
sensors

Article

Middleware for Plug and Play Integration of
Heterogeneous Sensor Resources into the Sensor Web

Enoc Martínez 1,* ID , Daniel M. Toma 1, Simon Jirka 2 and Joaquín Del Río 1

1 SARTI research group, Electronics Department, Universitat Politècnica de Catalunya,
08800 Vilanova i la Geltrú, Spain; daniel.mihai.toma@upc.edu (D.M.T.); joaquin.del.rio@upc.edu (J.D.R.)

2 52◦ North Initiative for Geospatial Open Source Software, 48151 Münster, Germany; jirka@52north.org
* Correspondence: enoc.martinez@upc.edu; Tel.: +34-93-896-7205

Received: 6 November 2017; Accepted: 8 December 2017; Published: 15 December 2017

Abstract: The study of global phenomena requires the combination of a considerable amount of
data coming from different sources, acquired by different observation platforms and managed
by institutions working in different scientific fields. Merging this data to provide extensive and
complete data sets to monitor the long-term, global changes of our oceans is a major challenge.
The data acquisition and data archival procedures usually vary significantly depending on the
acquisition platform. This lack of standardization ultimately leads to information silos, preventing
the data to be effectively shared across different scientific communities. In the past years, important
steps have been taken in order to improve both standardization and interoperability, such as the
Open Geospatial Consortium’s Sensor Web Enablement (SWE) framework. Within this framework,
standardized models and interfaces to archive, access and visualize the data from heterogeneous
sensor resources have been proposed. However, due to the wide variety of software and hardware
architectures presented by marine sensors and marine observation platforms, there is still a lack
of uniform procedures to integrate sensors into existing SWE-based data infrastructures. In this
work, a framework aimed to enable sensor plug and play integration into existing SWE-based data
infrastructures is presented. First, an analysis of the operations required to automatically identify,
configure and operate a sensor are analysed. Then, the metadata required for these operations is
structured in a standard way. Afterwards, a modular, plug and play, SWE-based acquisition chain is
proposed. Finally different use cases for this framework are presented.

Keywords: Sensor Web Enablement; plug and play; interoperability; SensorML; Open Geospatial
Consortium; sensor integration; OGC PUCK protocol

1. Introduction

As the interest of studying global environmental phenomena is growing, collaborative research
environments are becoming more important. In these environments, data coming from many different
sources has to be combined and managed in a standard way in order to avoid information silos.
The lack of standardization and data harmonization across scientific domains and scientific data
infrastructures has been the driving force for the Open Geospatial Consortium (OGC) to propose the
Sensor Web Enablement framework (SWE) [1]. This framework is a suite of data model, encoding,
and interface standards which aim to provide the building blocks for interoperable Sensor Web
infrastructures. In this context, the concept of the Sensor Web refers to a set of Web accessible sensor
networks and their collected sensor data/metadata that can be discovered and accessed using standard
protocols and application programming interfaces [2].

Sensors 2017, 17, 2923; doi:10.3390/s17122923 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1233-7105
http://dx.doi.org/10.3390/s17122923
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2923 2 of 28

The different components in an SWE-based architecture can be classified according to their role
in a Sensor Web layer stack [3]. In Figure 1 a Sensor Web layer stack for ocean observing systems is
presented. Although the interaction patterns in the upper layers of the SWE stack are strictly specified
by the SWE standards, integrating sensors into Sensor Web services is not fully defined: While the
transactional operations of the OGC Sensor Observation Service already allow the standardized
publication of data, certain aspects such as sensor discovery and plug and play mechanisms are
not yet sufficiently available. Therefore, bridging between the physical sensors and the Sensor Web
services is still a challenge [4]. Many SWE-based architectures currently in operation still rely on
proprietary mechanisms to integrate sensor data streams (e.g., by customizing SWE services to use
existing observation databases as data source).

Figure 1. Sensor Web Enablement layer stack for ocean observing systems. The sensor layer comprises
the physical sensors. The integration layer includes all the mechanisms that bridge the data from
the sensor’s output to Sensor Web services. The Sensor Web Services layer is the core of a Sensor
Web infrastructure, where the data is archived, processed and analysed. Finally the application layer
provides interfaces between the Sensor Web services and the final users (e.g., data viewers).

In ocean observing systems, instruments and sensor systems (in short: sensors) are commonly
deployed using observation platforms, which are in charge of operating sensors and acquiring their
data. The ocean observing community uses a vast collection of observation platforms, such as fixed
underwater observatories, buoys, underwater gliders, autonomous surface vehicles, profilers, etc.
Some of them are powered by batteries and use satellite communication links (i.e., underwater
gliders), while others may be connected to the electrical grid and use broadband Ethernet (underwater
cabled observatories). Due to their heterogeneous nature, observation platforms present a wide
variety of architectures, resulting in a wide range of non-standardized protocols, data encodings, and
communication interfaces.

Due to this heterogeneity, in most cases a specific driver is needed for each sensor-platform
combination in order to gather data. Sensor manufacturers usually provide drivers for desktop
environments (i.e., Microsoft Windows). However, marine sensors are frequently integrated in
embedded environments where the provided drivers cannot be used [5]. If a new sensor has to
be integrated or an existing sensor has to be moved from one platform to another, new specific
components have to be developed. Generating a specific driver for each sensor is a time-consuming
task that requires in-depth knowledge of both sensor’s protocol and the observation platform’s
architecture [5].



Sensors 2017, 17, 2923 3 of 28

Moreover, when integrating several platforms into SWE-based data infrastructures, each
platform-specific encoding needs to be adapted by service adapters. This conversion can either be
achieved directly on the platform or by an intermediate process on a land station server in the case of
resource-constrained platforms. Figure 2 depicts a non-standardized scenario where different sensors
are deployed using different observation platforms. As the number of platforms and sensors deployed
within a collaborative environment grows, the number of custom components increases, as well as the
infrastructure maintenance costs. Therefore, improving the interoperability among the infrastructure’s
components should be a matter of great concern. Interoperability in this sense can be defined as
the ability of two systems to exchange information and to interpret the information that has been
exchanged [6].

Figure 2. Collaborative research scenario using specific drivers and data converters for each sensor-
platform combination, in this case an underwater glider, a buoy and a cabled underwater observatory.

The ultimate goal of interoperability in a collaborative research environment should be to
enable the plug and play integration of sensor resources into observation platforms and data
infrastructures, reducing the human intervention to a minimum. This goal implies two different
levels of interoperability: operational and data management. From the operational interoperability
point of view, a sensor should be automatically detected, configured and its data gathered by the
observation platform’s acquisition process, as soon as it is deployed into an observation platform. From
the data management side, the data retrieved from the sensor should be encoded in a standard format,
compatible with the data infrastructure. Sensor metadata plays a key role in the acquisition. If managed
properly it will enhance not only the interoperability of the sensor, but also its data traceability and ease
further data quality procedures, allowing to pinpoint for example sensor malfunctions [7]. Therefore,
metadata should be added alongside sensor data, providing contextual information [8].

Within this work, a standardized, plug and play acquisition chain capable of bridging sensor
resources to Sensor Web services is envisioned, implemented and evaluated. Instead of using a specific
driver for each sensor-platform combination, the use of a generic driver component configurable
through OGC standards is proposed. In order to abstract the peculiarities of each sensor, this approach
makes use of a metadata file with a machine-understandable unambiguous sensor description, encoded
in a standard way. Afterwards, the generic driver should be able to access such a sensor description
file and configure itself accordingly, being able to operate a sensor without any a priori knowledge



Sensors 2017, 17, 2923 4 of 28

of the device nor the observation platform where it is hosted. The gathered sensor data should be
encoded in standardized SWE formats, ensuring the plug and play integration of sensors into SWE
services. This generic component should also have its own auto-description methods, in order to make
their role understandable to both humans and machines. The envisioned architecture is presented in
Figure 3.

Figure 3. Proposed Sensor Web Enablement (SWE)-based architecture. Sensor resources are integrated
by combining a standards-based description with a generic driver in order acquire data. As the generic
driver provides a standardized output, the generated data can be directly sent to the SWE services
using the observation platform’s communication link.

Related Work

The SWE framework aims at tackling a huge interoperability challenge for middleware approaches
since heterogeneous devices are expected to collaborate together in communication and information
exchange. Implementations of Sensor Web Enablement standards across different domains have found
difficulties when integrating sensors into SWE services. Walter and Nash analysed the difficulties of
integrating sensors and proposed the use of lightweight SWE connectors (custom drivers) in order
to bridge from sensor-specific protocols to SWE services [9]. This approach has been widely used in
different applications, using custom drivers or plug-ins as SWE connectors [10,11].

A slightly different approach is to enhance each sensor controller with embedded Web services in
order to archive and exchange data in a standardized manner with the components in the upper layers of
the Sensor Web Enablement stack. This sensor integration strategy has been used in different fields, such
as precision agriculture applications [12] and air quality monitoring [13,14]. This approach, although it
provides a good interoperable interface with other Sensor Web-enabled components, does not directly
solve the challenge of integrating new sensors into a platform as it still relies on custom drivers.



