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Abstract: Plant phenology is a sensitive indicator of the effects of global change on terrestrial
ecosystems and controls the timing of key ecosystem functions including photosynthesis and
transpiration. Aerial drone imagery and photogrammetric techniques promise to advance the
study of phenology by enabling the creation of distortion-free orthomosaics of plant canopies at the
landscape scale, but with branch-level image resolution. The main goal of this study is to determine
the leaf life cycle events corresponding to phenological metrics derived from automated analyses
based on color indices calculated from drone imagery. For an oak-dominated, temperate deciduous
forest in the northeastern USA, we find that plant area index (PAI) correlates with a canopy greenness
index during spring green-up, and a canopy redness index during autumn senescence. Additionally,
greenness and redness metrics are significantly correlated with the timing of budburst and leaf
expansion on individual trees in spring. However, we note that the specific color index for individual
trees must be carefully chosen if new foliage in spring appears red, rather than green—which we
observed for some oak trees. In autumn, both decreasing greenness and increasing redness correlate
with leaf senescence. Maximum redness indicates the beginning of leaf fall, and the progression of leaf
fall correlates with decreasing redness. We also find that cooler air temperature microclimates near a
forest edge bordering a wetland advance the onset of senescence. These results demonstrate the use
of drones for characterizing the organismic-level variability of phenology in a forested landscape
and advance our understanding of which phenophase transitions correspond to color-based metrics
derived from digital image analysis.
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1. Introduction

Phenology, the study of recurrent biological events, has been a focus of plant science for
centuries [1]. Phenology responds to interannual and spatial variability in environmental conditions,
particularly temperature [2,3], and also mediates key ecosystem functions, including carbon
assimilation and evapotranspiration [4–8]. As global environmental change becomes an increasingly
public issue, the value of plant phenology as a sensitive indicator of the effects of change has
kindled interest in creating and interpreting phenology records, such as those from digital repeat
photography. Tower- or building-mounted phenocams, typically located at positions just above
the canopy [9–11], preserve a valuable visual record of vegetation phenology in forests and other
ecosystems. “Near-surface” methods such as phenocams complement the phenology records of
satellite remote sensing, which extensively observe entire landscapes, but at a spatial resolution that
typically makes it impossible to discern individual plants [12]. Unlike other near-surface methods
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based on radiometric sensors, e.g., [13,14], images from phenocams have the advantage that they can
be visually interpreted by direct examination.

With phenocam imagery, it is also possible to objectively quantify phenology from time
series of vegetation “greenness” or “redness”. Discrete phenophase transition dates can be
derived from those time series, using techniques developed for analyzing satellite remote sensing
data [15,16]. These methods have been successfully applied to the evaluation of satellite remote
sensing phenology products [17,18] and exploration of the connections between ecosystem function,
e.g., carbon assimilation, and the greenness metrics of phenology [5,6]. However the oblique angle
of tower-mounted cameras has been suggested to result in biased estimations of the timing of
canopy maturity, compared to the vertically integrated plant area index (PAI), as well as in situ
observations of leaf expansion [19]. Phenocam imagery does make it possible to easily integrate across
multiple organisms in the camera field of view and thus characterize landscape-level phenology. But,
in mixed-species stands, these estimates may be biased because the organisms located closest to the
camera dominate the field of view and hence are over-represented, while more distant organisms
are under-represented.

Drones, also called UAVs, open up an exciting new possibility for the near-surface remote sensing
of plant phenology. With drones, researchers can obtain aerial photography with a similar spatial
resolution to tower-mounted phenocams, but at the landscape scale, similar to satellite remote sensing.
Compared to traditional aircraft, drones can be operated at a fraction of the cost, making more frequent
observations feasible. Additionally, using photogrammetry techniques with drone images facilitates
significant advances over tower-mounted cameras. Orthomosaics simulate an undistorted nadir
perspective of the canopy, with a consistent spatial resolution over landscapes [20]. Because of this
feature, orthomosaics enable the identification and analysis of larger numbers of individual organisms
than is typically possible using tower-mounted camera imagery.

Previous research has begun to explore the potential of drones for the study of forest phenology.
The first study to use aerial drone imagery to explore forest structural and color properties
demonstrated that the changing color of leaves at different times of the growing season can be
quantified by applying digital image processing techniques to georeferenced orthomosaics [20].
Subsequently, researchers leveraged the high spatial resolution of near-surface aerial drone
photography to delineate crowns and study the phenology of individual trees. It was found that the
color of individual tree crowns could be used to identify their species, based on knowledge of their
expected phenological status during different times of the season [21]. In another study, high temporal
frequency aerial images taken during springtime were used to show that the timing of budburst of
individual trees, observed in situ, appears to coincide with the beginning of an increase in a canopy
greenness metric calculated from the images of these trees [22]. In our previous work, which used an
earlier year of imagery from the same study site reported here, we used drone imagery to show how
landscape scale variance in phenology could be attributed to plant species, and explored the nature of
the spatial variability of phenology at different spatial resolutions [23].

