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Abstract: Most of the existing calibration methods for binocular stereo vision sensor (BSVS) depend
on a high-accuracy target with feature points that are difficult and costly to manufacture. In complex
light conditions, optical filters are used for BSVS, but they affect imaging quality. Hence, the use
of a high-accuracy target with certain-sized feature points for calibration is not feasible under such
complex conditions. To solve these problems, a calibration method based on unknown-sized elliptical
stripe images is proposed. With known intrinsic parameters, the proposed method adopts the
elliptical stripes located on the parallel planes as a medium to calibrate BSVS online. In comparison
with the common calibration methods, the proposed method avoids utilizing high-accuracy target
with certain-sized feature points. Therefore, the proposed method is not only easy to implement
but is a realistic method for the calibration of BSVS with optical filter. Changing the size of elliptical
curves projected on the target solves the difficulty of applying the proposed method in different
fields of view and distances. Simulative and physical experiments are conducted to validate the
efficiency of the proposed method. When the field of view is approximately 400 mm × 300 mm,
the proposed method can reach a calibration accuracy of 0.03 mm, which is comparable with that of
Zhang’s method.
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1. Introduction

Calibration of stereo vision sensors is an essential step of vision measurement [1–3]. Vision sensors
with high calibration accuracy usually guarantee high measurement accuracy. Vision measurement
is mainly conducted to complete the 3D reconstruction of the measured objects. According to the
measuring principle, the vision measurement system can be divided into three major categories:
(1) line-structured light measurement system; (2) binocular stereo vision measurement system;
(3) multi-camera stereo vision measurement system. When adopting the line-structured light method,
extraction accuracy of the center of the light stripe affects the measurement accuracy [4,5]. Light
scattering occurs when the projection angle between the light plane and the object is relatively
large. As a result, calibration and measurement accuracy decline. The multi-camera stereo vision
measurement system can implement online vision measurement with a large field of view and
multi-viewpoints, and it is equivalent to multi-pair binocular stereo vision sensors (BSVSs) [6].
Therefore, research on the calibration of BSVS is of great significance.
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To date, research on the calibration of BSVS mainly focused on the different forms of high-accuracy
targets, including 1D [7,8], 2D [9], and 3D targets [10,11]. Zhao et al. [12] proposed a method based on
a 1D target with two feature points of known distance. Compared with Zhang’s method [13], which
is also based on a 1D target, Zhao’s method not only improves the calibration accuracy of intrinsic
parameters but also implements the extrinsic parameter calibration of BSVS. Zhang’s method [14]
using the planar checkerboard target has made a remarkable impact on the study of camera calibration.
Other methods using rectification error optimization [15] and perpendicularity compensation [16]
have been proposed to improve calibration accuracy.

To achieve high-accuracy calibration under complex circumstances, different forms of targets
are utilized in the calibration of BSVS. A calibration method based on spot laser and parallel planar
target is proposed to improve calibration under complex light conditions [17]. This method does
not rely on feature points with known distance or size. In each shot, only one spot is projected on
the target, resulting in low efficiency in online measurement. Given that random noise is inevitable,
this method cannot guarantee high accuracy due to the location uncertainty of feature points in
a picture. Wu et al. [18] proposed a global calibration method based on vanishing features of a target.
In addition, the specially designed target is constructed of two mutually orthogonal groups of parallel
lines with known lengths. Zhang et al. [19] proposed a novel method based on spherical target images
with certain size, which implements synchronous calibration of a multi-camera system. At present,
the spherical target with extremely high quality is hard to manufacture. Considering the noise,
unideal light conditions and other factors, using a spherical target to calibrate does not guarantee high
accuracy [20,21].

From the abovementioned methods, accuracy of the distance of feature points or the size of
the target is a common requirement. In addition, accuracy of the requisite sizes greatly affects the
calibration accuracy of BSVS. To solve the problem presented above, this study introduces a novel
calibration method that does not rely on specific feature points and works efficiently under complex
conditions. The proposed method adapts a ring laser to project an elliptical stripe on the parallel planar
target. During the calibration, Zhang’s method is primarily utilized to obtain the intrinsic parameter
of two cameras. The elliptical stripes are then used as the medium to solve the extrinsic parameters.
Finally, the optimal solutions of calibration results are obtained via non-linear optimization.

The remainder of this paper is organized as follows. Section 2 mainly describes the mathematical
model of BSVS, the algorithm principles, realization procedure, and other details of the proposed
method. Section 3 discusses other expansive forms of the proposed method, as well as its relevant
performance under complex lighting conditions. Section 4 presents the simulation and real data
experiments conducted to validate the effectiveness of the proposed method. Section 5 states the
conclusions of our work.