Sensors 2017, 17, 2923 5 of 28

Another issue that arises when embedding SWE services into sensors controllers, is that SWE
services largely rely on exchanging eXstensible Markup Language (XML) files [15], which can be very
verbose and require a significant amount of resources to process. When integrating Web services on
resource-constrained devices in terms of computational power or communication bandwidth, the
use of plain XML may not be suitable. Different strategies on the optimization on the information
exchange have been studied in [16]. The Efficient Extensible Interchange format showed promising
results in terms of required computational resources and information compactness [17].

To overcome the presented limitations and address these integration challenges, the IEEE 1451
standard proposed the idea of a smart sensor [18]. Smart sensors are defined by the IEEE 1451 standard
as sensors with small memory and standardized physical connection to enable the communication with
data network and processor. This standard has also been applied to bridge sensors to SWE services [19].
However, this approach assumes an IEEE 1451 compliant sensor device. A broad implementation
of this standard has not yet been achieved (the vast majority of commercial sensors do not support
IEEE 1451) so that most sensors cannot be integrated using this approach. Moreover, the IEEE 1451
compliant sensor devices are limited by the lack of flexibility, absence of customization options, narrow
spectrum of applications, and the basic communication protocol.

A more recent approach is the OGC SensorThings, dedicated especially to Internet of Things (IoT)
sensors [20], where sensors are envisioned as web-accessible devices. However, in real world scenarios
sensors may be deployed in remote and inaccessible observation platforms where internet connectivity
cannot be guaranteed.

As in real world applications a huge variety of sensor protocols (standardized or proprietary)
are utilized, another approach is to address the interoperability gap from the opposite direction, by
introducing mechanisms to abstract from the variety of sensor protocols, such as Sensor Abstraction
Layer (SAL) [21] or Sensor Interface Descriptor (SID) [22].

The Sensor Abstraction Layer (SAL), which describes all the sensors in a uniform manner, makes
use of and expands the SensorML 1.0 standard to describe sensor interfaces and commands. It hides
the specific technological details by matching sensor-specific commands to generic SAL commands.
However, it still relies on a plug-in approach to integrate new sensors [23].

Similar to SAL, the Sensor Interface Descriptor (SID) model extends SensorML 1.0 to formally
describe a sensor’s protocol. The generated sensor interface description is used as a platform
independent sensor driver which contains the necessary information to integrate a sensor on demand
by translating between sensor protocol and Sensor Web protocols. A benefit of SID is the availability
of open-source components to generate SID descriptions [24] as well as a SID interpreter middleware
based on Java. Several applications of SID can be found at the literature [5,25,26].

However, a still remaining open challenge is to practically include such a universal approach in
the Sensor Web middleware of marine observatory platforms. A Java-based middleware is a good
approach to abstract on the operating system level, however, it may not suitable to be deployed
in resource-constrained platforms. Furthermore, the SID model extension defines the whole Open
Systems Interconnection (OSI) model stack for each sensor command, resulting in very verbose XML
files, which are rather difficult to interpret.

In this work the focus is put on semantic interoperability, emphasizing the need of standard
middleware components compatible with different observation platforms. The rest of this paper is
structured as follows: Section 2 discusses the requirements to achieve a true plug and play sensor
integration into existing data infrastructures. Section 3 presents an SWE-based universal acquisition
chain. Section 4 presents Sensor Deployment Files (SDF) as a standard way to organize all the metadata
related to a sensor deployment and how it can enhance interoperability. In Section 5 the SWE Bridge
middleware is presented, a universal plug and play sensor data acquisition middleware. Finally in
Section 6 different use cases of the acquisition chain are presented.



Sensors 2017, 17, 2923 6 of 28

2. Sensor Integration into Observation Platforms

2.1. Requirement Analysis

When integrating new sensor resources into existing data infrastructures, several standardized
operations are required. These operations can be classified in two different levels: Instrument Level,
and Sensor Web level [5]. The Instrument Level operations are related to the sensor’s operational
challenges, focused on the sensor-platform interaction, including both sensor configuration and sensor
data retrieval. The Sensor Web challenges are related to the sensor data management, including
standardized data encodings, sensor data discovery, tasking mechanisms, etc.

According to previous work on this topic, at least four operations are required at the instrument level:
sensor detection, sensor identification, sensor configuration and simple measurements operations [5].
These are operational requirements, focused on the direct sensor-platform interaction.

From the data management side, there is a multitude of operations that can be realized, such as
data discovery, data access, sensor tasking, events and notifications, etc. However, this work focuses
on the integration of sensors to the Sensor Web from a platform operator point of view. Thus only the
sensor registration and sensor data ingestion operations are considered within this work.

Some ocean observation platforms present additional constrains such as limited power availability
and low-bandwidth communications. These platforms are usually based on low-power embedded
systems, with limited computational capacity. Thus, a sensor plug and play mechanism should take
into account these constrains. Summarizing, the requirements to achieve plug and play integration
into observation platforms are:

1. Sensor Detection: Detect a new sensor when it is attached to an observation platform. The host
platform controller should be able to detect a new sensor without human intervention.

2. Sensor Identification: Obtain an unambiguous description of the sensor, including all the
metadata to identify the sensor (unique ID, sensor model, etc.) and all information required to
register the sensor to an existing Sensor Web server.

3. Sensor Configuration: This requirement addresses all operations required before the platform
can start retrieving data from a sensor. This includes establishing a communication link between
the platform and the sensor and applying any configuration required by the sensor (i.e., activate a
specific acquisition channel, set the sampling rate, etc.).

4. Simple Measurements Operations: Those operations that are directly related to the retrieval of
data. These operations may be actively querying the sensor for data or listening to data streams.
Also knowledge of the data interface provided by the sensor is required in order to parse, process
and store the data.

5. Sensor Registration: Registering a sensor to existing Sensor Web server requires a considerable
amount of metadata organized and structured in a coherent way, including physical parameters
that are being measured (observable properties), computational representation of the real-world
feature that is being measured (feature of interest), alongside with other sensor characteristics.
Furthermore, the meaning of this metadata has to be made explicit and understandable by
machines, thus, controlled vocabularies containing formal definitions shall be used [27].

6. Data Ingestion: Once the sensor is registered, the data measured by this sensor has to be ingested
to the server, where it will be archived.

7. Resource Constrains: Any plug and play mechanism aimed to integrate sensors into marine
data acquisition platforms should be able to work in low-bandwidth, low-power and
computationally-constrained scenarios.

2.2. Protocols and Standards

In order to fulfil the previously presented requirements in a standardized way, a set of protocols
and standards suitable of fulfilling these needs are presented in this section. The SWE framework
provides a set of standards and protocols that can fulfil these needs, as shown in Figure 4.



Sensors 2017, 17, 2923 7 of 28

Figure 4. Requirements for a plug and play mechanism (rows) and protocols/standards that can fulfil
these requirements (columns).

2.2.1. OGC PUCK Protocol

The sensor detection requirement can be fulfilled using the OGC PUCK protocol within the
acquisition platform controller [28]. This protocol is an add-on that can be implemented in any serial
or Ethernet sensor alongside with any proprietary protocol, rather than replacing it. This protocol
defines a set of commands that grant transparent access to an internal memory, named OGC PUCK
payload. This payload is frequently used to store sensor metadata. Another key feature of the OGC Puck
protocol is its softbreak operation, which provides on-the-fly detection without any prior knowledge of
the sensor, fulfilling requirement 1.

2.2.2. Sensor Model Language

The OGC Sensor Model Language (SensorML) permits to encode detailed sensor descriptions
within an XML file [29]. Its main goal is to enhance interoperability, making sensor descriptions
understandable by machines and shareable between intelligent nodes. Moreover, additional
information related to specific deployments can also be encoded using this standard. Thus, both
sensor configuration and measurement operations can be addressed with the SensorML standard.

It is highly flexible and modular as it can describe almost every sensor related property or
sensor-related process. However this flexibility and modularity can prove a double-edged sword, as
the same information can be encoded in different ways, increasing the difficulty to generate smart
processes capable of interpreting SensorML definitions. For this reason there is ongoing work to
develop marine SWE profiles of SensorML that define more precisely how this standard should be
applied in ocean observing applications [30].

By combining the OGC PUCK protocol and a SensorML description file, it is possible to
automatically detect a sensor and retrieve its description encoded in a single standardized file without
any a-priori knowledge about the sensor. If an interpreter software can interpret this file, it can identify
the sensor, configure it and retrieve its data, meeting the requirements 2, 3 and 4.

2.2.3. Sensor Observation Service

The SOS standard provides the set of operations required to provide access sensor observation
data/metadata as well as to register and archive sensor data and metadata within a data repository [31].
Due to its role as a data and metadata archive, this standard is a key piece of any Sensor Web
infrastructure, providing support for requirement 5, sensor registration.



