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Abstract: Recently, recognizing a user’s daily activity using a smartphone and wearable sensors
has become a popular issue. However, in contrast with the ideal definition of an experiment, there
could be numerous complex activities in real life with respect to its various background and contexts:
time, space, age, culture, and so on. Recognizing these complex activities with limited low-power
sensors, considering the power and memory constraints of the wearable environment and the user’s
obtrusiveness at once is not an easy problem, although it is very crucial for the activity recognizer to
be practically useful. In this paper, we recognize activity of eating, which is one of the most typical
examples of a complex activity, using only daily low-power mobile and wearable sensors. To organize
the related contexts systemically, we have constructed the context model based on activity theory
and the “Five W’s”, and propose a Bayesian network with 88 nodes to predict uncertain contexts
probabilistically. The structure of the proposed Bayesian network is designed by a modular and
tree-structured approach to reduce the time complexity and increase the scalability. To evaluate the
proposed method, we collected the data with 10 different activities from 25 volunteers of various ages,
occupations, and jobs, and have obtained 79.71% accuracy, which outperforms other conventional
classifiers by 7.54–14.4%. Analyses of the results showed that our probabilistic approach could also
give approximate results even when one of contexts or sensor values has a very heterogeneous
pattern or is missing.

Keywords: human activity recognition; context-awareness; Bayesian network; mobile application;
wearable computing

1. Introduction

Recently, with the rapid development of wearable sensor environments, a human activity recognition
(HAR) with consistently collected daily data and various learning classifiers has become a popular issue:
a vision-based recognition using a camera [1], recognition of five daily activities with acceleration data
from a mobile phone and vital signs [2], and recognition with acceleration data from a chest-wearable
device [3], and so on. However, despite mature studies and analyses on simple actions, like walking,
standing, or sitting, complex activities that are composed of many low-level contexts and show various
sensor patterns with respect to the background contexts have not been deeply studied yet [4].

In this paper, we propose a method which recognizes the eating activities in real life. Providing
automatically information related with eating activities, such as the time and duration of eating
activities, is crucial for healthcare management systems for people, in general, automatic monitoring
for patients, such as diabetics, whose eating activities should be carefully managed, or the elderly
who live alone, and so on. Although there are already plentiful studies recognizing simple eating and
other daily activities, their approach did not catch the very large variety of activities in real life and are,
therefore, difficult to extend to real situations. Eating activities could be a very complicated activity
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to recognize using sensors, especially with limited low-power sensors, as it could have different
sensor patterns with respect to different backgrounds and spatial/temporal contexts. In this paper,
we propose a probabilistic method, especially the Bayesian network, which is based on the idea that
those complexities might be handled better with a probabilistic approach.

The paper is organized as follows: In Section 2, we provide some analyses to show the complexity
of eating activities based on the real-life logging, and specify requirements to deal with those issues.
In Section 3, we explore HAR-related works using low-level sensor data, and related theories analyzing
components of human activity. In Section 4, we explain how to construct Bayesian networks in further
detail, and verify their realistic usefulness in a variety of angles in Section 5. Finally, Section 6 concludes
the paper and discusses future works.

2. Background

Before further discussions, we have collected the sensor data of 10 daily activities, including
eating activities, from 25 subjects (detailed specifications are provided in Section 5) equipped with the
wrist-wearable device and a smartphone with sensors (see Section 4.1), and have analyzed to ascertain
the complexity of eating activities and show the requirements for the eating activity recognizer to be
useful in the real world.

Table 1 shows the correlation scores of each attribute with respect to the class (darker color
indicates higher value). Since we had collected the various eating activities, such as eating chicken
with a fork, or a sandwich with a hand, eating activities of a baby, and so on, each attribute itself
showed very low correlation scores. Despite the popular adoption and relatively high performance of
accelerometers, the scores of ‘h_acc’s (‘h’ for a hand, ‘acc’ for an accelerometer) are considerably low,
even lower than those of the environmental attributes (‘lux’ for illuminance, ‘temp’ for temperature,
‘hum’ for humidity), except the ‘h_acc_y’ which measures the back-and-forth motion of the hand
when eating. The scores of ‘acc’s are considerably high compared to other attributes, but they are
also fairly low and largely caused by the constraints that the collection was not done with the user’s
phone and they usually did not use the phone. Considering many people operate their smartphone
while eating, it is rational to expect that those scores would be lower, like ‘h_acc’s. Table 2 shows
the correlation matrix of the attributes (darker color indicates higher value), which also shows very
low value, except ‘h_acc_x’ and ‘h_acc_y’, and ‘acc’s. Figure 1 shows a more specific example of a
three-axis accelerometer value of the hand of four different eating activities. Even with a glimpse of
observation, there are considerably different patterns: ‘h_acc_y’ of the child is comparably low as the
position of the food is higher for them; the variance of all values is low when eating outside, as the user
grabbed a sandwich and did not move his hand frequently; ‘h_acc_x’ is much higher than other cases
when eating chicken using a fork, as the user tore on the left and right sides, and so on. In addition
to the value of the sensor located on the wrist, the value of the smartphone sensor could be more
unpredictable and variable as the smartphone could be anywhere while eating: in the pocket, on the
table, in the hand, and so on. These could imply that the recognizer may require (i) manual modeling
of activity instead of using the sensor value itself, or automatically extracted features with a learning
classifier; (ii) a probabilistic reasoning that infers various kinds of contexts occurring probabilistically.
In addition to the precise recognition itself; (iii) the constraint of the power and memory consumption
of sensors; and (iv) the obtrusiveness to the user should be considered for the practical usage [5],
as a recognizer should collect and recognize continuously without charging and too high a battery
consumption could restrict the usage of devices for the original purpose.
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Table 1. Correlation scores of each attribute.