2. Principle and Methods

2.1. Mathematical Model of BSVS

As shown in Figure 1, the coordinate systems of the left and right cameras are Oc1xc1yc1zc1

and Oc2xc2yc2zc2, respectively. p̃L = [ uL vL 1 ]
T

and p̃R = [ uR vR 1 ]
T

are homogeneous
coordinates of non-distorted images of point P in the coordinate system of the image by the left and
right cameras, respectively. The transformation matrix from the coordinate system of the left camera to

that of the right camera is TLR =

[
RLR tLR

0 1

]
, where RLR, tLR are the rotation matrix and translation

vector, respectively. rLR is the Rodrigues’ representation of the rotation matrix RLR.
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2.2. Algorithm Principle 

The calibration process of the proposed method is shown in Figure 2. In our case, a single ring 
laser projector and a double parallel planar target are utilized to generate the elliptical stripes as 
illustrated in Figure 2. In addition, the distance between the two parallel planes is constrained. 
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Figure 1. Binocular stereo vision model.

The spot P is projected by the BSVS. The binocular stereo vision model is used to calculate the 3D
coordinates qL = [ xL yL zL 1 ] of point P in Oc1xc1yc1zc1:

ρLp̃L = KL

[
I3×3 03×1

]
qL

ρRp̃R = KR

[
RLR tLR

]
qL

(1)

where KL and KR are the matrices of intrinsic parameters of the left and right cameras, respectively.

K =

 ax γ u0

0 ay v0

0 0 1

, where u0 and v0 are the coordinates of the principal point, ax and ay are the

scale factors in the image u and v axes, and γ is the skew of the two image axes.

2.2. Algorithm Principle

The calibration process of the proposed method is shown in Figure 2. In our case, a single ring
laser projector and a double parallel planar target are utilized to generate the elliptical stripes as
illustrated in Figure 2. In addition, the distance between the two parallel planes is constrained.
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Figure 2. Calibration process of the binocular stereo vision sensor.

As shown in Figure 2, Qj(j = 1, 2) are the two elliptical stripes projected on the two parallel

planes. Qj =

 1/β2
j 0 0

0 1/α2
j 0

0 0 −1

 is the expression of the elliptical stripe in space, 2αj is the major

axis of the j-th ellipse, and 2β j is the minor axis of the j-th ellipse. We assume that Ojxjyjzj is the
coordinate of the j-th ellipse in space. For Ojxjyjzj, the y-axis is the major axis of Qj the x-axis is the
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minor axis of Qj, and the origin is the center of Qj in space. The projections of Qj in the left and right
cameras are denoted as eLj and eRj, respectively. RLj and tLj are the rotation matrix and translation
vector from Ojxjyjzj to Oc1xc1yc1zc1, respectively. RRj and tRj are the rotation matrix and translation
vector from Ojxjyjzj to Oc2xc2yc2zc2, respectively. RLR and tLR are the rotation matrix and translation
vector from Oc1xc1yc1zc1 to Oc2xc2yc2zc2, respectively. All of the coordinate frames generated by the
intersection of the parallel plane and conical surface projected by the single ring laser projector are
parallel to each other, that is, RL1 = RL2 and RR1 = RR2. Notably, the two elliptical stripes captured in
each case have the following properties:

1. he ratios of the minor axis to the major axis k = β j/αj are equivalent.

2. The minor axis of the major axis of one elliptical stripe is parallel to that of the other elliptical
stripe. The angles between the minor axis and the major axis of these two elliptical stripes
are equivalent.

2.2.1. Solving RLR

As shown in Equation (2), eLj and Qj are 3 × 3 matrices. According to multi-view geometry
foundation [22], the relationship between eLj and Qj is as following:{

pTeLjp = 0

qTQjq = 0
(2)

where p = [ u v 1 ]
T

is the undistorted image homogeneous coordinate of the point on the j-th

elliptical stripe under Oc1xc1yc1zc1, and q = [ x y 1 ]
T

is the coordinate of the point on the j-th
elliptical stripe under Ojxjyj.

Combining Equation (2) and the camera model, we have:

ρjQj = (KL[ r1 r2 t Lj])
T

eLjKL[ r1 r2 t Lj] (3)

where ρj represents the non-zero scale factors, and rj denotes the j-th column of the rotation matrix
RLj. KL represents the intrinsic parameter of the left camera and is obtained using Zhang’s method.

According to Equation (3), the equation relating eLj to Qj is obtained in Equation (4):

ρjQj = ρj

 1/β2
j 0 0

0 1/α2
j 0

0 0 −1

 =

 rT
1 Wjr1 rT

1 Wjr2 rT
1 WjtLj

rT
2 Wjr1 rT

2 Wjr2 rT
2 WjtLj

tT
LjWjr1 tT

LjWjr2 tT
LjWjtLj

 (4)

where Wj = KT
LeLjKL.