Sensors 2017, 17, 2923 8 of 28

2.2.4. Observations and Measurements

The Observations and Measurements (O&M) standard specifies an abstract model as well
as XML encoding for observations and related data, such as features involved in the sampling
process [32]. It provides an uniform and unambiguous way to encode sensor measurements, fulfilling
the requirement 6.

2.2.5. Efficient XML Interchange

The Efficient XML Interchange (EXI) is a World Wide Web Consortium’s (W3C) format that
enables the compression of large ASCII XML files into efficient binary files, significantly reducing its
size. This format has been designed to allow information sharing between devices with constrained
resources, meeting requirement 7 [17].

3. SWE-Based Acquisition Chain

Using the standards and protocols presented in the previous section, an SWE-based, plug and
play acquisition chain deployable in a wide variety of ocean observing systems is envisioned. A set of
interoperable standard components are proposed in order to bring data from the sensor itself to the
Sensor Web, regardless of the constraints of the platform where the sensors are deployed. Figure 5
shows the proposed acquisition chain with its components, classified within the Sensor Web Layer
stack. In order to make this architecture suitable for a wide range of scenarios, emphasis has been put
on open source software components as well as cross-platform implementations. Each sensor has its
own associated Sensor Deployment File (SDF), which encapsulates an unambiguous description of
the sensor. The SWE Bridge interfaces the sensor, discovering, operating the sensor and storing its
data in standard O&M data files. It also has a SensorML description file, where all its functionalities
are described. The files generated as SWE Bridge’s output are passed to the SOS Proxy using the
observation platform’s communication channel (dependent on the acquisition platform). Finally the
SOS Proxy injects the O&M data to the SOS server by using its SOS interface. The SOS server archives
this data into a SOS database and also provides an interface to access the archived data in a standard
manner for further processes, i.e., data visualization web clients.

Figure 5. Proposed SWE-based acquisition chain.

3.1. Sensor

Sensors are the component gathering data and making it available through a communication
interface, usually serial port or Ethernet. Three different kinds of sensors are taken into account within
this work:

• COTS Sensors: Commercial off-the-shelf (COTS) sensors are commercially available devices
without any particular enhancement in terms of interoperability.

• OGC PUCK-enabled Sensors: Sensors which implement the OGC PUCK protocol.



Sensors 2017, 17, 2923 9 of 28

• Virtual Instruments: Software components that merge or process data from different sources,
generating new data sets accessible through a communication interface.

Each sensor should have its own associated SDF, a SensorML description containing both sensor
metadata and deployment information (see Section 4) regardless of their nature. This file is a key piece
of the architecture, as it contains all metadata required to describe, operate and register a sensor into
Sensor Web services. OGC PUCK-enabled sensors may have their own SDF embedded within its
internal payload memory, providing automatic detection and self-description capabilities.

Ideally physical sensors should be OGC PUCK-enabled to provide end to end plug and play
capabilities. However, the majority of commercial sensors do not implement this protocol and do not
provide auto-detection and self-description procedures. Therefore the operators have to manually
match the sensor with SDF stored locally on the platform in order to provide compatibility with the
proposed standardized architecture.

3.2. SWE Bridge

The SWE Bridge is a universal acquisition middleware, aimed to be deployed in any acquisition
platform, regardless of its software and hardware architecture. It interprets SDFs, automatically
configuring itself to connect to and operate a sensor. Its implementation of the OGC PUCK protocol
allows to automatically retrieve a SDF from the sensor itself, enhancing interoperability and providing
a plug and play mechanism. When interfacing with a COTS a local SDF has to be used. The acquired
data is stored in standard O&M files, encoded in XML or EXI format in order to reduce their size [17].

The observation platform’s communication link to a shore station can be critical in terms
of bandwidth as well as in terms of power consumption. Therefore the SWE Bridge does not
directly send the O&M files to the server, but relies on the platform’s operator to setup for this
transmission. The platform operator can decide under which conditions is desirable to transmit these
files (i.e., stopping the transmission when the battery is low). Thus the platform operator still has full
control of the platform.

The SWE Bridge has its own SensorML description, the SWE Bridge Model, where all its
functionalities, parameters and built-in functions are described in a standard manner. This model
allows an automated process to understand the role and the capabilities of the SWE Bridge within the
acquisition chain.

3.3. SOS Proxy

The main functionality of the SOS Proxy is to decouple the SOS transactions from constrained
platforms without Internet gateway, such as satellite-based platforms. It acts as a transparent
intermediary layer, which takes O&M files from the platform’s communications channel (i.e., satellite
link) and forwards them to an SOS Server. As the SOS Proxy is completely transparent to the rest of
the architecture, it does not have an associated SensorML description.

Depending on the nature of the observation platform, the SOS Proxy can be deployed in the
platform itself (i.e., a platform with direct Internet access through a GSM modem), otherwise it can be
deployed in a shore station server (i.e., platform with proprietary satellite communications). Open
source implementations of this software component are available in Java and Bash [33,34].

3.4. SOS Server

The Sensor Observation Service (SOS) acts as a server for storing and managing both sensor data
and metadata. Due to its data archiving and metadata management roles, as well as its ability
to interface with further services, it is one of the core components of the proposed SWE-based
cyber-infrastructure, vital to interact with further processes.

In the proposed acquisition chain the 52◦ North’s open source SOS implementation running on a
PostgreSQL database is used [35]. For ingesting metadata about a sensor into an SOS server (registering



Sensors 2017, 17, 2923 10 of 28

a new sensor) the transactional InsertSensor operation of the SOS interface is used. The upload of data
to the SOS server is achieved through the so called ResultHandling operations of the SOS standard
(InsertResultTemplate and InsertResult). To ensure an efficient data transfer the server supports the
insertion of EXI-encoded O&M files.

The SOS Server also provides a standardized interface for further process to query and access
sensor data archived in the SOS database. SWE services can connect to the SOS server to query for
archived sensor data and related metadata.

3.5. Web Client

In order to demonstrate the end-to-end integration a Sensor Web visualization client was
developed. For this purpose the 52◦ North Helgoland Sensor Web viewer is used, which is an
open-source, lightweight Web application that enables the exploration, analysis and visualization of
sensor web data [36]. To support marine application, Helgoland is designed to support different types
of platforms (i.e., stationary and mobile) as well as different types of observation data (e.g., time series,
profiles, trajectories).

4. Sensor Deployment Files

The OGC SensorML standard can provide a robust and semantically-tied description of a sensor,
including its metadata, communication’s interface and command set. However, a sensor can be
a complex system configurable in different ways, depending on the deployment and its desired
behaviour (i.e., change the sampling rate, select a specific acquisition channel, etc.). All these operations
are not only related to the sensor description, but also to the desired acquisition process itself. Thus,
alongside the sensor’s description there should be a description of the desired acquisition process for
each deployment.

In order to enable on-the-fly integration of complex sensor systems into observation platforms, the
Sensor Deployment Files (SDF) are introduced. These files, based on the SensorML standard, compile
and organize in a coherent manner the sensor’s metadata and an accurate description of the desired
acquisition process for a specific sensor deployment. They allow an interpreter software, such as the
SWE Bridge, to automatically configure the sensor, retrieve its data and store it in standard O&M files.
A SDF should contain at least the following information in order to enable plug and play capabilities:

• Identification: Provide the required identifiers for the sensor, such as unique ID, model, name,
manufacturer, etc. Define which physical parameters is the sensor able to measure.

• Communications Interface: An unambiguous and accurate description of the sensor’s
communication interface to allow an interpreter software to automatically establish a
communication link without any a priory information about of the sensor.

• Communication protocol: Set of commands required to operate the instrument. This includes
configuration commands and measuring operations, as well as a description of the encoding of
the sensor outputs.

• Operation: Detailed description of the sensor operation, including which operations need to be
executed, in which order, which post-processing procedures will be applied to the sensor data
and how this data will be stored.

Alongside with this operational information, data management metadata can be included (where
the sensor is deployed, in which platform is deployed, etc.). This metadata would allow further
processes to interpret a SDF and automatically register the described sensor to a SOS instance without
human intervention. This metadata is modelled as optional information in the Sensor Instance and
the Sensor Model diagrams. Additional information such as calibration, deployment history or event
contact list could also be added to a SDF.

A SDF is composed by a Sensor Instance (sensor’s metadata, inherited from a Sensor Model) and
a Sensor Mission, as shown in Figure 6. The Sensor Mission uses the descriptions of both the Sensor



Sensors 2017, 17, 2923 11 of 28

Instance and the SWE Bridge Model (see Section 5.2) in order to arrange the available functionalities,
defining how the acquisition chain should be configured.

Figure 6. Sensor and SWE Bridge with their models (left) and Sensor Deployment Files (SDF) model
(right). The Sensor, with its associated SDF, is interfaced by the SWE Bridge middleware, which also
has its own Sensor Model Language (SensorML)-based description, the SWE Bridge Model.