Name 1 Value h_acc_x 2 h_acc_y h_acc_z h_lux h_temp h_hum acc_x acc_y acc_z

Correlation Pearson correlation
coefficient 0.1068 0.2887 0.0819 0.0217 0.0101 0.1379 0.2351 0.2837 0.3997

InfoGain H(C)− H(C|A) 0.0883 0.1866 0.0725 0.0685 0.1202 0.1556 0.4786 0.4604 0.336
GainRatio H(C)−H(C|A)

H(A)
0.0142 0.0304 0.0137 0.0133 0.0157 0.02 0.076 0.0678 0.0737

SymUncert 2(H(C)−H(C|A))
H(C) + H(A) 0.0245 0.0523 0.023 0.0222 0.0278 0.0354 0.1311 0.1181 0.1208

1 Correlation coefficient, information gain, information gain ratio, symmetric uncertainty; 2 h = hand, acc = accelerometer, lux = illuminometer, temp = temperature, hum = humidity.

Table 2. Correlation matrix of attributes.

h_acc_x h_acc_y h_acc_z h_lux h_temp h_hum acc_x acc_y acc_z

h_acc_x 1 0.32 0.07 0.04 0.08 0.03 0.09 0.08 0.15
h_acc_y 1 0.1 0.07 0.16 0.07 0.13 0.19 0.21
h_acc_z 1 0.04 0.05 0.04 0.04 0.12 0.14
h_lux 1 0.06 0.07 0.17 0.04 0.05

h_temp 1 0.09 0.21 0.23 0.22
h_hum 1 0.01 0.06 0.02
acc_x 1 0.49 0.61
acc_y 1 0.77
acc_z 1
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To fulfill those requirements, the proposed method (i) uses only five types of low-power sensors
attached to the smartphone and the wrist-wearable device (Figure 2); (ii) is built on the context
model of an eating activity which could represent the composition of complex eating activities, based
on theoretical background and domain knowledge; and (iii) uses the Bayesian network (BN) for
probabilistic reasoning, with a tree-structured and modular design approach to increase the scalability
and reduce the cost for inference and management. Our contributions are as follows: (i) obtain and
describe the complexity of real activities and the limitations of typical learning algorithms using
real complex data; (ii) recognize the activity using only low-power and easily-accessible sensors;
(iii) propose the formal descriptive model based on the theoretical background and show its usefulness;
and (iv) provide the various experiments and analyses using a large amount of data from 25 different
volunteers with 10 activities and various features.

Figure 1. A time-series variation of acceleration sensor data in various activities.

Figure 2. Smartphone and wrist-wearable device for data collection.
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3. Related Works

Approaches for human activity recognition can be classified as two categories in terms of
the location of sensors: external sensors and internal sensors [5]. Using external sensors, such as
surveillance cameras for intrusion detection, a set of thermometers, hygrometers, or motion detectors
for a smart home, is a primary approach. However, the internal sensor approach is more suitable for
eating activity recognition because (i) the external sensor approach cannot track the user as sensors
are generally fixed at a specific location; (ii) a user-centered sensor environment is better than a
location-centered sensor environment for personalized context-aware services; and (iii) personal sensor
data could be abused for intruding privacy. For these reasons, we have chosen the internal sensor
approach using a mobile and wearable device that can be widely used in daily life.