For two elliptical stripes located on the target, we have two equations in the form of Equation (4).
According to the property of the matrix in Equation (4), equations related to the two elliptical stripes
can be decomposed into the following 12 equations:

rT
1 W1r1 = ρ1/β2

1; rT
1 W2r1 = ρ2/β2

2; rT
2 W1r2 = ρ1/kβ2

1; rT
2 W2r2 = ρ2/kβ2

2;

rT
1 W1r2 = 0; rT

1 W2r2 = 0; rT
1 W1tL1 = 0; rT

1 W2tL2 = 0;

rT
2 W1tL1 = 0; rT

2 W2tL2 = 0; tT
L1W1tL1 = ρ1; tT

L2W2tL2 = ρ2

(5)

Establishing simultaneous equations with the first six equations in Equation (5) and utilizing the
orthogonality of r1 and r2, we have:

rT
1 W1r1 = krT

2 W1r2; rT
1 W2r1 = krT

2 W2r2; rT
1 W1r2 = 0; rT

1 W2r2 = 0;

rT
2 r2 = 1; rT

1 r1 = 1; rT
1 r2 = 0

(6)
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Non-linear optimization is adopted to solve Equation (6). Thereafter, r1 and r2 can be solved
directly. According to RL1 = RL2 = [ r1 r2 r1 × r2 ], we obtain RL1 and RL2. Similarly, the solution
of RR1 = RR2 can be determined.

Taking the target as a medium, the transformation matrix can be obtained as follows:[
RLR tLR

0 1

]
=

[
RR1 tR1

0 1

][
RL1 tL1

0 1

]−1

(7)

According to Equation (7), we have the final expression of RLR, which is shown in Equation (8)
as follows:

RLR = RR1R−1
L1 (8)

2.2.2. Solving tLR

Establishing simultaneous equations with the last four equations in Equation (5) yields the
following expression: 

rT
1 W1tL1 = 0

rT
2 W1tL1 = 0

rT
1 W2tL2 = 0

rT
2 W2tL2 = 0

(9)

Given that Equation (9) has a typical form of AX = 0, we cannot obtain a unique non-zero solution
tL1 and tL2 by solving Equation (9) directly. Upon analyzing Equation (9), tL1 and tL2 are the center
of eL1 and eL2, respectively, which are the coordinates of the origin point of O1x1y1z1 and O2x2y2z2,
respectively. Suppose that t̃L1 and t̃L2 are the unit vectors from the origin point of Oc1xc1yc1zc1 to the
origin point of O1x1y1z1 and O2x2y2z2, we have:{

t̃L1 = (WT
L1r1 ×WT

L1r2)/‖(WT
L1r1 ×WT

L1r2)‖
t̃L2 = (WT

L2r1 ×WT
L2r2)/‖(WT

L2r1 ×WT
L2r2)‖

(10)

Similarly, the rotation matrix RR1 = RR2 and the translation vectors t̃R1, t̃R2 can be solved
according to the abovementioned method.

Let t̃LR denote the unit vector from the origin point of Oc1xc1yc1zc1 to the origin point of
Oc2xc2yc2zc2. As shown in Figure 3, t̃L1, t̃R1 and t̃LR lie on a plane.
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According to the coplanarity constraint, we have:

(t̂R1 × t̃L1)
T · t̃LR = 0 (11)
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where t̂L1 = RLRt̃L1. Suppose that v = (t̂R1 × t̃L1)
T, the coplanarity constraint can be rewritten as

a homogeneous equation in t̃LR:
v · t̃LR = 0 (12)

If n sets of images of the target are observed, by stacking n such equations as Equation (12),
we have:

V · t̃LR = 0 (13)

where V is an n× 3 matrix. If n≥ 3, a unique solution t̃LR can be obtained up to a scale factor. Unitizing
the solution, we have the unit vector t̃LR. Given that tLR = kLRt̃LR, Equation (1) can be rewritten
as follows:

x̃L = z̃LuL/ fL

ỹL = z̃LvL/ fL

z̃L = ( fL( fR t̃x − XR t̃z))/(uR(r7uL + r8vL + fLr9)− fR(r1uL + r2vL + fLr3))

(14)

where t̃LR = [t̃x, t̃y, t̃z]
T.

According to Equation (14), we can obtain the coordinate of a feature point in 3D reconstruction
up to a scale factor k, that is, [xL, yL, zL] = k[x̃L, ỹL, z̃L]. In detail, [xL, yL, zL] is the actual coordinates of
feature point, where [x̃L, ỹL, z̃L] is the normalized coordinates of feature point up to the scale factor
k. To solve k, we reconstruct the 3D coordinates of all the feature points that lie on the ellipse in
Oc1xc1yc1zc1. Using the plane fitting method, the coefficients of the two plane equations of the target
can be determined as follows: {

a1 x̃L1 + b1ỹL1 + c1z̃L1 + d̃1 = 0
a2 x̃L2 + b2ỹL2 + c2z̃L2 + d̃2 = 0

(15)

where [a1, b1, c1, d̃1] and [a2, b2, c2, d̃2] denote the coefficients of the two plane equations of the target
when the scale factor k is unknown.