The potential of SDF is its ability to describe a sensor and configure an acquisition chain with a
single, standards-based file. Furthermore, as all the components related to the acquisition chain are
described in a formal way, an automated system could process and understand these descriptions and
automatically generate new SDF files to setup and update acquisition chains. A set of example SDF
can be found at [37].

4.1. Sensor Model

The Sensor Model is a generic SensorML description of a family of sensors having common
characteristics. As shown in Figure 7, it should include the sensor’s command set, its communications
interface and other information applicable to all the sensors that share this model.

The DataInterface element is used to model the communication interface. As the interface
parameters may depend on each deployment of the sensor, only the available communication protocols
are defined at the Sensor Model stage.

A key aspect of a sensor model is the description of the sensor’s set of commands. Each command
is described with a SensorML’s SimpleProcess element. At least one SimpleProcess is required in a Sensor
Model (a sensor should at least provide one operation to retrieve data). The inputs of these processes
define the command that the sensor expects, while the output corresponds to the sensor response to
that command. If a sensor command does not have a reply to a specific command, the SimpleProcess
will only have an input and no output. On the contrary, if the sensor streams data periodically the
SimpleProcess used to model it will not have any input, but will have an output representing this stream.
To model a command where the sensor responds to a specific command, both input and output need
to be included.

Both input and output have an encoding section which describes how their contents (e.g.,
parameters, output values) are encoded. The output also contains an encoding element alongside with
an array of fields, which are used to model the sensor response. Each field has a name, a description
(reference to a controlled vocabulary) and a type, which corresponds to the SWE Common Data
model encoding used to model this value [38]. When a physical magnitude is described, the units of
measurement should be specified using the uom (units of measurement) element.



Sensors 2017, 17, 2923 12 of 28

Figure 7. UML diagram of the Sensor Model. The gray elements represent all required information by
the SWE Bridge (compulsory) while the blue elements represent optional metadata (used to register
the sensor to a Sensor Observation Service (SOS) Instance).

4.2. Sensor Instance

The Sensor Instance models a specific sensor by inheriting a Sensor Model and expanding it with
static metadata related to a particular instance (such as unique ID) alongside with dynamic deployment
information (such as position). A sensor and its host observation platform may be deployed in remote
regions with low bandwidth communication, or no communication link at all. Therefore, a Sensor
Instance cannot reference an on-line resource containing its Sensor Model description. Instead it
expands a sensor model, resulting in a single file containing all the sensor’s metadata. Its model is
shown in Figure 8.

Figure 8. Sensor Instance UML diagram. It inherits a sensor model and expands it with information
related to a sensor instance alongside with information related to a specific deployment. The gray
elements represent all the required information by the SWE Bridge (compulsory ) while the blue
elements represent optional metadata (used to register the sensor to a SOS Instance).



Sensors 2017, 17, 2923 13 of 28

From the operational point of view, the more important part of the Sensor Instance is the
DataInterface. It expands the generic definition of the Sensor Model, defining the parameters required
to establish a communication link from the observation platform to the sensor.

In the Sensor Instance model it is possible to include different elements that may be useful to
register, discover and exploit the generated data (blue elements). Some of them are the UniqueID,
attachedTo (reference to the observation platform where the sensor is deployed), position (spatial
position where the sensor is deployed), FeatureOfInterest (a computational representation of the real
world phenomenon being observed by the sensor).

4.3. Sensor Mission

The Sensor Mission models the desired acquisition process for a specific sensor deployment.
This mission will be interpreted by the SWE Bridge or another implementation of a SDF interpreter,
which will setup the acquisition process accordingly. The model of the Sensor Mission is depicted in
Figure 9.

Figure 9. Sensor Mission UML Diagram.

The core of the Sensor Mission is a set of SimpleProcess elements which represent the different
operations that will be performed by the observation platform’s acquisition software. The operations
may include data retrieval through sensor commands, post-measurement operations and data storage.
Using the typeOf property, these SimpleProcess can be identified as instances of a specific sensor
command (defined in the Sensor Instance) or a built-in SWE Bridge function (defined in the SWE
Bridge Model). To allow a flexible configuration, an array of settings may be included, which may
modify the default values inherited from the parent process.

The instantiated processes can be connected among them using connections, creating chains of
processes. These chains of processes contain all operations required by the acquisition process: data
retrieval, data processing and data storage. This provides the user a highly flexible framework to
configure an acquisition process based on standard SensorML files.

4.4. Sensor Deployment Files and SOS Registration

SDF are mainly focused to address the operational interoperability challenges detected when
integrating a new sensor to an observation platform (requirements 2–4, Section 2.1). However, when
registering a new sensor resource to a Sensor Observation Service, a different procedure is needed.



Sensors 2017, 17, 2923 14 of 28

Although an SDF contains all the required metadata to register a sensor to an SOS server, it needs to be
mapped to the transactional SOS operations.

These operations are InsertSensor, which registers the sensor metadata, and InsertResultTemplate,
which registers the data structure and the encoding of the sensor’s observations. If the sensor was
previously registered in another deployment in the same SOS server it is possible to modify the sensor
metadata by using the UpdateSensorDescription operation. The information contained within a SDF
has to be mapped to those SOS operations, as shown in Figure 10. After this workflow, a sensor has
been registered to an SOS server, so that the upload of the measured data can be started through the
InsertResult operation.

Figure 10. Metadata mapping from Sensor Deployment Files (SDF) to the Sensor Observation Service
(SOS) transactional operations InsertSensor (left) and InsertResultTemplate (right). The blue elements
correspond to Sensor Instance elements while the green elements correspond to Sensor Mission
elements. Dashed lines indicate optional elements and thick lines indicate multiple elements.

5. Standards-Based Universal Acquisition Middleware

5.1. Background

In the previous section an approach how to organize sensor metadata into standardized
SensorML-encoded SDF has been discussed. However, in order to provide a plug and play framework,
a middleware capable of automatically retrieving this SDF, interpret it and configure an acquisition the
process is required.

Some marine observation platforms are deployed in long-term missions in remote and inaccessible
places (i.e., underwater gliders and profilers). Therefore, these platforms present severe power and
communications constrains. Taking into account these constraints and aiming to achieve a highly
interoperable and versatile software component, the following design requirements where formulated
for such a middleware:

• Plug and play sensor discovery: The middleware shall be able discover and communicate with
sensors connected on-the-fly, without any prior knowledge about these sensors.



Sensors 2017, 17, 2923 15 of 28

• Standards-based configuration: The middleware shall be able to interpret SDFs and setup an
acquisition process based on the information contained in these files.

• Cross-platform design: The middleware shall be deployable in a maximum number of platforms,
regardless of their particular hardware and software architecture.

• Minimum resource requirements: Due to the intrinsic constraints of some observation platforms,
the usage of hardware and software resources has to be reduced as much as possible (RAM usage,
bandwidth, etc.).

• Standard compliance: Such a middleware shall be described through SensorML files to allow
systems to automatically understand its role and capabilities.

The Sensor Web Enablement Bridge (SWE Bridge) is a middleware component designed to fulfil
these previously mentioned requirements. This middleware is aimed to be used as a universal driver
for any sensor providing a RS232 or Ethernet interface. Its cross-platform and hardware abstraction
design makes it suitable to be deployed in the majority of observation platforms, whether they are
fixed or mobile.

5.2. SWE Bridge Model

The SWE Bridge has been designed following a SensorML-like style, implementing computational
equivalents for the SensorML elements (SimpleProcess, Parameters, DataRecord, etc.) and also providing
SensorML-based inheritance and configuration mechanisms (typeOf and Settings). Due to this approach,
the SWE Bridge can also be modelled using the SensorML standard. The ultimate goal of this
model, named SWE Bridge Model, is to provide an unambiguous description of this middleware,
understandable by automated processes, providing a framework to automatically generate SDFs with
minimum human intervention. This model is shown in Figure 11 and it is available online at [39].

Figure 11. SWE Bridge model. All modules inherit from the generic module, where the execution
options for the processes are defined. Then each module expands its definition with its particular
settings. The model also contains a set of identifiers and a generic communication’s interface.

The SWE Bridge model defines a generic communication interface that abstracts the physical layer,
providing a protocol-agnostic communication functionality to the rest of the software. The supported
protocols are serial communication, TCP and UDP.

The SWE Bridge’s core is its set of modules, which are templates for observation-related, built-in
processes. These processes include data retrieval, simple data manipulation and data storage among
others. All these operation are described with SimpleProcess elements, which can be instantiated,
configured and connected within a Sensor Mission as detailed in Section 4.3. Each module can be
instantiated to create a process that will be executed on runtime.

The generic module is an abstract module that contains the necessary information for the
coordination and operation of the resulting processes. This information is encapsulated in a set



Sensors 2017, 17, 2923 16 of 28

of flags named Execution Modes, whose main function is to control the circumstances under which a
particular process shall be executed.