Our goal in this study is to extend previous efforts to determine the leaf life cycle events of trees
that correspond to digital image analysis metrics of those same trees in aerial drone imagery. We use
imagery of the complete growing season to go beyond budburst and consider leaf expansion in spring,
as well as color change and abscission in autumn. We also compare metrics derived from aerial images
with the progression of PAI, to interpret color indices with reference to canopy structural development.
Finally, we examine how contrasting air temperature regimes at microsites within the study area
correlate with spatial variation in landscape phenology, after accounting for spatial variance induced
by differences in tree species. These results demonstrate the use of drones for observing the complete
seasonal cycle of deciduous canopy development at the landscape scale, with a high enough spatial
resolution to discern organism-level phenomena.
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2. Materials and Methods

2.1. Study Site

We conducted our study at Harvard Forest in Petersham, MA, USA (42.5377◦ N, 72.1715◦ W).
The climate is temperate, with a mean annual precipitation of 110 cm and mean annual temperature of
7.1 ◦C. The study area is a mixed deciduous-evergreen forest, with some woody wetlands. Deciduous
trees in the study area include predominantly red oak (Quercus rubra) and red maple (Acer rubrum),
as well as yellow birch (Betula alleghaniensis), American beech (Fagus grandifolia), and black oak
(Quercus velutina). The study area is 2.8 ha in size and contains approximately 1900 trees with a
diameter at breast height ≥10 cm (Figure 1).
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Figure 1. Study area at Harvard Forest on 5/21/17 (DOY 141). Location of microsite temperature
loggers indicated as blue “×” symbols.

2.2. Drone Image Acquisition and Processing

We used methods described in an earlier study [23] to obtain and process aerial photography.
Briefly, we used a drone (3DR ArduCopter Quad-C Frame, 3D Robotics, Berkeley, CA, USA) equipped
with a Canon Powershot A3300 camera (35 mm film equivalent focal length 28 mm, approx. 16 million
pixels). We used the same camera and image settings for all flights, and took pictures of a gray reference
square (ColorChecker classic, X-rite, Grand Rapids, MI, USA) before each flight. Flight frequency
was roughly every five days during spring leaf out and every week during autumn leaf color change,
depending on the weather conditions (dates shown in Figure 2). Images were taken at a minimum
shutter speed of 1/1000 s, with constant exposure during each flight. The same color balance was
used for all acquisition dates, because consistent color balance is necessary for reliable digital camera
observations of phenology [11]. We conducted flights at mid-day (between 10 a.m. and 3 p.m.) on
either clear or evenly overcast days, and never during periods of variable cloud cover, as exposure
was constant during flights. For each imagery acquisition date, we created orthophotos of the study
area using about 100 JPEG photos taken with an intervalometer script (Canon Hack Development
Kit, http://chdk.wikia.com/wiki/CHDK), with the PhotoScan photogrammetry software (Agisoft,
St. Petersburg, Russia), and performed final georeferencing in ERDAS IMAGINE AutoSync (Intergraph,
Huntsville, AL, USA). The orthophotos used in this study are available in the Harvard Forest Data
Archive [24].

http://chdk.wikia.com/wiki/CHDK
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Figure 2. (A–L): Close-up (30 m by 30 m) of aerial images for a selection of dates from 2015. Each
close-up shows the ROIs used to analyze two red oak trees. Solid magenta ROIs were used to calculate
solid magenta GCC and RCC values (circles symbols) and curves; similar with the dashed cyan ROIs
(triangle symbols.). Images have been equalized to have the same brightness (sum of R, G, and B
digital numbers) for visualization purposes in this figure; (M,N): the resulting GCC and RCC time
series (symbols); curve fits or interpolations; and estimated phenophase transition dates (vertical lines).
The vertical lines show six annual dates for both GCC time series, while spring dates calculated from
RCC series are only shown for the tree with red spring leaves. RCC-EOF occurred on the same date for
both trees.

We calculated green chromatic coordinate (GCC) [25] and red chromatic coordinate (RCC) [11]
time series from orthophotos using Matlab (R2017a), to account for changes in scene illumination due
to differences in atmospheric conditions or times of day between flights:

GCC = G/(R + G + B), (1)

RCC = R/(R + G + B), (2)

where R, G, and B are the mean red, green, and blue digital numbers, respectively, in regions of
interest from image files. Example GCC and RCC time series and additional processing details are
available in Figure S1. We note that the phenology signal observed in the GCC and RCC time series of
vegetation was approximately 10 times greater in amplitude than the noise observed in the analysis of
the gray reference square, which arose due to factors such as varying illumination conditions and the
different times of day of flights. We also explored other indices, including GCC + RCC, GRVI, ExG, and
Hue, as described in the caption of Figure S2, but found the most reliable results from GCC and RCC,
and used them in our analysis.
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Color indices were calculated using different regions of interest (ROIs) depending on the goal
of the analysis. For comparison between image-based metrics and in situ observations of individual
tree phenology, we drew ROIs around the crowns of the trees that we observed, as shown in Figure 2.
For comparison to upward photo-based estimates of PAI, we created ROIs representing the canopy
projection of the image field of view from the ground perspective. To examine phenology across the
landscape, we used a square grid of 10 m ROIs (grid cells).