Table 3 shows recent studies of the internal sensor approach for human activity recognition using
various sensors and methods. Three-axis accelerometers are most widely used for the activities deeply
related with a user’s motion. However, accelerometers may not enough for the source of information
when a recognizer attempts to recognize a complex activity. Bao et al. tried to recognize 20 daily
activities using accelerometers attached to five locations [6]. In his experiment, accuracies of complex
activities, such as stretching (41.42%), riding an elevator (43.58%), or riding an escalator (70.58%),
were far lower than other simple activities, and showed larger deviations between people, or even in
one person. This implies that complex activities with a great variety of different patterns may need
more sensors, such as hygrometers or illuminometers, for environmental information. Cheng et al.
recognized daily activities including food/water swallowing, using electrodes attached to the neck,
chest, leg, and wrist [7]. Although it seems fairly reasonable using electrodes attached to the neck
or chest for eating activity recognition, and they recognized various complex activities with better
than 70% accuracy, their sensor environment might be uncomfortable in daily life. Obtrusiveness of
the user should be concerned for the daily activity recognizer to be practical [8]. If the construction
cost of the sensor environment is very high, or a user feels very uncomfortable wearing those devices,
the recognizer is difficult to be used, generally. Thus, the composition and location of sensors must be
acceptable for daily life. In addition, the energy consumption for sensor data collection should also be
reasonable: if a smartphone will be run out of power after recognizing for just a few hours, not many
people will want to use it. For this reason, it is difficult to use non low-power sensors, like the Global
Positioning System (GPS) or gyroscopes.

Table 3. Sensors, activities, and methods of daily activity recognition works.

Author Sensors Activities Feature Extraction Classifier

Jatoba et al. [5] Accelerometer
(wrist, elbow, etc.)

Walking, jogging,
climbing upstairs, etc.

Step count, mean value
of local maxima, angle

value, etc.

K-nearest neighbor,
naïve Bayes, binary
decision tree, etc.

Bao et al. [6]
Accelerometer

(wrist, ankle, tight,
elbow, hip)

20 daily activities
(eating, walking, etc.)

Mean, energy, entropy,
etc.

Decision tree, naïve
Bayes, nearest neighbor,

decision table

Cheng et al. [7] Electrodes
(neck, chest, leg, wrist)

Looking to various sides,
bread/water

swallowing, etc.
(while sitting/walking)

Manual observation,
time-domain features

Linear discriminant
analysis

Tapia et al. [9]

Accelerometer
(right-wrist, tight,
ankle), heart rate

monitor

Various exercise
(walking, running,

ascending/descending
stairs, cycling, rowing,

etc.)

Mean distance, entropy,
correlation coefficient,
FFT peaks and energy

Decision tree, naïve
Bayes

Lee et al. [10] Accelerometer
(wrist, hip)

20 daily activities
(dinner, lunch, office

work, etc.)

Mean, standard
deviation, mean crossing

rate

Semi-Markov
conditional random field

There are also many issues for feature extraction and classification. A large number of studies used
statistical indices directly calculated from the sensor data value, such as the mean, standard deviation,
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energy, entropy, and so on. For complex activities, like eating or drinking, manual observation for
patterns has also been conducted [7]. As shown in Figure 1, and studies in Table 3, sensor values
could have a large deviation between people with various ages, genders, cultures, or even in one
person. We attempted to find and construct the general context model for activity recognition based
on the “Five Ws” (who, what, when, where, and why) and activity theory. The Five Ws are a publicly
well-known and self-explanatory method to analyze and explain a situation for humans, so it can give
a more understandable result [11]. Marchiori attempted to classify a very large amount of data on
the World Wide Web based on Five Ws, and Jang used the Five Ws to define a dynamic status of a
resident in a smart home [11,12]. Although the Five Ws give us a systematic and widely-agreed method
of describing a situation, it is too abstract to apply directly to low-level sensor data. For example,
eating a lunch at a restaurant cannot be directly recognized by acceleration or temperature. It should
be embodied in a measurable level like ‘correspondence of the space illumination’. Activity theory
gives more specific evidence on how an activity should be composed. Nardi compared an activity
theory with situated action models and a distributed cognition approach to systemically understand
a structure of human activity and situation [13]. According to activity theory, a human activity
consists of a subject, which includes human(s) in that activity, an object as a target object of the
subject, which induces a subject to a special aim, an action that subject must perform in order to
achieve the intended activity, and an unconsciously and repetitively occurring operation while doing
an activity [14]. While action theory is primarily to examine the individual’s own behavior as an
analysis unit, situated action theory focuses on the relevance of actors and environmental factors at
the moment of occurrence of the activity [15,16]. According to this theory, defining a human activity
systemically should sufficiently consider environmental factors which can fluctuate dynamically [13].
In our proposed model, subject properties represent emergent properties of an eating person, which can
be subclassified as an action and an operation. To deal with environmental factors, we use spatial and
temporal properties independently.