Derived from this generic module the following built-in modules are implemented in the current
version of the SWE Bridge:

• Instrument Command: This module provides a unified process to communicate with a sensor.
Depending on the configuration, this module can be used to send any kind of commands and/or
receive sensor data.

• Field Selector: This module allows to filter the response of a sensor, selecting the desired
information and discarding the rest.

• Subsampling: This module allows to create subsampled data sets. It is especially useful in
platforms with severe communication constraints, where a subsampled data set is transmitted in
real time and a full data set is stored locally.

• Sampling Geometry: This module adds the platform position to a data structure, correlating
sensor data with the platform’s coordinates.

• Insert Result: This module stores the incoming data to standard O&M files, encoded in XML
or EXI.

Depending on the module, it may have an input, an output or both. If a module does not have an
input, it represents the beginning of the process chain (i.e., Instrument Command). On the contrary,
if it has only an input and does not have output this process represents the end of a process chain
(i.e., Insert Result). If a module has both input and output, the module is an intermediate process,
performing data manipulation/processing. A DataRecord structure emulating the SWE Common Data
Model standard is also used to pass data from process to process [38]. It is also possible to expand the
SWE Bridge functionalities by implementing custom modules. A new module shall also inherit the
parameters from the SWE Bridge generic module and follow the same data structure and input/output
logic. In Section 6 different process chains for different real-world use cases are presented, including
custom modules.

5.3. Implementation

In order to fulfil the cross-platform and minimum resources requirements, the SWE Bridge has
been implemented using ANSI C, with special emphasis on minimizing the usage of underlying
software and hardware resources. Its implementation is available online at [40]. All platform-dependent
resources are abstracted using resource abstraction wrappers, which provide an unified way to access
the platform’s resources (see Figure 12). These wrappers are the only functions that need to be adapted
when deploying the SWE Bridge in a new platform.

The SWE Bridge operation is organized in four components that are executed sequentially:
the OGC PUCK Detector & Extractor, the EXI decoder, the SensorML Interpreter and the Mission
Scheduler. The hardware resources needed by these components are: access to a serial and/or Ethernet
communication interface, access to the observation platform’s coordinates (if the platform is mobile),
access to the platform’s filesystem and a timer to schedule internal operations.

The execution of the SWE Bridge may vary slightly depending on whether the sensor is OGC
PUCK-enabled or not, as shown in Figure 13. OGC PUCK-enabled sensors shall provide their SDF
embedded within their payload memory. However, when interfacing a COTS sensor its associated
SDF shall be uploaded to the platform filesystem.



Sensors 2017, 17, 2923 17 of 28

Figure 12. SWE Bridge internal architecture. The different components use the resource abstraction
wrappers to hide the underlying hardware and operating system, providing a unified way of accessing
platform-dependent resources.

Figure 13. SWE Bridge operation. On the left the operation with a OGC PUCK-enabled sensor is shown.
On the right the operation of a COTS sensor is presented, with the SDF stored locally on the platform.

The OGC PUCK Detector and Extractor detects new OGC PUCK-enabled sensors connected to
the communications interface. Once a new sensor is detected, this component extracts its SDF. When
interfacing a COTS sensor, a local SDF can be passed as argument to the middleware, bypassing the
OGC PUCK Detector and Extractor component.

The EXI decoder, based on the EXIP framework, extracts and stores the desired information from
the SDF into an intermediate structure [41]. Using a set of rules, the decoder identifies potentially useful
elements to the SensorML Interpreter Service. The SensorML Interpreter service takes the extracted
information and uses this data to configure the acquisition process. The first step is to configure a
communication interface according to the information decoded sensor description. Afterwards this
service examines the set of SimpleProcesses that are defined within the Sensor Mission and generates a
process instance for each one of them. The generated processes are connected according to the SDF’s
connections section and finally the internal parameters of these processes are configured as specified in
the Settings section.

Once the Auto-configuration Service has setup all necessary processes in the SWE Bridge, the
Mission Scheduler is started. This is a timer-based scheduler that manages and controls the execution
of the previously configured process chains.



Sensors 2017, 17, 2923 18 of 28

6. Use Cases

This section illustrates different use cases where the combination of SDFs with the SWE Bridge
middleware are used to successfully enable and demonstrate the plug and play integration of sensor
into Sensor Web Enabled architectures.

6.1. NeXOS Project

The NeXOS project was an EU-funded project that aimed to develop cost-effective, innovative
and compact multifunctional systems which can be deployed on fixed and mobile platforms [42], with
special emphasis on interoperability and SWE-based architectures. Within this project the acquisition
chain presented in Section 3 was arranged into the Smart Electronic Interface for Sensor Interoperability
(SEISI) [43]. Different demonstration mission where performed using different sensors deployed on
platforms such as gliders, underwater observatories, buoys and profilers among others. In this
section the focus is put on the integration of two different NeXOS sensor developments into the
SeaExplorer Glider.

Two different NeXOS-developed sensors where deployed in the SeaExplorer Glider [44], the Mini.1
and the A1 Hydrophone. The Mini.1 is an optical sensor that measures hydrocarbon concentrations
in water while the A1 Hydrophone is a smart acoustical sensor with embedded real-time processing
capabilities for noise measurements and mammal detection (shown in Figure 14). Both sensors
implemented the OGC PUCK protocol and had their own SDF embedded within their respective
payloads, describing the sensors and their mission. These files are available at [37].

Figure 14. NeXOS A1 Hydrophone integrated on the SeaExplorer glider as payload.

Within the SeaExplorer controller, which runs an embedded Linux operating system, two instances
of the SWE Bridge software were executed. These instances where in charge of retrieving and interpret
the SDF and setup the data acquisition process. As the SeaExplorer glider is a mobile platform,
a resource abstraction wrapper was developed in order to relate the acquired data with the vehicle
position, based on socket communication between the GPS driver and the SWE Bridge. The SeaExplorer
used an Iridium satellite link to communicate with the shore station. The management of this
power-consuming and low-bandwidth communications in power-constrained platforms is critical.
Thus, the satellite-link is controlled by the platform operators, deciding when and how the generated
files will be sent to shore. The acquisition chain is showed in Figure 15.

The SWE Bridge generated two sets of data files: a subsampled data set sent in near real-time
through the glider’s satellite-link and a full data set, stored locally and recovered with the glider at the
end of the mission. In Figure 16 the SWE Bridge mission scheduler configuration workflow is shown.
The data is retrieved from the sensor by the Instrument Command process. Afterwards the Sampling
Geometry process associates the latest platform position to each measurement. The data is then passed
to two different branches. The first branch sends the data to an Insert Result process, which stores the
full data set locally. The second branch subsamples the incoming data before passing it to another to
another Insert Result process. This process stores the subsampled data set into O&M files, which is
transmitted to a shore station through the glider’s satellite link. A subsampled acoustic noise data set
gathered by the A1 Hydrophone sent in near-real during field trials can be seen at Figure 17.



Sensors 2017, 17, 2923 19 of 28

Figure 15. SeaExplorer mission acquisition chain.

Figure 16. SWE Bridge mission scheduler configuration for the SeaExplorer NeXOS mission.

Figure 17. Sound Pressure Level (SPL) at 125 Hz octave band acquired by a SeaExplorer glider in a
mission at the Norwegian coast. The incoming data from the hydrophone was subsampled and sent to
shore in near real-time during deployment.

6.2. EMSODEV Project

The proposed acquisition chain has also been used within the EU-funded project EMSODEV.
This project aims to develop the EMSO Generic Instrument Module (EGIM), as well as its associated



Sensors 2017, 17, 2923 20 of 28

data infrastructure. The EGIM is a compact-sized observation platform designed for long-term
deployments at the EMSO nodes [45]. Its main purpose is to gather extensive, multidisciplinary
data sets in a standardized fashion. In order to archive and distribute the acquired data, an SWE-based
infrastructure is implemented. For collecting this multidisciplinary data, the EGIM includes an
instrument pack of COTS sensors, shown in Table 1. The EGIM device with its instrument pack is
shown in Figure 18.

Figure 18. EMSO Generic Instrument Module (EGIM) with its instrument pack during its deployment
(left) and EGIM deployed at the OBSEA observatory (right).

Table 1. EGIM Instrument Pack. The communications refers to the communications interface that the
server uses to communicate to the sensors.

Sensor Type Sensor Name Manufacturer Communication Link

CTD SBE 37 SeaBird Electronics TCP/IP
Tsunami Meter SBE 54 SeaBird Electronics TCP/IP
Oxygen Optode Aanderaa 4831 Aanderaa TCP/IP

Turbidimeter Eco NTU Wetlabs TCP/IP
ADCP Workhorse Teledyne TCP/IP

Hydrophone icListen Ocean Sonics FTP
EGIM Internal Stuatus EGIM EMSODEV Consortium UDP

The EGIM has two modes of operation: autonomous and cabled. While in autonomous mode,
the EGIM is powered by internal batteries and the data coming from the instruments is logged into
CSV files, retrieved after the device recovery. On the contrary, when it is operated in cabled mode,
it draws power from an external source, communicating the data in real-time using an Ethernet link.
The EGIM implements a serial to Ethernet converters for each sensor, which are operated externally by
an acquisition server.