2.3. Estimating Phenology Dates from Time Series Data

We used curve fitting methods detailed in Klosterman et al. [18] to estimate phenology dates
from time series data, including GCC and additional data described below. Sigmoid models are
commonly used to approximate the seasonal trajectory of vegetation indices and to facilitate the
determination of phenological transition dates. The greendown sigmoid is a variant of the standard
dual sigmoid model [16]; a key difference is that the greendown sigmoid allows for a linear decrease
in greenness over the course of the growing season. We used the greendown sigmoid model to
approximate the seasonal trajectory of GCC for each ROI. Phenology dates were calculated from curve
fit parameters by finding the dates of extrema in the curvature change rate (CCR) [15]. We used these
methods to calculate dates for the start, middle, and end of canopy development in spring (GCC-SOS,
GCC-MOS, GCC-EOS), and similar dates for canopy senescence in fall (GCC-SOF, GCC-MOF, GCC-EOF).
We estimated uncertainties using the Jacobian matrix of curve fit parameters to generate Monte Carlo
ensembles of phenology dates, and calculated the inner 95% confidence interval of these ensembles.

To estimate phenology dates from RCC time series, we calculated the dates of crossing the 10th,
50th, and 90th percentiles of a linear interpolation of RCC values, while RCC increased to its spring
maximum, to determine RCC-SOS, RCC-MOS, and RCC-EOS. We used the date of the maximum redness
value in fall to represent RCC-EOF. We determined uncertainties as the interval between the nearest
two observation dates, or for transitions that occurred on an observation date, as the interval between
the midpoints of that date and the nearest two dates.

In addition to these automated curve fitting and interpolation approaches, we also visually
identified the day of the first observable leaves in aerial images of the individual trees discussed below
in Section 2.4.1.

2.4. In Situ Measurements

We identified eight microsites within the study area based on earlier results, using imagery
from a previous year at this site. We had previously found that species composition explained most
of the spatial variance in phenology across the Harvard Forest landscape, using a multiple linear
regression [23]. However, we identified locations within the study area where regression residuals
were relatively large; these were the same areas in regressions using both the 2013 data from the
previous study and the 2015 data from the present study. We located microsites in these places, as
well as locations where residuals were relatively small, to better understand the drivers of phenology
throughout the study area. To provide context for the image-derived phenological transition dates,
we made direct observations of phenology on individual trees, and measured canopy-level PAI using
digital cover photography. To characterize the microsite environment, we measured air temperature.

2.4.1. Direct Observation of Trees

We observed the phenological status of 30 trees spread across the eight microsites within the
study area during each drone photography acquisition date (Figure 1, three to five trees per microsite),
and one additional date when the drone was not flown due to weather constraints (5/17/15, DOY 137).
Similar to a protocol of established observations of tree phenology at Harvard Forest [26], we estimated
the percentage of buds burst on trees, and average leaf size (length) as a percentage of mature leaf size.
In autumn, we estimated the percentage of leaves that had changed color due to senescence, and that
had fallen. From these observations, we created time series using linear interpolation, and found the
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point in time corresponding to the deciles of phenological status for each phenology event: day of year
for 10%, 20%, . . . 90% of budburst, leaf size, leaf color, and leaf fall. We calculated uncertainties in the
same way used for RCC time series.

We determined the leaf life cycle events corresponding to image-derived metrics of individual
tree ROIs by finding the decile of progress in a specific event that had the lowest RMSD with respect to
a given metric across the 30 trees under observation. In other words, we compared all deciles (10%,
20%, . . . ) of all observed events (e.g., budburst, leaf size) to each of the image-derived transitions
(SOS, MOS, . . . ), and identified the decile that had the minimum RMSD across all trees (e.g., 10%
budburst was closest to SOS). We also examined correlations of GCC and RCC values on each date with
percentages of progress in each life cycle event on the same date, within and across trees. Since color
indices and leaf transitions typically trend in the same direction, for example, increasing GCC and
leaf size in spring, an ordinary least squares regression may yield spuriously low coefficient standard
errors. Therefore, we used an econometric approach to time series regression: heteroscedasticity and
autocorrelation consistent (HAC) regression. HAC regression calculates the variances of regression
coefficients (i.e., square of standard error, used to calculate regression p-value) based on the inferred
autocorrelation structure of regression residuals; the coefficient estimates themselves are the same as
those of ordinary least squares. We used the ‘hac’ function in Matlab, with pre-whitening at a lag of
one time step and the quadratic spectral weighting scheme, as we found that these options led to the
most conservative estimates of coefficient variances in a sensitivity analysis [27,28]. We used t-tests to
see if there were significant differences in regression parameters between trees. We also calculated
ordinary least squares regressions of pooled values across all trees.