For the classifiers for human activity recognition, learning approaches, such as decision trees,
hidden Markov models, naïve Bayes, and nearest neighbor, are dominant. A large number of studies
show a high accuracy for many daily activities (Table 1). However, as an activity becomes complex,
or the number of subjects increases, many deterministic classifiers may not give good accuracy:
Tapia et al. recognized various exercising activities and obtained over 90% accuracy for one subject,
but 50–60% for many subjects. Vinh et al. used a probabilistic approach, a semi-Markov conditional
random field, and showed good accuracy for complex activities, including dinner, lunch, and so on [10].
In this paper, we propose the Bayesian network that learns its conditional probability table for the
probabilistic approach.

4. Proposed Method

Figure 3 shows the overall system architecture of the proposed method. It has a modular BN
that infers the target activity node from a child node, which infers the low-level context, and simple
decision trees that infer evidence nodes of the modular BN (see Sections 4.2 and 4.3). When the
training process starts and the raw sensor data from nine channels and its class information are entered,
the system learns and constructs its decision tree and conditional probability table, as described in the
Section 4.3. For the recognition, the trained decision trees obtain raw sensor data continuously and
make an inference of the probability of their evidence node, and the modular BN infers gradually from
the evidence nodes to the query node, the eating activity. If the probability of the query node is larger
than the predefined threshold, the recognition result becomes ‘eating’.

4.1. Sensors

As mentioned in Section 1, we only used low-power sensors attached to the smartphone and a
wrist-wearable device to consider constraints of power consumption and obtrusiveness of the user.
The distribution rate of the wrist-wearable device is much higher than other forms of wearable devices
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and is in a natural position to collect daily life data consistently. Moreover, as we use our hands
to eat something, the wrist is an appropriate position to collect food intake-related movement and
the position of hands, and parametric temperature or humidity. We combined the four kinds of
sensors for the wrist-wearable device (Figure 2), which are composed of MPU-9250 motion sensor of
InvenSense (Seoul, republic of Korea), BME280 environment sensor of Bosch (Seoul, republic of Korea),
and APDS-9900 illumination sensor of Avago Technologies (Seoul, republic of Korea). Table 4 shows
the type of sensors with their power consumption and collecting frequency. The device can collect
data continuously for about 6 h without charging.

Figure 3. An overview of the proposed method.

Table 4. Sensors attached to wrist-wearable devices for recognition.

Sensor Abbreviation Units Power
Consumption

Collecting
Frequency

Accelerometer h_acc m/s2 450 µA 20 Hz
Illuminometer h_lux lux 250 µA 1 Hz
Thermometer h_temp ◦C 1.0 µA 1 Hz
Hygrometer h_hum g/m3 0.8 µA 1 Hz

4.2. Context Model of Activity

An eating activity is a complex activity which consists of many low-level contexts, such as
the spatial and temporal background, movement of the wrist, and temperature. Table 5 shows the
web ontology language (OWL) representation of the proposed context model based on the activity
theory and the “Five W’s”, for systemic analysis on an eating activity. Four subclasses represent the
components of the Five W’s, except ‘Why”, as this context is considered difficult to measure with
the limited sensor environment. A subject property consists of goal-directed processes (actions) and
the unconsciously appearing status of the body (body temperature, posture, and so on; operations).
Nine properties describe the low-level context of the eating activity. Each intermediate node is linked to
leaf nodes, namely, sensors, which are considered as related. Although the movement of the user is the
main feature to recognize activities, used for most intermediate nodes, environmental features could
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also contribute, especially when the movement patterns are diverse. The proposed context model
has three other subclasses (object, spatial, and temporal properties) to consider those environmental
factors. A temporal property uses the system time for judging one property, whether the current time
is appropriate for eating. A spatial property has four properties, such as whether the user is indoors
or outdoors, changes of space, and whether the intensity of illumination of the space is appropriate
for eating.

Table 5. OWL representation of the context model for eating activity recognition.

Class: Eating
activity

subClassOf:
Subject property

subClassOf:
Activity

subClassOf: Wrist

ObjectProperty: Position
of hand

ObjectProperty:
Dinnerware

ObjectProperty:
Movement of hand

subClassOf: Body

ObjectProperty: Posture

ObjectProperty:
Move/stop

ObjectProperty:
Movement of body

subClassOf:
Operation

ObjectProperty: Body temperature

ObjectProperty: Posture

ObjectProperty: Humidity of hand

subClassOf: Object
property ObjectProperty: Existance of food

subClassOf: Spatial
property

ObjectProperty: Eating place

ObjectProperty: Indoor/outdoor

ObjectProperty: Move/stop

ObjectProperty: Illuminance of space

subClassOf:
Temporal property ObjectProperty: Eating time

4.3. The Proposed Bayesian Network

A formal definition of the BN and its nodes are as follows.