The EGIM device itself also sends data regarding its internal status using UDP frames.
These frames contain information about input voltage, input current, remaining storage capacity,
internal temperature and a leak detection alarm. Within the EMSODEV project, interoperability was
also a matter of great concern. Thus, an SWE-based data acquisition process with the components
presented in Section 3 was implemented [46]. Figure 19 shows the EMSODEV cyber-infrastructure in a
cabled mode scenario. Each sensor is attached to the EGIM using RS232 ports, which converts this
serial communication to an Ethernet link, providing a TCP/IP interface.

The acquisition server runs an instance of the SWE Bridge for each instrument deployed on the
EGIM node (except the hydrophone, which records data in its internal memory). A SDF file has been
written for each sensor, available at [37]. As the sensors do not implement the OGC PUCK protocol
(COTS sensors), these SDFs are stored locally in the acquisition server. Another instance of the SWE
Bridge is also used to decode the EGIM internal status frames, which are treated as scientific data.
The SWE Bridge generates O&M files containing the acquired data. These files are passed to an SOS
proxy, which injects the data to an SOS server.



Sensors 2017, 17, 2923 21 of 28

Figure 19. EGIM cyber-infrastructure in a cabled mode scenario.

Within the EMSODEV project, the use of a Zabbix monitoring system to monitor the status of
the EGIM and its associated cyber-infrastructure was proposed [47]. This monitoring system does not
support O&M-based transactions. Therefore, in order to fulfil the architecture requirements, the SWE
Bridge functionality was expanded by implementing a specific module to send instrument data to a
Zabbix monitoring server using its specific format. This module, called Send to Zabbix, sends an UDP
frame to a Zabbix server for each new value arriving from the sensors.

Except the hydrophone, all the sensors including the EGIM itself are configured in streaming
mode. Thus, each SDF use the same process chain for the SWE Bridge’s mission scheduler, shown in
Figure 20.

A first field test of the EGIM developments at the OBSEA underwater observatory was conducted
from 1 December 2016 to 15 April 2017 [48]. The test showed that the cyber-infrastructure was robust
and interoperable as new sensors can be easily deployed, just plugging a new sensor to an EGIM’s
empty slot and writing a new SDF.

Figure 20. Mission scheduler configuration used by the SWE Bridge instances deployed at the
EMSODEV acquisition server. The data coming from each sensor (all of them configured in stream
mode) is acquired using an Instrument Command process, which then passes the data to a Field
Selector process. This process filters the useful data and discards the undesired variables, depending
on the communications protocol of each sensor. Later on, two different branches are created, one that
stores the data into Observations and Measurements (O&M) files using the Insert Result process, and
another one that sends the data to the Zabbix Monitoring System.



Sensors 2017, 17, 2923 22 of 28

6.3. INTMARSIS Project

The INTMARSIS project aims to monitor underwater seismic activity in real-time, allowing a
precise estimation of actual earthquake scales. To achieve this goal a stand-alone seismic system with
real-time telemetry was designed and tested [49]. One further objective was to assess the usability of
OGC compliant standardized acquisition chains in underwater seismic applications.

The INTMARSIS system, shown in Figure 21, is composed of mainly two components, an ocean
bottom seismometer (OBS) and a surface buoy. The communication between the OBS and the surface
buoy is performed by a stainless steel mooring line using inductive modems (SeaBird Electronics
UIMM). This inductive modem provides low-bandwidth half-duplex communication through mooring
lines (up to 7000 m) where regular cables are not practical [50]. The INTMARSIS system, deployed
near the Catalan coast, is shown in Figure 22.

Figure 21. INTMARSIS System overview. At the seafloor the OBS (Ocean Bottom Seismometer)
acquires seismic data, storing it locally. A subsampled set of data is sent through the mooring line
using an inductive modem. The surface buoy receives the real-time subsampled seismic data, which is
transmitted to the Land Station server using a GSM link.

Figure 22. INTMARSIS buoy (left) and INTMARSIS Ocean Bottom Seismometer (right).



Sensors 2017, 17, 2923 23 of 28

The OBS acquires 3 channels (X, Y and Z axis), taking 125 Samples per second (SPS) with a
precision of 24 bits. However, due to the low bandwidth provided by the inductive modems (1200 bps),
the full data set is not transmitted in real-time, but stored locally. The OBS controller generates a
subsampled data set at 25 SPS which is transmitted thorough the inductive modem.

In Figure 23 the INTMARSIS acquisition chain is depicted. The subsampled data set, alongside
with OBS’s technical data, is sent to the buoy through the inductive link. The inductive communication
and the processing of the acquired data as well as internal sensors is performed by the master controller,
hosted by the surface buoy. This software component is modelled as three different Virtual Instruments
(VIs): OBS technical data, buoy technical data and a peak detector.

Technical data from both OBS and buoy include internal temperature and humidity gathered by
low-cost sensors integrated at the electronics board. Although this data is not scientifically relevant
it may prove useful to the operators to detect hardware malfunctions and water leaks. The master
controller collects the internal data and aggregates it into two different UDP streams, one for the buoy
technical data and another one for the OBS technical data.

The peak detector processes the seismic data and returns the maximum absolute value during a
period of time (10 s by default). Each of these VIs is interfaced by an instance of the SWE Bridge and
its data sent to an SOS server at the shore station using a GSM modem. The SDF associated with each
VI are available at [37].

The raw seismic data is sent in near real-time to the land station, where it is processed and stored
in miniSEED files (a standard format for seismic data). This data is made publicly available through a
FTP server. Although the raw seismic data is not stored by the SOS server, the peak values time series
provides an indicator of the seismic activity. As the volume of data is several orders of magnitude
lower than the raw seismic data, it is much easier to archive and display this data in Sensor Web
environments. With this approach it is possible to discover and access data from the seismometer
using Sensor Web components, and only download the seismic events instead of the whole data set.

Figure 23. INTMARSIS System acquisition chain. Virtual instruments are depicted as purple components.

6.4. SWE Bridge Performance

As discussed in Section 2.1, many observation platforms present severe constraints in terms of
power supply and computational resources. Although the SWE Bridge software is not performing
any computationally expensive operations, it makes extensive use of dynamic memory due to the
arbitrariness of SensorML documents. In this section the assessment of the SWE Bridge performance is
presented when interfacing the sensors deployed in NeXOS, EMSODEV and INTMARSIS projects.
In order to obtain comparable results, all tests were performed in a Raspberry Pi single board computer



Sensors 2017, 17, 2923 24 of 28

(specifications shown in Table 2), acting as a host controller for the SWE Bridge. The performance was
assessed using the Massif heap memory profiler [51].

Table 2. Raspberry Pi 2 specifications.

Processor Architecture ARM 7
Processor Speed 900 MHz
Number of Cores 4

RAM memory 1 GB
Operating System Raspbian Jessie Lite (version July 2017)

The execution of the SWE Bridge can be classified in two differentiated stages: setup (which
includes the components OGC PUCK Extractor, EXI Decoder and SDF Interpreter) and operation
(Mission Scheduler). During the setup process the SDF is decoded and interpreted, which produces
a peak in the use of dynamic memory. Once the setup is finished, a significant amount of memory
is freed and the use of dynamic memory is maintained low and constant during the operation stage.
This behaviour can be observed Figure 24, where the first 30 seconds of a time-based memory profile
is depicted.

Figure 24. SWE Bridge time-based memory profile when interfacing sensors from NeXOS, EMSODEV
and INTMARSIS projects. The peak usage of heap memory is registered when decoding the SDF file.
Afterwards, during the operation stage, the memory consumption is kept constant.

The amount of memory used at the stationary stage is mainly dependant on the nature of the
sensor response and the mission complexity. Large responses require larger buffers and each process
within the SWE Bridge also increases the usage of dynamic memory. The peak usage of dynamic
memory as well as the average values in stationary phase are shown in Table 3.



Sensors 2017, 17, 2923 25 of 28

Table 3. SWE Bridge performance assessed when interfacing sensors from the NeXOS, EMSODEV and
INTMARSIS projects. The average values of the memory consumption are calculated in the stationary
phase (after the setup).