2.4.2. Digital Cover Photography (DCP)

Upward photos were taken with the same model of camera used for drone photography
(non-fisheye lens). We took images manually for upward photos, on the same dates we acquired drone
photography, using the same image settings (i.e., automatic exposure), except for white balance, which
was set to “auto” for DCP [29]. We used a level to aim the camera directly upward and positioned the
camera on the posts holding the temperature data loggers (1 m height, below most mid-canopy trees),
in the same orientation on each date. The projected camera field of view had an area of 533 m2 in the
canopy (at the average Harvard Forest canopy height of 22 m). We estimated PAI from upward photos
at each microsite using a freely available DCP software tool obtained from Craig MacFarlane (contact
information in references [29,30]). We calculated sigmoid curve fits of PAI values to estimate transition
dates as with GCC time series. However, we observed that PAI values were generally stable from
June to September, so we used the traditional sigmoid model as opposed to the greendown sigmoid,
effectively setting the slope of the summertime greendown to zero. We also directly compared GCC

and RCC values with PAI values, by performing HAC regressions at the microsite level, as both PAI
and color indices typically trend in the same direction at each microsite. We also performed ordinary
least squares regressions of data pooled across microsites for spring and fall, similar to the analysis
described in Section 2.4.1.

2.4.3. Air Temperature Measurements and Effects of Microclimate on Phenology

Because the microsite locations included places with the largest residuals in a regression of
species composition and phenology dates, we suspected that additional factors may contribute to the
timing of microsite phenology. Temperature effects on phenology have been widely studied [18,31–33].
Therefore, we recorded air temperatures half hourly from 11 April 2015, approximately one month
before the beginning of leaf out, through December 2015, after completion of leaf fall. To do this,
we installed a HOBO U23-004 temperature data logger at a 1 m height with an RS-1 radiation shield
(Onset Computer Corp, Bourne, MA, USA) at each microsite.

To determine the effect of microclimate on phenology, we correlated spring and fall temperatures
with residuals from a statistical model that accounted for the effects of species variation and land cover
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type, but not microclimate, on the aggregated canopy phenology of 10 m grid cells. A 10 m grid was
chosen based on previous analysis, taking into account spatial inaccuracies in the orthophotos and
the nature of the species data [23]. More specifically, the model used tree species from a map of all
woody stems ≥1 cm diameter at breast height [34]. This map covered 89% of the land area monitored
in drone imagery. Woody species composition was determined using all species that appeared in at
least 10 of 245 grid cells, and had at least a 20% basal area fraction in any one grid cell. The remaining
species were lumped into one predictor to ensure that the fractional species composition of each grid
cell summed to 1. Any grid cell that had <50% coverage in the aerial images was eliminated from
this analysis, removing partially covered grid cells on the edge of the imaged area and ensuring all
data points had adequate spatial representation. We used a no-intercept regression since fractional
species compositions are mixture components that sum to 1 [35]. We then calculated the average
residual from these spring and fall regressions for the three by three windows of grid cells centered on
the microsite locations (30 m by 30 m areas), and regressed these microsite-average residuals on the
monthly means of daily minimum, mean, and maximum temperatures for April (MOS) and September
(MOF), as temperatures preceding phenology events are commonly used to predict the timing of those
events [18,31–33]. We note that we used RCC-MOS for grid cells with red spring leaves, following a
criterion discussed in the Results Section 3.1, as long as the amplitude in RCC was greater than the
range of noise observed in the gray reference square (Figure S1). For all other grid cells, we used
GCC-MOS. We used Bonferroni correction to account for making three temperature comparisons with
both phenology transition dates.

3. Results

3.1. Choice of Color Index in Spring Time

While changes in canopy greenness have commonly been used to track spring budburst and
leaf expansion in deciduous forests, we found that in some instances, these processes appeared to be
more associated with changes in redness (Figures S2 and S3). For two of the 30 trees we observed in
situ, both red oaks, we saw that leaves were various shades of red (pink, orange) in color during leaf
expansion (Figure 1, close up in Figure 2D,E, and Figure S4). Additional oak trees, which were not
under in situ observation at the microsites, can also be seen to display red spring leaves in Figure 1.
We note that leaves higher in the canopy, i.e., those on the top of the crown and most visible from an
aerial view, often appeared to be redder than leaves closer to the ground (Figure S4).

For trees with red spring leaves, the springtime GCC profiles showed a delayed increase compared
to trees with green spring leaves, including nearby conspecifics that we observed to have nearly the
same leaf expansion phenology (Figure 2M,N). However, the springtime RCC time series exhibited
a marked peak for trees with red spring leaves. Then, as RCC decreased, GCC increased as leaves
became greener in late spring (Figure 2F,G). We found that for these trees, the springtime amplitude in
RCC (the increase from the dormant value to the spring maximum) was more than 45% of the spring
amplitude in GCC (46% and 64% for the two trees), while for all other trees, it was less than 35%.
The springtime increase in RCC was closer in time to observed leaf expansion than GCC, as well as a
range of other color indices we considered (GCC + RCC, GRVI, ExG, Hue, Figure S2). We also note that
the leaves of oak trees with red spring leaves had no apparent color difference in autumn from those
of trees with green spring leaves (Figure 2K).