Definition 1. A BN is a directed acyclic graph (DAG) with a set of nodes N, a set of edges E = (Ni, Nj),
and a conditional probability table (CPT) which represents a causal relationship between connected nodes. Each
node represents a specific event on the sample space Ω, and each edge and the value of the CPT represent a
conditional relationship between a child node and parent nodes, P(C = c|P = p) . Given the BN and evidence
e, the posterior probability P(N|e) can be calculated by chain rule, where Pa(N) is the set of parent nodes of
N [17]:

P(N|e) = ∏ P(N|Pa(N))× e = ∏ P(N|Pa(N)) ∏
ei∈e

ei, (1)

Definition 2. A set of nodes N consists of the set of query nodes Q, which represents the event user wants to
know from the BN a set of evidence nodes V, which observes the sensor data and classifies the properness, and a
set of inference nodes I, which infers the probability of related contexts based on a CPT.

Figure 4 shows the proposed BN. The proposed BN consists of V, I, and Q, where |V| = 64,
|I| = 23, and |Q| = 1. Full names of sensors are described in Table 4. Nodes in V are set by nine types
of low-level sensor data, the query node in Q represents the recognition result, eating or not, and each
intermediate node in I represents the sublevel context of the target activity. By using intermediate
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nodes, the proposed model is more resistant to overfitting than typical learning models which mainly
depend on automatically calculated statistics, such as the mean, deviation, or Fourier coefficients.
For example, even if the model is trained only with the eating data using a fork, it could approximately
recognize the eating activity using chopsticks if the user eats while sitting and shows the similar
pattern of the movement of the hand, and so on. Moreover, in addition to the complex composition
of the eating activity itself, there could be many unexpected or omitted sensor values: user may eat
while lying down or eat at midnight, or take off the wrist-wearable device or smartphone, where the
accelerometer value is omitted. A BN could deal with these issues as it provides the probabilistic
approach for recognizing each context, so it can give an approximate answer even if some data are
uncertain or missing, compared to other deterministic classifiers which give a wrong answer or cannot
give any answer at all.

Figure 4. The proposed Bayesian network.

For a structure of the proposed BN, we construct the modular BN with a tree-structured design.

Definition 3. Modular Bayesian network [18]. A Modular BN (MBN) consists of a set of submodular BNs M
and the conditional probability between submodules R. Given BN submodules θi = (Vi, Ei) and θj =

(
Vj, Ej

)
,

the link Ri,j = {< θi, θj >|i 6= j, Vi ∩ Vj = ∅} is created. Two submodules are connected and communicate
only by shared nodes.

The proposed MBN has one main module containing a query node and four submodules where
each leaf node in a main module (object/spatial/subject/temporal) becomes the root node of each
submodule. All submodules are designed by a tree-structured approach, where each module has
only one root node, which is also a shared node, and all child nodes have exactly one parent node.
By following these design approaches, the proposed model is more explainable as the probability
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of each shared node could easily be calculated and explain the probability of each context to an
individual. Moreover, these design approaches substantially reduce the complexity of the BN to
O(k3nk + wn2 + (wrwrw)n); by limiting k to 2 and minimizing the w, where n is the number of nodes,
k is the maximum number of parents, r is the maximum number of values for each node, and w is the
maximum clique.

Algorithm 1. Learning algorithm for the CPT.

for∀D,// D is the input data
increment numOfData by 1;
C := class of D;
for i = 1 to n(I) do
if C includes Ii then

increment num(Ii) by 1;
if ∃ q ∈ Q s.t. q ∈ C then increment num(Ii ∩Q);

for i = 1 to n(I) do

P(Ii) := num(Ii)
numO f Data ;

CPT(Ii) := P(Ii|Q) =
P(Ii ,Q)
P(Q)

=
num(Ii∩Q)

num(Q)
;

To calculate the value of the CPT, the proposed BN learns the data using simple learning algorithm.
In the training process, the training data enters into E and I. For evidence nodes in E, there is a simple
binary decision tree for each evidence node and it learns a criterion for classification. For inference
nodes in I, BN counts the number of occurrences that C ⊂ Ii for ∀Ii ∈ I and update the element
of the CPT, as shown in Algorithm 1. For example, if Ck = {sitting} ∩ {dinnerware} ∩ {eating},
Ck ⊂ I1 = {sitting} and Ck ⊂ Q1 = {eating}, so num(I1) and num(I1 ∩ Q1) increment, and so on.
For this algorithm, the proposed BN needs O((M + N)× ND) time complexity for learning, where
ND is the amount of data, and when either the number of nodes or data is fixed, the time complexity
becomes linear.