Similarly, the plane equations can be determined by fitting the coordinates of all the characteristic
points in 3D reconstruction as follows:{

a1xL1 + b1yL1 + c1zL1 + d1 = 0
a2xL2 + b2yL2 + c2zL2 + d2 = 0

(16)

where d1 = kd̃1, d2 = kd̃2.
Given that the two planes of target are parallel to each other, the actual distance D between two

planes can be solved as the absolute of the difference between the distance between the origin of the
left camera and two planes. According to Equation (15), the distance between the origin of the left
camera and the plane can be solved up to the scale factor k. Thus, we have the normalized distance D̃
as follows:

D̃ =

∣∣∣∣∣∣
∣∣∣d̃1

∣∣∣
‖a2

1 + b2
1 + c2

1‖
−

∣∣∣d̃2

∣∣∣
‖a2

2 + b2
2 + c2

2‖

∣∣∣∣∣∣ (17)

Considering that actual distance D of two planes is known, the scale factor k is inferred as:

k = D/D̃ (18)

In this case, the final scale factor k is the average of the entire scale factor. Thus, k is presented
as follows:

tLR = kt̃LR (19)
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2.2.3. Non-Linear Optimization

Calibration error exists due to random noise and other disturbances. Hence, non-linear optimization
is utilized to obtain the optimal solution of calibration results. We randomly sample several feature
points from one stripe, and the matching points will be the intersection of the other stripe and
corresponding epipolar line.

To improve the calibration accuracy, the target is placed at different positions. For each position,
assume that O1ix1iy1iz1i and O2ix2iy2iz2i are the target coordinate systems under two parallel planes.
For the feature points located on different target planes, we reconstruct their 3D coordinates under
the corresponding target coordinate system. Then, the ellipse fitting method is adopted to obtain
Q1i and Q2i. From Q1i and Q2i, we can solve the major axes α1i and α2i and minor axes β1i and β2i,
as well as the angles θ1i and θ2i. According to the properties of elliptical stripes, the objective function
is established as follows:

e1(a) = min
n

∑
i
(

∣∣∣∣ α1i
β1i
− α2i

β2i

∣∣∣∣+ |θ1i − θ2i|) (20)

where a = (RLR, tLR, R1
Li, t1

Li, t2
Li) and R1

Li, t1
Li are the rotation matrix and transformation vector,

respectively, from the left camera coordinate system to O1ix1iy1iz1i at each position. t2
Li is the

transformation vector from the left camera coordinate system to O2ix2iy2iz2i, and n denotes the number
of positions.

In each position, we reconstruct the 3D coordinates of the feature points under the coordinate
system of BSVS. Then, the planar fitting method is utilized to obtain the equation of the left plane ΠLi
and right plane ΠRi. Therefore, we obtain the second objective function based on the measurement
distance and actual distance:

e2(a) = min(
n

∑
i

Dist(ΠLi, ΠRi)− D) (21)

where Dist(Π1, Π2) is the distance of two planes under the coordinate system of BSVS, and D is the
actual distance of the two parallel target planes.

According to the coplanarity constraint introduced in Section 2.2.2, we have the following
objective function:

e3(a) = min
n

∑
i
((t1

Ri × t1
Li)

T · tLR + (t2
Ri × t2

Li)
T · tLR) (22)

where m and l are the feature points in the two target planes, and E is the essential matrix of BSVS.
Thereafter, the final objective function is established as follows:

e(a) = e1(a) + e2(a) + e3(a) (23)

Thus, the optimal solution of RLR and tLR under the maximum likelihood criteria can be solved
via non-linear optimization methods (e.g., Levenberg–Marquardt algorithm [23]).

3. Discussion

The two geometric properties of projected elliptical stripe introduced in Section 2.2 comprise
the core idea of the proposed method. Notably, various methods are available to obtain the elliptical
stripes, such as the use of different forms of lasers or projector to project elliptical stripes on a target
plane. Hence, equations in the form of Equation (5) are available to solve the rotation matrix and
transformation vector of BSVS. The calibration form used in this study is the simplest form of the
proposed method. If the axes of the projected light cone in each case remain parallel to each other,
the elliptical stripes embody the geometric properties whether the divergence angle of the projective
tool is a constant or not. Figure 4 shows several calibration forms for the proposed method.



Sensors 2017, 17, 2873 8 of 17

The lasers shown in Figure 4 are easy to purchase, and the lasers with suitable wavelength and
pattern according to the actual condition can be chosen. The BSVS is usually equipped with optical
filter, so capturing an ordinary target clearly is difficult. The proposed method adopts the images
captured by the strong laser. Thus, this method works much better under complex light conditions such
as strong light, dim light, and non-uniform light. In comparison with common methods, the proposed
method is more suitable for outdoor online calibration.
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4. Experiment

4.1. Simulation Experiment

Simulation is performed to validate the efficiency of the proposed method. Image noise, distance
of the two target planes, and size of the projected elliptical stripe considerably affect calibration
accuracy when the BSVS is calibrated using the proposed method. Hence, simulation is performed
based on the above factors. The conditions of the simulation experiments are as follows: camera
resolution of 1628 pixels × 1236 pixels, focal length of 16 mm, field of view is 400 mm × 300 mm,
placement position is approximately 600 mm away from the BSVS, rLR is [0.0084, 0.6822, 0.0416],
and tLR is [−449.6990, −5.6238, 180.8245]T. Calibration accuracy is evaluated using the root mean
square errors (RMSEs) of rx, ry, rz, tx, ty and tz, as well as the deviation between the 3D reconstruction
and actual coordinates of the feature points.