3.2. Leaf Life Cycle Events of Trees: Correspondence to Image Metrics

We determined the leaf life cycle events corresponding to image metrics by finding the closest
decile of life cycle event (i.e., 10% budburst) to each metric (SOS, MOS, etc.) for the 30 trees under
observation. Following our observation that RCC was a better indicator of spring leaf phenology
than GCC for trees with red spring leaves, we used RCC metrics for the two trees where the spring
amplitude in RCC was greater than 40% of spring amplitude in GCC, and GCC metrics for all other trees.
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We found that SOS was closest to 10% budburst (RMSD 4.7 days), although the date of 10% budburst
was not significantly correlated to SOS across trees (r = −0.04, p > 0.05). This low (and not statistically
significant) correlation is likely related to the fact that there was relatively little variability in the timing
of budburst across trees: all trees under observation had 10% budburst within a period of about a week
(DOY 121-129), while SOS date uncertainties were 11 days on average (inner 95% confidence interval,
i.e., ±5.5 days). However, we found that our determinations of the first observable leaves in aerial
image orthomosaics were correlated with SOS (r = 0.46, p < 0.05), indicating SOS dates derived from
color-based vegetation indices were associated with biologically meaningful phenological transitions
at the branch-to-canopy level.

We found that MOS was closest to 40% leaf size (RMSD 3.6 days), and EOS was closest to 70% leaf
size (RMSD 6.9 days; spring time GCC, budburst, and leaf size observations with associated transition
dates shown in Figure S5 for an example tree). Later spring transitions were more variable across
trees, with a range of 14 days for 40% leaf size and 18 days for 70% leaf size (Figure 3A,B). Across
species, the two most common species, red oak and red maple, had similar leaf expansion phenology.
However, American beeches were among the first trees to make the MOS and EOS transitions, and
attain a 40% and 70% leaf size. The mean inner 95% confidence intervals across trees were six and
12 days for MOS and EOS metrics, respectively. MOS is typically the most certain metric in sigmoid
curve fitting analyses [18] due to the clear timing of the steepest part of the increase in spring time GCC

(Figure 2M). Consequently, we found that the MOS from image analysis could represent tree-to-tree
variation in the timing of leaf expansion observed in situ with greater statistical significance than EOS
(MOS r = 0.52, p = 0.003; EOS r = 0.38, p = 0.04, Figure 3A,B).
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Figure 3. (A–F) leaf life cycle events corresponding to drone image metrics for 30 trees. Symbols denote
transition dates, with confidence intervals shown as colored lines. Yellow = red oak (except trees with
red spring leaves, shown in black in (A,B)), red = red maple, light blue = American beech, dark blue =
yellow birch, and orange = black oak. Deciles of in situ observations (i.e., 40% leaf size) were selected
as having the minimum RMSD in comparison to drone image metrics. Jitter was added to data points
that lay on the same date and the one-one line is shown in black. Correlation coefficients are shown on
each panel (all p < 0.05).

To examine how representative color indices are of the progression of leaf life cycles at the tree
level, we calculated HAC regressions between percentages of life cycle completion and index values
across observation dates. Leaf size observations were more highly correlated with GCC values in
spring (average r = 0.95, 25 of 28 trees p < 0.01, Table S1) than budburst observations (average r = 0.86,
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21 of 28 trees p < 0.01). We also note that, pooling across all trees with green spring leaves, GCC values
were highly correlated with leaf size observations (r = 0.88, p < 0.001), and to a similar but lesser
extent, with budburst observations (r = 0.80, p < 0.001). However, we note that there were significant
differences in regression slopes and intercepts between individual trees, even within species, according
to t-tests (p < 0.05). This indicates that although there is a clear, statistically significant relationship
between color indices and leaf life cycle progressions when all trees are pooled, there is also significant
tree-to-tree variability in these relations when regression parameters are allowed to vary by tree.

For the two trees with red spring leaves, RCC increased, and then declined in spring as leaves
continued to expand and change in color from red to green (Figure 2F,G). Therefore, we considered RCC

values up to and including the spring maximum when examining correlations. Similar to GCC for trees
with green spring leaves, we found a higher correlation of RCC with leaf size (Table S2, average r = 0.95,
both trees p < 0.001) than budburst (average r = 0.76, neither tree p < 0.001). These results indicate that
GCC and RCC values are more representative of the progression of leaf expansion than budburst, as
these color indices are still increasing after the completion of budburst (e.g., Figures S2, S3 and S5).

The timing of leaf coloration events in autumn varies more among trees than either budburst or leaf
expansion (Figure 3C–E) with a range of roughly 50 days in leaf color deciles across the 30 trees under
observation. Species differences become more apparent in fall than in spring, with red oaks senescing
after red maples, and American beeches and yellow birches in between these two. The SOF, MOF, and
EOF transitions calculated from GCC are fairly evenly spaced throughout the period of leaf color change,
corresponding to 20% (RMSD 6.9 days), 40% (RMSD 6.4 days), and 80% (RMSD 6.3 days) leaf color,
respectively. RCC-EOF, representing the date of the maximum RCC value in autumn, was closest to 10%
leaf fall (RMSD 3.7 days), the earliest abscission metric from in situ observations (Figure 3F).