5. Experimental Results

5.1. Data Specification

For the experiment, we collected 948 min of data from 25 different volunteers for 10 activities.
Subjects were asked to wear a wrist-wearable device and have a smartphone, performed activities
that they wanted to perform, and tagged the activity they were doing on the smartphone when the
new activity started. They were also asked not to perform more than one activity simultaneously to
collect accurate sensor data for each class. If they performed another activity that were not supposed
to be collected, such as moving to another place or getting a phone call, collection was temporarily
stopped. To collect as much real-life data as possible, we did not request them to come to a certain
place; instead, we went to where they lived while performing their daily activities and collected the
data. When a self-tagging was difficult, like for a baby or the elderly who are not familiar with a
smartphone, we observed and tagged their activities simultaneously. Each subject performed, at most,
four different activities and each activity was prolonged for, at most, 20 min to prevent a small number
of subjects from dominating most of the data. A specific distribution of each item is shown in Table 6,
and indices of activities and jobs are shown in Table 7. We attempted to balance the gender of the
subjects, and chose the list of activities by referencing Activities of Daily Livings (ADLs) which is
known as a proper method describing the functional status of a human, performing an important role
in a healthcare service [19]. ‘Etc’ in the job includes a four-year old baby. An eating activity consists of
47.27% (448 min out of 948 min), so the data is well-balanced in terms of the eating activity.

Table 8 shows a brief comparison of the collected data with other popular open data for HAR:
Opportunity dataset [20] and Skoda dataset [21]. Note that as our approach is supposed to recognize
various real eating activities with people with various contexts, we focused on collecting the data from
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a sufficiently large number of subjects, so the length of collected data for each subject is relatively
small, which is supposed to capture short intervals of daily life, mainly including eating activities.
Additionally, note that we tried to use very limited sensors and devices, which are supposed to only
include low-power sensors that are easy to use in daily life.

Table 6. Data specification.

Activity Count Job Count Gender Count

1 1 (4%) 1 3 (12%) M 12 (48%)
2 2 (8%) 2 2 (8%) F 13 (52%)
3 1 (4%) 3 1 (4%) Age Count
4 11 (44%) 4 6 (24%) 0~10 2 (8%)
5 6 (24%) 5 1 (4%) 20~30 9 (36%)
6 3 (12%) 6 8 (32%) 30~40 2 (8%)
7 2 (8%) 7 3 (12%) 40~50 3 (12%)
8 5 (20%) 8 1 (4%) 50~60 8 (32%)
9 1 (4%) 60~ 1 (4%)

10 1 (4%)

Table 7. Index of activities and jobs.

Index Activity Job

1 Washing Undergraduate
2 Walking Graduate
3 Housework Student
4 Eating (dinnerware) Houseworker
5 Eating (etc.) No job
6 Conversation Office worker
7 Driving Businessman
8 Sedentary work etc.
9 Subway
10 Playing the piano

Table 8. Comparison of our dataset with another open dataset for HAR.

Number of
Subjects

Number of
Instances Length Activities Sensors

Our dataset 25 379,013 16 h 10 daily
activities

Three-axis accelerometers (2),
hygrometer, illuminometer,

thermometer

Opportunity 4 96,667 6 h 17 simple
activities

Inertial measurement unit (7),
three-axis accelerometers (12)

Skoda 1 179,853 3 h 10 gestures Three-axis accelerometers (20)

5.2. Accuravy Test

Tables 9 and 10 show the result of the 10-fold cross-validation of the proposed BN. The proposed
BN produced 76.86% accuracy with the threshold value of 0.6. The specificity of the proposed BN (83%)
was higher than the sensitivity (76.05%), which means that the proposed BN classifies better in the
non-eating activity than the eating activity. Figure 5 shows the ROC (receiver operating characteristic)
curve as the threshold for the eating probability decreases. The cost for decreasing the threshold
was the smallest at the point ‘threshold = 0.6’, and where the threshold is lower than 0.2, the BN
classified all activities as an eating activity. As shown in Figure 5, the AUC (area under curve) is
fairly large, which supports the usefulness of the BN. Figure 6 shows the accuracy, sensitivity, and
specificity of the various typical learning classifiers. We used the Weka 3.8.0 tool (of the university of
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the Waikato, Hamilton, New Zealand) to analyze the results. Five classifiers have a large deviation
between tests, as they tend to be overfitted to the train data; when the test data is composed mostly of
similar data with the train data, their performance is very high, but in the other case, they are very
low. The proposed BN, LR, and RF showed smaller deviations. The accuracy of the proposed BN was
7.54–14.4% higher than other classifiers. In the case of naïve Bayes and Adaboost, sensitivities are
very high (96.15% and 95.91%, respectively), but specificities are also very low (37.68% and 53.77%,
respectively), which means that the two classifiers classified most cases as an eating activity. For the
multilayer perceptron (MLP), it showed good results among five other classifiers, but the time to build
the model and classify was much higher than other methods. For the one-sample t-test, suppose
the population has a normal distribution, and let the null hypothesis Ho = ′accuracy < 0.8′. With
X = 0.7854, s = 0.386, t = −0.0378 > −2.262, and Ho is rejected. When Ho′ =′ accuracy > 0.9′,
t = −0.2969 < −2.262 , so Ho′ is rejected and the proposed model is expected to have an accuracy of
0.8–0.9 for the population.