4.1.1. Impact of Image Noise on Calibration Accuracy

In the experiment, the distance between the two target planes is 60 mm. The target is placed at
15 different positions in each experiment, and a total of 100 independent experiments are performed at
each noise level. Gaussian noise with zero mean and standard deviation of 0.1–1 pixel with an interval
of 0.1 pixel is added to the feature points. As shown in Figure 5, the calibration accuracy decreases
linearly with increasing image noise. In general, the calibration accuracy is high even with a relatively
high noise level.Sensors 2017, 17, 2873 9 of 18 

 

 
Figure 5. RMSEs of the extrinsic parameters based on the proposed method. (a) RMSEs of rx, ry and rz 
at different noise levels; (b) RMSEs of tx, ty and tz at different noise levels; (c) RMSEs of the 3D 
coordinates of the feature points at different noise levels.  

4.1.2. Impact of Distance between Two Target Planes on Calibration Accuracy 

In the experiment, the distance of two target planes is 60 mm. The target is placed at 15 different 
positions in each experiment, and a total of 100 independent experiments are performed at each 
distance level. Gaussian noise with zero mean and standard deviation of 0.5 pixel is added to the 
feature points. The distance between the two target planes ranges from 10 mm to 100 mm with an 
interval of 10 mm. As shown in Figure 6a,b, the RMSEs of , xt , yt  and zt  decrease as the distance 

levels increase, whereas the RMSEs of yr  and zr  increase as the distance levels increase. As shown 
in Figure 6c, the calibration accuracy increases remarkably with rising distance level in the range of 
10–40 mm but gradually decreases when distance level increases in the range of 40–100 mm. Based 
on the above analysis, the improvement in calibration accuracy is not entirely related to the increase 
in distance level. High accuracy can be obtained when the ratio of field of view to the distance 
between two target planes is 10 (400 mm/40 mm). 

 
Figure 6. RMSEs of the extrinsic parameters based on the proposed method. (a) RMSEs of rx, ry and rz 
at different distance levels; (b) RMSEs of tx, ty and tz at different distance levels; (c) RMSEs of the 3D 
coordinates of the feature points at different distance levels.  

4.1.3. Impact of Elliptical Stripe Size on Calibration Accuracy 

In the experiment, the distance between two target planes is 60 mm. The target is placed at 15 
different positions in each experiment, and a total of 100 independent experiments are performed at 
each size level. Gaussian noise with zero mean and standard deviation of 0.5 pixel is added to the 
feature points. The ratio of the major axes to the minor axes of the elliptical stripe in space is 1.1, and 
the length of minor axes is from 100 mm to 280 mm with an interval of 20 mm. As shown in Figure 
7a,b, the RMSEs of extrinsic parameters decrease as the size levels increase. However, according to 
the reconstruction errors shown in Figure 7c, the calibration accuracy increases substantially with 
rising size level in the range of 100–160 mm but gradually decreases when the distance level increases 
in the range of 160–280 mm. For the proposed method, the most accurate calibration results do not 
necessarily contribute to the best calibration accuracy. From Figure 7c, the proposed method yields 
optimal calibration accuracy when the ratio of field of view to the distance between two target planes 
is approximately 2.5 (400 mm/160 mm). 

 

(a) (b) (c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

R
M

S

Noise level(pixel)

 rx
 ry
 rz

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

R
M

S
(m

m
)

Noise level(pixel)

 tx
 ty
 tz

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

R
M

S
(m

m
)

Noise level(pixel)

 x
 y
 z

xr

 

(a) (b) (c)

10 20 30 40 50 60 70 80 90 100
0.000

0.001

0.002

0.003

0.004

R
M

S

distance(mm)

 rx
 ry
 rz

10 20 30 40 50 60 70 80 90 100
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

R
M

S
(m

m
)

distance(mm)

 tx
 ty
 tz

10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

R
M

S(
m

m
)

distance(mm)

 x
 y
 z

Figure 5. RMSEs of the extrinsic parameters based on the proposed method. (a) RMSEs of rx, ry and
rz at different noise levels; (b) RMSEs of tx, ty and tz at different noise levels; (c) RMSEs of the 3D
coordinates of the feature points at different noise levels.
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4.1.2. Impact of Distance between Two Target Planes on Calibration Accuracy

In the experiment, the distance of two target planes is 60 mm. The target is placed at 15 different
positions in each experiment, and a total of 100 independent experiments are performed at each
distance level. Gaussian noise with zero mean and standard deviation of 0.5 pixel is added to the
feature points. The distance between the two target planes ranges from 10 mm to 100 mm with
an interval of 10 mm. As shown in Figure 6a,b, the RMSEs of rx, tx, ty and tz decrease as the distance
levels increase, whereas the RMSEs of ry and rz increase as the distance levels increase. As shown
in Figure 6c, the calibration accuracy increases remarkably with rising distance level in the range of
10–40 mm but gradually decreases when distance level increases in the range of 40–100 mm. Based on
the above analysis, the improvement in calibration accuracy is not entirely related to the increase in
distance level. High accuracy can be obtained when the ratio of field of view to the distance between
two target planes is 10 (400 mm/40 mm).
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Figure 6. RMSEs of the extrinsic parameters based on the proposed method. (a) RMSEs of rx, ry and rz

at different distance levels; (b) RMSEs of tx, ty and tz at different distance levels; (c) RMSEs of the 3D
coordinates of the feature points at different distance levels.