GCC values in autumn were negatively correlated with leaf color percentages (average r = −0.92,
26 of 30 trees p < 0.01, Table S1). While GCC for deciduous trees generally declines as leaves senesce in
autumn, RCC increases to a maximum before declining to the dormant season level. We distinguished
between these increasing and decreasing phases when examining correlations between RCC and
autumn phenological processes. RCC values up to and including the fall maximum correlated with
leaf color percentages (average r = 0.94, all trees p < 0.01, Table S3), while fall RCC values including
the maximum and later values were correlated with leaf fall percentages (tree average r = −0.94, 9 of
16 trees with sufficient observations p < 0.01). Similar to the springtime analysis, we found significant
correlation when pooling all trees: leaf color was correlated to GCC, which decreased in autumn
(r = −0.89, p < 0.001), as well as RCC as it increased to the fall maximum (r = 0.84, p < 0.001). Leaf fall
was more highly correlated to RCC as it decreased after the fall maximum (r = −0.89, p < 0.001) than
GCC (r = −0.56, p < 0.001), since GCC decreased due to color change, before leaves began falling. As in
spring, we noted significant differences in regression slopes and intercepts between trees of the same
species in these comparisons.

3.3. Linking Leaf Area to Color Indices

We derived transition dates (SOS, MOS, etc.) from PAI time series, as well as from drone imagery
using ROIs corresponding to the top-of-canopy area analyzed for PAI (example microsite shown
in Figure 4). This allowed us to examine the relation between canopy structural development and
canopy color development in drone images. The timing of the spring increase in PAI and GCC

was similar across the eight microsites, particularly for later spring transitions. At the first spring
transition, SOS, the average difference between PAI and GCC derived dates was −4.1 (negative sign
indicates GCC-MOS was earlier) ±3.2 days standard deviation, and was significantly different from
zero according to a paired t-test (p < 0.05). However, the MOS and EOS transitions were closer in time,
with −0.6 ± 2.5 days and 2.6 ± 4.6 days differences, respectively. Both of these differences were not
significantly different from zero. In autumn, declines in GCC substantially preceded declines in PAI,
as leaves changed color, becoming less green, before they were shed, decreasing the canopy PAI. As a
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result, PAI and GCC transitions were all significantly different in autumn, with average differences of
12–15 days.Sensors 2017, 17, 2852  10 of 16 
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Figure 4. Smoothed (curve) and raw (× symbols) PAI and GCC curves for an example microsite, and
the dates derived from each data source (vertical lines show the SOS, MOS, EOS, SOF, MOF, and
EOF dates). Values are normalized to have minimum 0 and maximum 1 according to the curve fits,
to facilitate the comparison of PAI and GCC trajectories.

To further investigate the connection between color indices and the canopy leaf area, we calculated
the correlation of PAI to GCC and RCC values, pooled across microsites (Figure 5), as well as within
microsites (Table S4). Spring GCC was highly correlated to PAI (p < 0.001) when pooling all the data,
as well as at individual microsites (p < 0.001 for six of eight microsites). However, there were significant
differences in regression slopes and intercepts between microsites (t-test with p < 0.05). This is partially
due to the fact that maximum PAI values vary more than maximum GCC values, spatially throughout
the forest. The maximum summertime PAI values we observed at the microsites varied from 3.4 to 6.4,
while maximum GCC varied from 0.44 to 0.48 (Table S4).
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Figure 5. Scatter plots and lines of best fit between PAI values from upward photography and
(A) GCC values from drone imagery in spring (N = 48, eight microsites); (B) RCC values after the
maximum RCC in fall, for microsites with one or more observations between the fall maximum of
RCC and the last observation (N = 16, four microsites). Different microsites are indicated by distinct
symbols. The pooled-data regression equations are GCC = 0.34 + 0.019*PAI (r = 0.84, p < 0.001) and
RCC = 0.34 + 0.017*PAI (r = 0.60, p < 0.05). Microsite-level correlations reported in Table S4.

In fall, we examined the correlation between PAI and RCC values from the fall RCC maximum
onward, following our observation that the peak of autumn RCC indicates the beginning of leaf fall,
which also marks the beginning of the decrease in the canopy leaf area. As in spring, we found
evidence for linear correlation in pooled data across microsites, although there was a lower statistical
significance (p < 0.05), likely due in part to a smaller sample size. Similarly, site-level correlations of
RCC and PAI were lower than in spring (average r = 0.90 versus 0.96 for springtime GCC and PAI),
although half of the microsites (two of four) with sufficient observations for analysis had a statistically
significant linear correlation at p < 0.05 (based on ordinary least squares regressions, as the HAC
adjustment for serial autocorrelation could not be used due to the small sample size).
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3.4. Microclimate Effect on Phenology

To examine landscape variability in phenology, we calculated MOS and MOF dates of 10 m grid
cells (Figure S6). We used GCC-MOS, except for six grid cells with a spring RCC amplitude greater
than 40% of the spring GCC amplitude, based on the results of Section 3.1, and where we observed
red spring leaves. We also filtered these grid cells to require the spring amplitude in RCC to be greater
than 0.02, to ensure that the color metric reflected a substantial change in redness that represented
leaf growth as opposed to background noise. For these six grid cells, we used RCC-MOS. Variability
across grid cells (Figure S6) was similar to that observed for these dates in in situ observations of trees
(14 days range in MOS, 42 days in MOF, Figure 3), with a localized area of later spring and earlier fall
phenology along a forest edge bordering a wetland, in the northwest of the study area (Figure S6).

