregation accuracy for processing aggregation queries on different attributes. (a) For sum()

queries; (b) For min()/max() queries.

Some detailed simulation results can be found in Tables 3 and 4, where privacy preservation is
measured by the percentage of the nodes whose data is disclosed and communication overhead is
measured by the average number of bytes sent and received by each node.
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Table 3. Some detailed simulation results for handling sum() queries.

Performance
Algorithms

SMART HEEPP HOMOENC RiPPAS

Privacy preservation (%) for qb = 0.01 0 0 0 0
Privacy preservation (%) for qb = 0.05 0.12 0.11 0 0.04
Privacy preservation (%) for qb = 0.1 0.5 0.45 0 0.3

Communication overhead for sum() on temperature 305 222 594 156
Aggregation accuracy (%) for sum() on temperature 84 90 55 84

Table 4. Some detailed simulation results for handling min()/max() queries.

Performance
Algorithms

RiPPAS_APB RiPPAS_RCU EADAT

Privacy preservation (%) for qb = 0.01 0 0 0.5
Privacy preservation (%) for qb = 0.05 0 0.02 2.8
Privacy preservation (%) for qb = 0.1 0 0.08 5.8

Communication overhead for max() on temperature 62 109 105
Aggregation accuracy (%) for sum() on temperature 95 82 61

8. Conclusions

We propose a scheme RiPPAS for aggregation with privacy preservation in wireless sensor
networks. RiPPAS adopts a ring structure to perform aggregation. It uses a pseudonym mechanism
for anonymous communication and uses a homomorphic encryption technique to easily add noise
to the data to be disclosed. Theoretical analysis and simulation results prove that while processing
sum() queries, RiPPAS has advantages in the aspects of privacy preservation and communication
efficiency compared to the existing privacy-preserving aggregation methods. Furthermore, RiPPAS
can process min()/max() queries whereas all the existing methods cannot. Future research directions
in this area may be: providing privacy protection for more complex queries or providing differential
privacy protection in distributed environments.
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