4.1.3. Impact of Elliptical Stripe Size on Calibration Accuracy

In the experiment, the distance between two target planes is 60 mm. The target is placed at
15 different positions in each experiment, and a total of 100 independent experiments are performed
at each size level. Gaussian noise with zero mean and standard deviation of 0.5 pixel is added to
the feature points. The ratio of the major axes to the minor axes of the elliptical stripe in space is 1.1,
and the length of minor axes is from 100 mm to 280 mm with an interval of 20 mm. As shown in
Figure 7a,b, the RMSEs of extrinsic parameters decrease as the size levels increase. However, according
to the reconstruction errors shown in Figure 7c, the calibration accuracy increases substantially with
rising size level in the range of 100–160 mm but gradually decreases when the distance level increases
in the range of 160–280 mm. For the proposed method, the most accurate calibration results do not
necessarily contribute to the best calibration accuracy. From Figure 7c, the proposed method yields
optimal calibration accuracy when the ratio of field of view to the distance between two target planes
is approximately 2.5 (400 mm/160 mm).Sensors 2017, 17, 2873 10 of 18 
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Figure 7. RMSEs of the extrinsic parameters based on the proposed method. (a) RMSEs of rx, ry and rz

at different distance levels; (b) RMSEs of tx, ty and tz at different minor axis length levels; (c) RMSEs of
the 3D coordinates of the characteristic points at different minor axis length levels.
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4.2. Physical Experiment

Zhang’s method is widely used in camera calibration due to its convenience and efficiency. Hence,
we compare the proposed method with Zhang’s method. In practice, Zhang’s method is flexible in
application, and even a printed checkerboard paper is feasible in calibration. The calibration errors
of Zhang’s method mainly come from two parts, namely, the manufacture error of the target and
the location error of the image feature points [24]. For Zhang’s method, an important requirement
of the checkerboard target is that the length of each grid must be equivalent and known. Thereafter,
the calibration accuracy would decrease drastically when the target accuracy is not high. The normal
checkerboard target and the light-emitting planar checkerboard target are the most commonly used
targets for Zhang’s method; meanwhile, it is difficult to achieve high accuracy manufacturing for
checkerboard. On the contrary, the double planar target can easily ensure high production quality
with low cost, and the laser is easily obtained.

The calibration accuracy of Zhang’s method relies heavily on the extraction accuracy of the feature
points of the target. When the lighting condition is unideal, the calibration image quality via Zhang’s
method is poor with respect to the proposed method. Since the proposed method adopts strong
laser stripes, it is easy to obtain the clear and stable calibration images. Steger method is used in the
proposed method to extract laser stripe. Steger method is precise and stable when lighting changes,
and it is used widely in complex situations and outdoor measurements. The following experiments are
conducted to further prove the validity and stability of the proposed method, and show its’ superiority
in application under complex circumstances.

4.2.1. Performance of Different Targets in Complex Light Environments

In this section, the advantages and disadvantages of the proposed method and Zhang’s method
are evaluated in complex lighting conditions, such as dim light and strong light. In the following
experiments, a normal planar checkerboard target and a light-emitting planar checkerboard target are
used in Zhang’s method, and a double parallel planar target is used in the proposed target.

Calibration images obtained in good light environments when the proposed method and Zhang’s
method are used are shown in Figure 8. As shown in Figure 8, all the characteristic points and the light
stripes on three targets can be extracted.Sensors 2017, 17, 2873 11 of 18 
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Calibration images obtained in dim light environment when the proposed method and Zhang’s
method are used are shown in Figure 9. Generally, the methods used to obtain better calibration images
are increasing the exposure time or aperture. Despite an increase of the exposure time or aperture,
clear characteristic point images of the normal checkerboard target cannot be obtained in dim light
environments. The light-emitting planar checkerboard target and double parallel planar target are
feasible under dim lighting conditions. Consequently, the proposed method has certain advantages in
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the dim light environment. As shown in Figure 8, the characteristic points and the light stripes on the
light-emitting planar checkerboard target and double parallel planar target can be extracted.
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Calibration images obtained in strong sunlight environment when the proposed method and
Zhang’s method are used are shown in Figure 10. As shown in Figure 10, most characteristic points
on the normal checkerboard target are difficult to obtain because of strong light. Strong light causes
serious refraction on the surface of the light-emitting planar checkerboard target, and as a result,
characteristic points on the refraction area cannot be extracted precisely. The proposed method adopts
strong laser stripes to calibrate, and strong laser stripes are clear and stable in strong light environments.
Obviously, the proposed method performs better than Zhang’s method.Sensors 2017, 17, 2873 12 of 18 
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Figure 10. Calibration images based on two methods in the strong sunlight environment. (a) Calibration
images of the normal checkerboard target; (b) Calibration images of the light-emitting checkerboard
target; (c) Calibration images of the double parallel planar target.