Sensor Name
Sensor Parameters SWE Bridge Performance

Protocol Stream Period SDF Size Max Heap Avg Heap Avg Stack CPU Load
(bytes) (s) (bytes) (kBytes) (kBytes) (kBytes) (KIPS)

A1 Serial 61 1 3158 40.05 13.26 1.631 35.23
Mini.1 Serial 68 1 2451 36.63 10.96 1.568 34.50

Aanderaa 4831 TCP 80 1 3440 38.36 10.93 1.029 88.36
Workhorse TCP 688 60 9431 63.66 36.43 0.830 78.23
Eco NTU TCP 32 1 3290 36.93 9.53 0.892 78.26

SBE 37 TCP 72 10 3429 37.91 10.22 0.740 68.39
SBE 54 TCP 140 1 2769 35.56 8.05 0.895 87.35
EGIM UDP 137 20 4477 42.57 14.70 0.691 68.03

Seismic Data UDP 10 10 1728 29.96 5.84 0.692 63.61
OBS Technical UDP 30 30 1764 29.76 6.02 0.683 63.75

Buoy Status UDP 30 30 1764 29.96 6.32 0.685 63.89

The overall computational load, measured in kilo instructions per second (KIPS), is mainly
dependant on the sensor’s communications protocol, data stream period and response length. Sensors
using TCP/UDP protocols increment significantly the computational load when compared to serial
sensors. Moreover, sensors with short periods of data stream with large responses present the higher
usage of CPU (i.e., SBE54 and Aanderaa 4831).

7. Conclusions and Future Work

In this work a framework to enable plug and play sensor integration into research data
infrastructures have been proposed. It is based on the combination of different standards from
the OGC’s SWE framework and the W3C consortium. Using these standards a set of interoperable
components have been presented to bridge between any kind of (in-situ) sensor and the Sensor Web.
To ensure re-usability of the results aspects such as cross-platform support and the use of open source
licenses were emphasized. These components can be easily adapted to different scenarios without any
significant modification, overcoming the intrinsic constraints of ocean observation platforms.

Sensor’s metadata, as well as deployment and acquisition-specific metadata are combined in a
coherent format by using the concepts of SDF, providing a SensorML-based template for unambiguous
sensor deployment and sensor operation description. The advantages of the combination of SDFs
with the proposed acquisition chain (SWE Bridge, SOS Proxy and SOS server) has been demonstrated
in three real-world scenarios. These deployments include a mobile platform with severe power and
communications constraints (SeaExplorer Glider), a multidisciplinary fixed-point observation platform
with a pack of commercial sensors (EGIM), and a complex seismic system (INTMARSIS system).
Different sensors where integrated into observation platforms, including six COTS sensors, two
newly developed OGC PUCK-enabled sensors and a complex seismic system (treated as three Virtual
Instruments), each one of them with their own non-standardized proprietary protocols.

The design of the presented components and their SensorML descriptions provide the foundations
for generating automated processes that can combine sensor metadata and acquisition chain metadata
so that SDFs can even be created in a semi-automated manner.

Further work in this field should be focused on facilitating the application of the presented sensor
acquisition chain by making the generation of SDFs easier. For example developing a user-friendly
graphical user interface to generate SDFs with minimal human intervention. This tool should be able
to combine the information from the sensor, the description of the acquisition chain’s components and
the capabilities of SOS servers in order to allow users to generate their own configuration files in an
intuitive manner, hiding the specificities of the SWE standards from the end user. This would allow



Sensors 2017, 17, 2923 26 of 28

users to leverage the potential of the Sensor Web without the need of in-depth knowledge of complex
standards and services required.

Acknowledgments: This work has been funded by the Spanish Ministerio de Economía y Competitividad under
the INTMARSIS project (contract CGL2013- 42557-R), the NeXOS Project under the European Commission 7th
Framework Programme (grant agreement 614102) and the ESMODEV Project under the European Commission
Research Infrastructure Programme of the H2020 (grant agreement 676555).

Author Contributions: Joaquín Del Río and Daniel M. Toma conceived the original idea. Joaquín Del Río,
Daniel M. Toma and Enoc Martínez contributed to the design of the software components as well as the design
of Sensor Deployment Files. Enoc Martínez implemented the software components. Simon Jirka contributed
to the Sensor Web aspects. Enoc Martínez wrote the manuscript and Simon Jirka reviewed and substantially
improved it.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

OGC Open Geospatial Consortium
SWE Sensor Web Enablement
O&M Observations and Measurements
SOS Sensor Observation Service
SensorML Sensor Model Language
EXI Efficient XML Interchange
SDF Sensor Deployment File
COTS Commercial off-the-shelf

References

1. Reed, C.; Botts, M.; Davidson, J.; Percivall, G. OGC Sensor Web Enablement: Overview and High Level
Architecture. GeoSens. Netw. 2008, 4540, 175–190.

2. Bröring, A.; Echterhoff, J.; Jirka, S.; Simonis, I.; Everding, T.; Stasch, C.; Liang, S.; Lemmens, R.
New generation Sensor Web Enablement. Sensors 2011, 11, 2652–2699.

3. Bröring, A.; Maué, P.; Janowicz, K.; Nüst, D.; Malewski, C. Semantically-enabled sensor Plug & Play for the
Sensor Web. Sensors 2011, 11, 7568–7605.

4. Broring, A.; Foerster, T.; Jirka, S. Interaction patterns for bridging the gap between sensor networks and the
Sensor Web. In Proceedings of the Communications Workshops 2010 8th IEEE International Conference on
Pervasive Computing and Communications, Mannheim, Germany, 29 March–2 April 2010; pp. 732–737.

5. Del Rio, J.; Toma, D.M.; O’Reilly, T.C.; Broring, A.; Dana, D.R.; Bache, F.; Headley, K.L.; Manuel-Lazaro, A.;
Edgington, D.R. Standards-based plug & work for instruments in ocean observing systems. IEEE J.
Ocean. Eng. 2014, 39, 430–443.

6. Geraci, A.; Katki, F.; McMonegal, L.; Meyer, B.; Porteous, H. IEEE Standard Computer Dictionary. A Compilation
of IEEE Standard Computer Glossaries. IEEE Std 610 1991, 1, doi:10.1109/IEEESTD.1991.106963.

7. Dawes, N.; Kumar, K.A.; Michel, S.; Aberer, K.; Lehning, M. Sensor metadata management and its application
in collaborative environmental research. In Proceedings of the 4th IEEE International Conference on eScience,
Indianapolis, IN, USA, 10–12 December 2008; pp. 143–150.

8. Sheth, A.; Henson, C.; Sahoo, S.S. Semantic sensor web. IEEE Internet Comput. 2008, 12, 78–83.
9. Walter, K.; Nash, E. Coupling Wireless Sensor Networks and the Sensor Observation Service—Bridging the

Interoperability Gap. In Proceedings of the 12th AGILE International Conference on Geographic Information
Science, Hannover, Germany, 2–5 June 2009; pp. 1–9.

10. Fairgrieve, S.M.; Makuch, J.A.; Falke, S.R. PULSENet: An implementation of sensor web standards.
In Proceedings of the 2009 International Symposium on Collaborative Technologies and Systems, Baltimore,
MD, USA, 18–22 May 2009; pp. 64–75.

11. Geipel, J.; Jackenkroll, M.; Weis, M.; Claupein, W. A Sensor Web-Enabled Infrastructure for Precision
Farming. ISPRS Int. J. Geo-Inf. 2015, 4, 385–399.



Sensors 2017, 17, 2923 27 of 28

12. Sawant, S.A.; Adinarayana, J.; Durbha, S.S. KrishiSense: A semantically aware web enabled wireless sensor
network system for precision agriculture applications. In Proceedings of the International Geoscience and
Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 4090–4093.

13. Kotsev, A.; Schade, S.; Craglia, M.; Gerboles, M.; Spinelle, L.; Signorini, M. Next generation air quality
platform: Openness and interoperability for the internet of things. Sensors 2016, 16, 403.

14. Kotsev, A.; Pantisano, F.; Schade, S.; Jirka, S. Architecture of a service-enabled sensing platform for the
environment. Sensors 2015, 15, 4470–4495.

15. Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Maler, E.; Yergeau, F. Extensible Markup Language (XML).
World Wide Web J. 1997, 2, 27–66 .

16. Tamayo, A.; Granell, C.; Huerta, J. Using SWE standards for ubiquitous environmental sensing:
A performance analysis. Sensors 2012, 12, 12026–12051.

17. Schneider, J.; Kamiya, T.; Peintner, D.; Kyusakov, R. Efficient XML Interchage (EXI) Format 1.0
(Second Edition). Available online: https://www.w3.org/TR/exi/ (accessed on 9 October 2017).

18. Song, E.Y.; Lee, K. Understanding IEEE 1451 - Networked smart transducer interface standard—What is a
smart transducer? IEEE Instrum. Meas. Mag. 2008, 11, 11–17.

19. Song, E.Y.; Lee, K.B. Service-oriented sensor data interoperability for IEEE 1451 smart transducers.
In Proceedings of the IEEE Intrumentation and Measurement Technology Conference ( I2MTC), Singapore,
5–7 May 2009; pp. 1049–1054.

20. Liang, S.; Huang, C.-Y.; Khalafbeigi, T. OGC SensorThings API-Part 1: Sensing; Technical Report; Open
Geospatial Consortium: Wayland, MA, USA, 2012.