Figure 5. ROC curve for the proposed BN.

Figure 6. Ten-fold cross-validation for other typical classifiers (accuracy, sensitivity, specificity).
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Table 9. Confusion matrix of the proposed BN.

Positive Negative

True TP = 136,354 FN = 42,937
False FP = 33,949 TN = 165,773

Table 10. Statistical indices of the results.

Index Value

Accuracy TP+TN
TP+TN+FP+FN = 79.71%

Precision TP
TP+FP = 80.07%

Sensitivity TP
TP+FN = 76.05%

Specificity TN
FP+TN = 83%

5.3. Error Case Analysis

Figure 7 shows the proportion of each activity to the whole error case, and Figure 8 shows the
error rate of each activity. The index of each activity is shown in Table 7. Eating with dinnerware shows
the highest proportion (40%), followed by sedentary work (30%) and conversation (10%). However,
due to the proportion of eating with dinnerware being far greater than that of sedentary work, the error
rate is much larger with respect to sedentary work (0.424). As sedentary work and conversation
generally show similar patterns in the amount of movement of the hand, and usually happens indoors,
the same as with the eating activity, the two activities show a higher error rate than any other activities.
However, in the case of walking, as it is typically a dynamic activity easily distinguished from the
eating activity, it showed a very low error rate (0.004%; 174 lines out of 39,822 lines). For driving
and subway activities, differences of movement and spatial properties make those activities’ error
rates low.

Figure 7. Proportion of the error case.

Figure 9 shows the specific case, which is the eating activity of a left-handed person, who wore
the wrist-wearable device on the right wrist and mainly used the left hand to eat, but also used the
right hand for moving food, using a smartphone, gesturing in conversation, and so on. Compared to
the right-handed person (Figure 1), the accelerometer shows a different pattern, such as a much lower
and steady value for the x-axis and a higher and irregular pattern of the y and z-axis, as they used their
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right hand for various purposes in addition to eating. As a result, the probability of using dinnerware
shows very low and high deviance. However, as the person ate in a normal environment like other
subjects, the spatial property compensating the final recognition and overall eating probability shows
acceptable results. This means that the proposed BN could approximately recognize the complex
eating activity when one of the contexts or sensor values has a very different pattern or is even omitted.
Note that the proposed method might approximately recognize these cases without incorporating
information of which hand the person uses and applying different algorithms. This is important since,
in the real world, the person might use different hands for various situations; one might prefer to use
the left hand to drink coffee, while using the right hand to eat chicken.

Figure 8. Error rate of each activity.

Figure 9. Eating activity of a left-handed person.
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6. Conclusions

In this paper, we proposed the eating activity recognition method based on a Bayesian network,
using low-power sensors attached to a smartphone and a wrist-wearable device. Contributions
of this paper are as follows: (i) obtain and describe the complexity of real activity and limitations
of typical learning algorithms using real complex data; (ii) recognize it using only low-power and
easily-accessible sensors with low time complexity; (iii) propose the probabilistic model based on the
theoretical background; and (iv) provide the various experiments and analysis using large data from
25 different volunteers for 10 activities and various features, showing the usefulness of the proposed
method. The proposed method showed an accuracy of 79.71%, which is higher than other learning
classifiers, with of 7.54–14.40% better accuracy. We analyzed the error case and the results show that
the proposed method could approximately give the answer even when some of contexts or sensor
values are very different. Future works include the collection of much larger and representative data,
the construction and evaluation of the proposed method for various complex and daily activities, and
the evaluation of the proposed method with open data.

Acknowledgments: This work was supported by an Electronics and Telecommunications Research Institute (ETRI)
grant funded by the Korean government (17ZS1800, Development of self-improving and human-augmenting
cognitive computing technology).

Author Contributions: Sung-Bae Cho devised the method and guided the whole process to ccreate this paper;
Kee-Hoon Kim implemented the method and performed the experiments; and Kee-Hoon Kim and Sung-Bae Cho
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Testoni, V.; Penatti, O.A.B.; Andaló, F.A.; Lizarraga, M.; Rittner, L.; Valle, E.; Avila, S. Guest editorial: Special
issue on vision-based human activity recognition. J. Commun. Inf. Syst. 2015, 30, 58–59. [CrossRef]

2. Tian, L.; Sigal, L.; Mori, G. Social roles in hierarchical models for human activity recognition. In Proceedings
of the Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012.