According to the above experiments, the checkerboard targets are not feasible under the complex
lighting conditions. Meanwhile, Zhang’s method performs poorly in strong light environments.
On the contrary, the proposed method guarantees high accuracy and stability under complex
lighting conditions.

4.2.2. Extrinsic Calibration of BSVS

Two sets of physical experiments are performed, namely, the proposed method and Zhang’s
method. Zhang’s method is widely used in camera calibration due to its convenience and efficiency.
Hence, we compare the proposed method with Zhang’s method.

As shown in Figure 11, two cameras are equipped with the same 16 mm optical lens. The resolution
of the camera is 1628 pixels × 1236 pixels, the measurement distance is 600 mm, and the field of view
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is approximately 400 mm × 300 mm. The resolution of the projector (Dell, M110, Dell Computer
Corporation, Round Rock, TX, USA) is 1280 pixels × 800 pixels.
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Figure 11. Stereo vision sensor and target.

MATLAB Toolbox in [25] is adopted to complete the intrinsic and extrinsic parameter calibrations
of BSVS. A light-emitting planar checkerboard target is used in the physical experiments. The number
of feature points on the target is 10 × 10, and the target accuracy is 5 µm. The intrinsic parameter
calibration results of two cameras using Zhang’s method are shown in Table 1.

Table 1. Intrinsic parameter calibration results of left and right cameras by Zhang’s method.

fx fy u0 (pixel) v0 (pixel) γ k1 (mm−2) k2 (mm−4)

Left camera 3672.23 3672.87 833.11 631.99 8.46 × 10−5 −0.11 −0.05
Right camera 3673.59 3672.85 821.11 632.18 −1.59 × 10−5 −0.13 0.92

The calibration process consists of the following steps: (1) the intrinsic and extrinsic parameters of
BSVS are calibrated using Zhang’s method; (2) the calibration of the proposed method is implemented
using the intrinsic parameters calibrated by Zhang’s method. The production accuracy of a double
parallel planar target is 0.02 mm, and the distance between two target planes is 60.27 mm. The target is
placed 15 times in each trial.

The Steger method [26] is adopted to extract the center of the light stripes. Thereafter, the corresponding
ellipse is obtained by the ellipse fitting method [27]. Figure 12 shows the results of processing the light
stripes in the image. Images used in the two methods are shown in Figure 13.
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Figure 12. Result of processing the light stripes in the image. (a) Extraction of the center of the light
stripes; (b) Ellipses obtained by ellipse fitting.
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Figure 13. Images used in calibration via two methods. (a) Images used in calibration via the proposed
method; (b) Images used in calibration via Zhang’s method.

Table 2 shows the comparison of the extrinsic parameters calibrated via the two methods. In general,
the effects of the two extrinsic calibration methods show no significant difference.

Table 2. Comparison of the extrinsic parameters.

rx ry rz tx (mm) ty (mm) tz (mm)

Proposed method 0.0084 0.6822 0.0416 −449.6990 −5.6238 180.8245
Zhang’s method 0.0082 0.6845 0.0421 −450.5520 −5.7329 183.8668

4.2.3. Evaluation of the Proposed Method

To further evaluate the proposed method, the light-emitting planar checkerboard target is placed
five times before the BSVS. The feature points are the corner points of target, namely, the vertices of
each grid on the target. The grid is a small square, and its length of side is 10 mm. The target accuracy
is 1 µm, so the relative uncertainty of grid side length is ±0.01%. Obviously, the grid side length is
fairly accurate. At each position, the 3D reconstruction coordinates of the feature points on target are
computed based on the two methods. Table 3 shows the reconstruction results of five feature points at
one of those positions.

Table 3. Comparison of the 3D reconstruction results.

Index
Proposed Method Zhang’s Method

x (mm) y (mm) z (mm) x (mm) y (mm) z (mm)

1 100.430 −40.851 578.504 100.550 −40.899 579.197
2 100.732 −30.883 577.749 100.856 −30.921 578.464
3 101.028 −20.922 577.016 101.157 −20.949 577.753
4 91.072 −30.768 575.206 91.185 −30.806 575.923
5 91.676 −10.858 573.712 91.798 −10.872 574.472
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The measurement distance dm of the feature points is computed using the 3D reconstruction
coordinates. The actual distance of the feature points on the target coordinate frame is denoted as dt,
which can be calculated with grid side length known. The deviation between measurement distance
dm and actual distance dt is calculated as the reconstruction error ∆d. Figure 14a shows the statistical
diagram of the data in different reconstruction error levels, and Figure 14b illustrates the box chart
showing the statistical analysis of reconstruction error.
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Figure 14. Reconstruction errors of light-emitting planar target via two methods. (a) Number of
point pairs in different reconstruction error level via two methods; (b) Statistical distributions of the
reconstruction error of the feature point pairs via two methods.