21. Gigan, G.; Atkinson, I. Sensor Abstraction Layer: A unique software interface to effectively manage sensor
networks. In Proceedings of the Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
Melbourne, Australia, 3–6 December 2007; pp. 479–484.

22. Broering, A.; Below, S.; Foerster, T. Declarative sensor interface descriptors for the sensor web. In Proceedings
of the WebMGS 2010: 1st International Workshop on Pervasive Web Mapping, Geoprocessing and Services,
Como, Italy, 26–27 August 2010; pp. 26–32.

23. Trevathan, J.; Johnstone, R.; Chiffings, T.; Atkinson, I.; Bergmann, N.; Read, W.; Theiss, S.; Myers, T.;
Stevens, T. SEMAT—The next generation of inexpensive marine environmental monitoring and measurement
systems. Sensors 2012, 12, 9711–9748.

24. Bröring, A.; Bache, F.; Bartoschek, T.; van Elzakker, C.P.J.M. The SID Creator: A Visual Approach for
Integrating Sensors with the Sensor Web. Lect. Notes Geoinf. Cartogr. 2011, 143–162.

25. Jazayeri, M.A.; Liang, S.H.L.; Huang, C.Y. Implementation and evaluation of four interoperable open
standards for the internet of things. Sensors 2015, 15, 24343–24373.

26. Díaz, L.; Bröring, A.; McInerney, D.; Libertá, G.; Foerster, T. Publishing sensor observations into Geospatial
Information Infrastructures: A use case in fire danger assessment. Environ. Model. Softw. 2013, 48, 65–80.

27. Bröring, A.; Janowicz, K.; Stasch, C.; Kuhn, W. Semantic challenges for sensor plug and play. In Proceedings
of the International Symposium on Web and Wireless Geographical Information Systems, Maynooth, Ireland,
7–8 December 2009; Volume 5886 LNCS, pp. 72–86.

28. O’Reilly, T. OGC R© PUCK Protocol Standard Version 1.4; Technical Report; Open Geospatial Consortium:
Wayland, MA, USA, 2012.

29. Botts, M.; Robin, A. OGC SensorML: Model and XML Encoding Standard; Technical Report OGC 12-000; Open
Geospatial Consortium: Wayland, MA, USA, 2014.

30. Jirka, S. The Marine Profiles for OGC Sensor Web Enablement Standards Team. In Proceedings of the EGU
General Assembly 2016, Vienna, Austria, 23–28 April 2016; Volume 18, p. 14690.

31. Bröring, A.; Stasch, C.; Echterhoff, J. OGC Sensor Observation Service; Technical Report; Open Geospatial
Consortium: Wayland, MA, USA, 2012.

32. Cox, S. Geographic Information: Observations and Measurements; Technical Report; Open Geospatial Consortium:
Wayland, MA, USA, 2013.

33. SOS Proxy (java). Available online: https://bitbucket.org/swebridgedevelopment/sos-proxy-java
(accessed on 25 October 2017).

34. SOS Proxy (Bash). Available online: https://bitbucket.org/swebridgedevelopment/sos_proxy (accessed on
24 October 2017).

https://www.w3.org/TR/exi/
https://bitbucket.org/swebridgedevelopment/sos-proxy-java
https://bitbucket.org/swebridgedevelopment/sos_proxy


Sensors 2017, 17, 2923 28 of 28

35. 52◦ North Sensor Observation Service (SOS). Available online: https://github.com/52North/SOS
(accessed on 24 October 2017).

36. Helgoland. Available online: https://github.com/52North/helgoland (accessed on 25 October 2017).
37. Sensor Deployment File Repository. Available online: https://bitbucket.org/swebridgedevelopment/sdfs

(accessed on 2 December 2017).
38. Robin, A. OGC SWE Common Data Model Encoding Standard; Technical Report; Open Geospatial Consortium:

Wayland, MA, USA, 2011.
39. SWE Bridge Model. Available online: https://www.upc.edu/cdsarti/OBSEA/SWE/files/swe_bridge/

model/swe_bridge_model.xml (accessed on 6 November 2017).
40. SWE Bridge. Available online: https://bitbucket.org/swebridgedevelopment/swebridge (accessed on

24 October 2017).
41. Kyusakov, R.; Pereira, P.P.; Eliasson, J.; Delsing, J. EXIP: A Framework for Embedded Web Development.

ACM Trans. Web 2014, 8, 23:1–23:29.
42. Delory, E.; Castro, A.; Waldmann, C.; Rolin, J.F.; Woerther, P.; Gille, J.; Del Rio, J.; Zielinski, O.; Golmen, L.;

Hareide, N.R.; et al. Objectives of the NeXOS project in developing next generation ocean sensor systems for
a more cost-efficient assessment of ocean waters and ecosystems, and fisheries management. In Proceedings
of the MTS/IEEE OCEANS 2014: Oceanic Engineering Society (OES) and Marine Technology Society, Taipei,
Taiwan, 7–10 April 2014.

43. Toma, D.M.; Del Rio, J.; Jirka, S.; Delory, E.; Pearlman, J.; Waldmann, C. NeXOS smart electronic interface for
sensor interoperability. In Proceedings of the MTS/IEEE OCEANS 2015: Discovering Sustainable Ocean
Energy for a New World, Genova, Italy, 18–21 May 2015.

44. Claustre, H.; Beguery, L. SeaExplorer Glider Breaks Two World Records. Sea Technol. 2014, 55, 19–21.
45. Favali, P.; Dañobeitia, J.; Beranzoli, L.; Rolin, J.F.; Lykousis, V.; Ruhl, H.A.; Paul, G.; Piera, J.; Huber, R.;

del Río, J.; et al. European Multidisciplinary and Water-Column Observa tory—European Research
Infrastructure Consortium (EMSO ERIC): Challenges and opportunities for Strategic European Marine
Sciences. In Proceedings of the 7th International Workshop on Marine Technology, Barcelona, Spain,
26–28 October 2016; pp. 100–103.

46. Toma, D.M.; Del Rio, J.; Cadena, J.; Bghiel, I.; Martínez, E.; Nogueras, M.; Garcia, Ó.; Dañobeitia, J.; Sorribas, J.;
Casas, R.; et al. OGC SWE-based data acquisition system development for EGIM on EMSODEV EU
project. In Proceedings of the Geospatial Sensor Webs Conference, Münster, Germany, 29–31 August 2016;
Volume 1762, pp. 1–5.

47. Zabbix. Available online: https://www.zabbix.com (accessed on 15 November 2017).
48. Aguzzi, J.; Mànuel, A.; Condal, F.; Guillén, J.; Nogueras, M.; del Rio, J.; Costa, C.; Menesatti, P.; Puig, P.;

Sardà, F.; et al. The new seafloor observatory (OBSEA) for remote and long-term coastal ecosystem
monitoring. Sensors 2011, 11, 5850–5872.

49. Toma, D.M.; Artero, C.; Del Río, J.; Trullols, E.; Roset, X. Near Real-Time Determination of Earthquake
Source Parameters from the Coastal Ocean. In Proceedings of the 7th International Workshop on Marine
Technology, Barcelona, Spain, 26–028 October 2016.

50. Real-Time Oceanography with Inductive Moorings and Inductive Modem Module. Available online:
http://www.seabird.com/sites/default/files/documents/AppNote92Oct16.pdf (accessed on
6 October 2017).

51. Massif: A Heap Profiler. Available online: http://valgrind.org/docs/manual/ms-manual.html (accessed on
28 November 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/52North/SOS
https://github.com/52North/helgoland
https://bitbucket.org/swebridgedevelopment/sdfs
https://www.upc.edu/cdsarti/OBSEA/SWE/files/swe_bridge/model/swe_bridge_model.xml
https://www.upc.edu/cdsarti/OBSEA/SWE/files/swe_bridge/model/swe_bridge_model.xml
https://bitbucket.org/swebridgedevelopment/swebridge
https://www.zabbix.com
http://www.seabird.com/sites/default/files/documents/AppNote92Oct16.pdf
http://valgrind.org/docs/manual/ms-manual.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sensor Integration into Observation Platforms 
	Requirement Analysis 
	Protocols and Standards
	OGC PUCK Protocol
	Sensor Model Language
	Sensor Observation Service
	Observations and Measurements
	Efficient XML Interchange


	SWE-Based Acquisition Chain
	Sensor
	SWE Bridge
	SOS Proxy
	SOS Server
	Web Client

	Sensor Deployment Files
	Sensor Model
	Sensor Instance
	Sensor Mission
	Sensor Deployment Files and SOS Registration

	Standards-Based Universal Acquisition Middleware 
	Background
	SWE Bridge Model
	Implementation

	Use Cases
	NeXOS Project
	EMSODEV Project
	INTMARSIS Project
	SWE Bridge Performance

	Conclusions and Future Work