We found that 29% of variance in MOS dates and 46% in MOF dates of 10 m grid cells was
explained by spatial differences in the woody plant species assemblage (regression results in Table S5).
Regression coefficients indicated a similar phenological order of species to that observed in situ:
American beech was among the earliest species in spring, and red maple senescence preceded that of
red oak by 23 days. In a previous analysis, we found evidence of spatial autocorrelation on length scales
up to at least 30 m, in residuals from a similar regression. This was presumably due in part to fine-scale
temperature variation [23]. Consequently, we examined residuals from the regression we performed
here, in the 30 m by 30 m neighborhoods of the microsites where temperature measurements were
made. Due to the low spatial variation in spring temperatures and a limited number of microsites, we
did not detect significant relationships between microsite temperature and MOS residuals. In autumn,
we found that the September mean of daily minimum temperature was correlated to the residuals of
MOF dates (Bonferroni-adjusted p = 0.08, r = 0.77). We found an effect size of a five day delay (1.7 day
SE) in MOF date per ◦C warmer (Figure S7).

4. Discussion

4.1. Leaf Life Cycles According to Image Metrics

4.1.1. Exploration of Budburst, Leaf Growth, Color Change, and Fall

By making in situ observations of leaf life cycle events for individual trees, we were able to
determine which phenology events corresponded to transitions identified from the color index (GCC or
RCC) analysis of images. Similar to Berra et al. [22], who also compared ROIs of individual trees in
drone imagery to ground observations, and Ahrends et al. [9], who used individual tree ROIs from a
tower-mounted camera, we found that observed budburst dates corresponded closely to the beginning
of the increase in color indices in spring time, i.e., the SOS transition. But, while previous studies only
focused on budburst, we also examined the relation of image metrics to in situ observations of leaf
expansion, finding statistically significant correlations with this process as well. MOS and EOS were
closest in time to 40% and 70% leaf expansion, respectively. Similarly, we found a higher correlation
between springtime color indices and the leaf expansion process, than the progression of budburst.
This indicates that while the initial increase in greenness (or redness) is a good indicator of the start of
budburst, subsequent increases in index values are more representative of the leaf expansion process,
as opposed to the completion of budburst.

We found that both GCC and RCC metrics were significantly correlated with leaf color change in
autumn. These results varied somewhat by species as suggested by others [36], although we found
that both GCC and RCC work reasonably well for all the species we observed. Red maples, which may
display a variety of autumn colors from pale yellow to intense scarlet, had leaf color progressions that
were more highly correlated to an increase in fall RCC (species average r = 0.93) than a decrease in GCC

(−0.84). However, leaf color change in red oaks, which turn a yellow-orange color (Figure 2K), was
similarly correlated to both GCC and RCC (species averages r = −0.96, 0.95, respectively). In terms of
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phenophase transition dates, we did not observe species-specific biases between in situ observations
and dates calculated from image analysis (Figure 3).

Our results suggest that color indices may be used to describe the trajectories of both leaf color
change and leaf fall in autumn, as well as key transition dates associated with these processes.
Phenophase transitions calculated from GCC (SOF, MOF, EOF) were highly correlated to a range
of points in the progress of leaf coloration (20%, 40%, and 80% leaf coloration, respectively) across
individual trees. The EOF metric determined from maximum fall RCC was closest to the beginning
of leaf fall, indicating that the greatest “redness” of trees occurs just as leaves are starting to abscise,
although the redness of individual leaves may continue to increase after this [37]. Finally, a decline in
RCC after the autumn maximum was significantly correlated with the trajectory of leaf fall.

4.1.2. Plant Area Index

Measures of the plant area index from an analysis of upward photos reinforce the results of the
comparison of in situ observations with drone image metrics. We found significant correlations of PAI
values with drone-derived GCC in spring. This agrees with our result that in springtime, GCC from
drone images is associated with leaf expansion, which increases PAI. In general, the PAI time series
and GCC time series have similar trajectories in springtime (Figures 4 and 5). Previous research using
GCC from tower-mounted cameras showed that the oblique angle of the camera field of view caused
an early bias in late spring phenophase transitions relative to leaf area index (LAI, closely related to
PAI) measured by the LAI-2000 instrument [19]. However, the nadir perspective of drone orthophotos
appears to alleviate this effect; we found evidence for a strong linear relationship between springtime
GCC and PAI (Figure 5A).

We also found that the decrease in RCC after the autumn maximum was significantly linearly
correlated to the decrease in autumn PAI. This agrees with the earlier result that leaf fall, which
decreases PAI, is correlated with RCC at the individual tree level. Overall, our comparisons with in situ
observations demonstrate the utility of drone image analysis for a thorough description of spring and
autumn leaf phenology, including budburst, leaf expansion, senescence, and abscission.

4.2. Leaf Color and Color Indices: Red Spring Leaves

We observed a subpopulation of red oak trees that expressed reddish colors in young leaves.
When isolating these trees for analysis, we found that a greenness index typically used in spring
phenology studies of digital camera images (GCC) was not an effective characterization of leaf
expansion phenology; however, a redness index was (RCC, Figure 2). Subsequently, we chose to
use a combination of RCC to describe the few trees or grid cells with spring amplitude in RCC greater
than 40% of spring amplitude in GCC, and GCC for all other ROIs. While this criterion was useful in
our identification of trees and grid cells with red spring leaves, we do not recommend it as a general
rule since digital image color index values may vary by camera according to different image sensor
characteristics [25], and different trees may have varying degrees of springtime redness. Researchers
who observe red spring leaves should identify an appropriate criterion for their analysis.