From Figure 14a, most of the reconstruction errors based on Zhang’s method are relatively low.
In the box chart, the two short horizontal lines above and below the error bar represent the maximum
and minimum values of the data, respectively. As shown in Figure 14b, the deviation between the
minimum reconstruction error and zero is relatively large when using the proposed method. The small
rectangle in the error bar denotes the mean of the data. Compared with Zhang’s method, the mean
reconstruction error using the proposed method considerably deviates from zero. The error bar
shows the distribution of the data, and its lower and upper boundaries represent 25% and 75% of
the data, respectively. Along the direction of the ordinate, the length of the error bar is relatively
longer in the proposed method than in Zhang’s method. For Zhang’s method, the reconstruction
error is more symmetric about zero, which means that the reconstruction errors are mainly close
to zero. The reconstruction RMSEs of the proposed method and Zhang’s method are 0.03 mm and
0.02 mm, respectively. In terms of calibration accuracy, the proposed method is comparable with
Zhang’s method

Stability is important for the evaluation of a calibration method. Hence, 10 sets of repetitive
experiments are performed to validate the efficiency of the proposed method. For each method, 15 sets
of images are randomly selected to calibrate the BSVS. Subsequently, repeatability analysis of the
calibration parameters and calibration accuracy is conducted. Figure 15 shows the comparison of
repeatability analysis of the calibration results.

In Figure 15, the black asterisks represent the calibration parameters, the purple curves are the
fitted normal distribution curves of the calibration parameters, and the thin horizontal lines in purple
represent the mean calibration parameters. The shape of the normal distribution curve correlates
with the standard deviation of the data. The curve is narrow and high when the standard deviation
is low, whereas the curve with a relatively high standard deviation is flat and low. As shown in
Figure 15b,f, the lengths of error bar of the proposed method is close to that of Zhang’s method,
meanwhile, the fitted normal distribution curves are similar in shape. Hence, the stability of the
proposed method is basically the same as that of Zhang’s method. It can be observed from Figure 15c–e
that the dispersion of the calibration results of proposed method is high. However, the proposed
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method performs better in stability as shown in Figure 15a. Accuracy of the calibration method is
determined by the entire extrinsic parameter. Hence, the efficiency of the calibration method cannot
be evaluated well according to one parameter only. To further prove the stability of the proposed
method, we calculated the RMS of the reconstruction errors to present the calibration accuracy of the
two methods. Then, the contribution of calibration accuracy is analyzed as shown in Figure 16.
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In Figure 16, the error bar represents the contribution of calibration accuracy via the two methods.
The black asterisks are the entire calibration accuracy data. From the data, the calibration accuracy
of Zhang’s method is approximately 0.02 mm, and that of the proposed method is close to 0.03 mm.
In detail, the majority of calibration accuracy data of the proposed method is less than 0.03 mm. Along
the direction of the ordinate, the length of the error bar of the proposed method is approximately
twice that of Zhang’s method. Thus, the accuracy data of Zhang’s method is relatively concentrated.
The thin horizontal lines in purple represent the mean calibration accuracy. By comparison, the mean
calibration accuracy using Zhang’s method is close to 0.015 mm, which is approximately half that of
the proposed method. In addition, the fitted normal distribution curve of Zhang’s method is relatively
narrow and high, implying that the calibration accuracy of these methods is highly stable. Based on
the above analysis, we make the following evaluation: Zhang’s method performs slightly better in
stability and calibration accuracy, meanwhile, stability and calibration accuracy of both methods are
relatively high.

The performance of the proposed method is slightly worse than Zhang’s method. However, some
methods can be used in the calibration process to further improve calibration accuracy and stability.
For instance, we can use multi-planar targets, project multiple elliptical stripes, and adopt enhanced
non-linear optimization methods. The proposed method can adopt the feather point, which is not
captured by the two cameras simultaneously. In general, the proposed method is slightly inferior to
Zhang’s method but performs fairly well in practice. Moreover, the proposed method is convenient,
flexible, and suitable for dynamic online calibration of BSVS.

5. Conclusions

This paper presents an extrinsic calibration method based on unknown-sized elliptical stripe
images. The proposed method avoids using high-accuracy target with certain-sized feature points.
Strong light stripes are the core of the proposed method, which is suitable for calibration under
complex circumstances. In addition, the proposed method performs well in calibration with an optical
filter. The proposed method comes in various forms by flexibly combining the target and elliptical
stripe, thereby guaranteeing relatively high calibration accuracy under different conditions. In practice,
the planar target can easily ensure high production quality with low cost, and the laser is easily
obtained. Several physical experiments validate the efficiency of the proposed method. In conclusion,
the proposed method is valuable for practical extrinsic calibration of BSVS.
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