3. Casale, P.; Pujol, O.; Radeva, P. Human activity recognition from accelerometer data using a wearable
device. In Proceedings of the Pattern Recognition and Image Analysis, Las Palmas de Gran Canaria, Spain,
8–10 June 2011.

4. Liu, L.; Peng, Y.; Wang, S.; Liu, M.; Huang, Z. Complex activity recognition using time series pattern
dictionary learned from ubiquitous sensors. Inf. Sci. 2016, 340, 41–57. [CrossRef]

5. Jatoba, L.C.; Grossmann, U.; Kunze, C.; Ottenbacher, J.; Stork, W. Context-aware mobile health monitoring:
Evaluation of different pattern recognition methods for classification of physical activity. In Proceedings
of the IEEE Annual Conference of Engineering in Medicine and Biology Society, Vancouver, BC, Canada,
20–25 August 2008.

6. Bao, L.; Intille, S.A. Activity recognition from user-annotated acceleration data. In Proceedings of the
Pervasive Computing, Vienna, Austria, 18–23 April 2004.

7. Cheng, J.; Amft, O.; Lukowicz, P. Active capacitive sensing: Exploring a new wearable sensing modality for
activity recognition. In Proceedings of the Pervasice Computing, Helsinki, Finland, 17–20 May 2010.

8. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun.
Surv. Tutor. 2013, 15, 1192–1209. [CrossRef]

9. Tapia, E.M.; Intille, S.S.; Haskell, W.; Larson, K.; Wright, J.; King, A.; Friedman, R. Real-time recognition of
physical activities and their intensities using wireless accelerometers and a heart rate monitor. In Proceedings
of the IEEE International Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007.

10. Lee, S.; Le, H.X.; Ngo, H.Q.; Kim, H.I.; Han, M.; Lee, Y.-K. Semi-Markov conditional random fields for
accelerometer-based activity recognition. Appl. Intell. 2011, 35, 226–241.

11. Marchiori, M. W5: The Five Ws of the World Wide Web. In Proceedings of the International Conference on
Trust Management, Oxford, UK, 29 March–1 April 2004.

12. Jang, S.; Woo, W. Ubi-ucam: A unified context-aware application model. In Proceedings of the Modeling
and Using Context, Stanford, CA, USA, 23–25 June 2003.

http://dx.doi.org/10.14209/jcis.2015.7
http://dx.doi.org/10.1016/j.ins.2016.01.020
http://dx.doi.org/10.1109/SURV.2012.110112.00192


Sensors 2017, 17, 2877 16 of 16

13. Nardi, B.A. Context and Consciousness: Activity Theory and Human-Computer Interaction; Massachusetts Institute
of Technology: Cambridge, MA, USA, 1995; pp. 69–102.

14. Leont’ev, A.N. The problem of activity in psychology. Sov. Psychol. 1974, 13, 4–33. [CrossRef]
15. Suchman, L.A. Plans and Situated Actions: The Problem of Humanmachine Communication; Cambridge University

Press: Cambridge, UK, 1987.
16. Ghahramani, Z. Learning dynamic Bayesian networks. In Adaptive Processing of Sequences and Data Structures;

Giles, C.L., Gori, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 168–197.
17. Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010;

pp. 29–54.
18. Lim, S.; Lee, S.-H.; Cho, S.-B. A modular approach to landmark detection based on a bayesian network and

categorized context logs. Inf. Sci. 2016, 330, 145–156. [CrossRef]
19. Hong, Y.-J.; Kim, I.-J.; Ahn, S.C.; Kim, H.-G. Mobile health monitoring system based on activity recognition

using accelerometer. Simul. Model. Parct. Theory 2010, 18, 446–455. [CrossRef]
20. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.;

Ferscha, A.; et al. Collecting complex activity data sets in highly rich networked sensor environments.
In Proceedings of the 7th IEEE International Conference on Networked Sensing Systems (INSS), Kassel,
Germany, 15–18 June 2010; pp. 233–240.

21. Zappi, P.; Lombriser, C.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition from on-body
sensors: Accuracy-power trade-off by dynamic sensor selection. In Proceedings of the 5th European
Conference on Wireless Sensor Networks (EWSN), Bologna, Italy, 30 January–1 February 2008; pp. 17–33.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2753/RPO1061-040513024
http://dx.doi.org/10.1016/j.ins.2015.10.017
http://dx.doi.org/10.1016/j.simpat.2009.09.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Related Works 
	Proposed Method 
	Sensors 
	Context Model of Activity 
	The Proposed Bayesian Network 

	Experimental Results 
	Data Specification 
	Accuravy Test 
	Error Case Analysis 

	Conclusions 