We examined other options for color indices, including GRVI [38], ExG [17], and Hue [39];
however, these all had similar trajectories to GCC, which failed to describe leaf expansion phenology
for trees with red spring leaves (Figure S2). We also calculated an index as the sum of GCC and RCC

(equivalent to 1 minus blue chromatic coordinate, defined similarly to RCC and GCC [11]), in an attempt
to combine the relevant information for trees with green and red spring leaves into a unified approach.
However, because of the relatively large amount of noise in this index, it was less correlated to in
situ observations of leaf expansion, and was less reliable in the 10 m grid cell analysis (caption to
Figure S2).
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While we found utility in using RCC to quantify the phenology of trees with red spring leaves, to
our knowledge, red leaves have not presented an issue for the many recent phenology studies using
greenness indices to study spring phenology at Harvard Forest and elsewhere, e.g., [9,10,19,25]. This
is presumably because of the relatively small number of trees with red spring leaves in relation to
those with green spring leaves (i.e., only two of the 30 trees we observed in situ), and the fact that
most phenology studies using digital images typically use regions of interest that integrate several tree
crowns over the canopy. Indeed, we did not experience any redness-related issues with springtime
GCC for the larger ROIs we used to integrate over several trees for comparison to PAI measurements
(533 m2 compared to individual tree ROIs, which were 31 m2 on average).

However, individual tree ROIs have recently been increasingly examined due to the advent of
new methods in photographic studies of phenology. In crowd-sourcing [36], the time-intensive task
of drawing regions of interest around many individual trees is alleviated by distributing it among
many citizen scientists. In photogrammetry studies using drone imagery [22], larger study areas and
an undistorted nadir view of the canopy facilitate the delineation of more individual tree crowns in
imagery. As greater numbers of individual trees are analyzed, our results indicate that alternatives
to greenness indices, such as the redness index we used here, should prove useful in identifying and
analyzing trees with red spring leaves. We also note that besides color indices, texture analysis may
yield useful approaches to phenological studies of forest canopies using digital images, as suggested
in a recent exploratory study [40]. Texture analysis presents the possibility of color-independent image
metrics, which may be applicable across trees with different leaf colors.

Red leaf color is more typically associated with autumn than spring in temperate forests, and is
known to be associated with increased concentrations of anthocyanin pigments. However, a study
on tropical trees indicated that young, immature leaves were more likely than senescent leaves to
express a red color and increased anthocyanin concentrations, across different species [41]. Recent
research indicated that, across diverse climates including temperate forests, young leaves of many
tree and shrub species have a reddish appearance [42], including red oaks [43]. The physiological
function of anthocyanins has not been settled; they have been hypothesized to serve a photoprotective
role, as senescent leaves resorb nutrients [44], and may also benefit young, developing leaves in this
way [41]. However, we observed differences in spring leaf color in conspecific individuals in close
physical proximity and with a similar canopy position (Figure 2), suggesting that light microclimate
may not be a determining factor. Our results indicate that drone photography would be a useful
method for the further study of intraspecific differences in springtime leaf color.

4.3. Spatial Variance in Phenology and Relation to Microclimate

The effect of spatial temperature variation on phenology is most commonly explored over
altitudinal gradients in mountainous terrain, in “space for time” studies that seek to use these gradients
as a proxy for global change [45], or across large geographic distances [18,46]. However, temperature
variation may also act on phenology over smaller spatial scales, due to microclimates induced by
topography or canopy cover within forests [47,48]. We explored the effect of microclimate by first
accounting for species composition effects, as variability in phenology among tree species is well
known [26,49], and examining the relation of the residual phenological variance with air temperature.

Although we did not detect an effect of microsite temperature on spring phenology, we found
evidence that warmer daily minimum temperatures in September delay senescence by five days
per ◦C. These results agree with the chilling degree days hypothesis, which states that senescence
is triggered when accumulated cold temperatures reach a critical threshold in autumn: colder
temperatures advance senescence locally [31,46]. We note that microclimates with lower daily
minimum temperatures were located along a forest edge, near a wetland to the northwest of the
study area (Figure 1). This result highlights the importance of considering forest structure effects on
microclimate and phenology [48], in addition to factors such as canopy position and tree developmental
stage [26] when assessing the causes of phenological differences between trees.
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5. Conclusions

We presented the first synthesis of in situ observations of tree phenology over a complete growing
season with an analysis of drone images of the same trees. Using digital image processing techniques,
we found that greenness metrics integrating several trees were correlated with canopy structural
development (PAI) in springtime, while redness metrics were correlated with PAI decrease in autumn.
At the individual tree level, we determined that the onset of rising greenness in spring corresponded
with the start of budburst, while continued increases in greenness were driven by leaf expansion.
However, we documented intraspecific variation in spring leaf color, noting that some oak trees
displayed reddish (orange, pink) leaves during leaf-out while other trees had green leaves. We found
that this affected the color index (greenness versus redness) that could be used to describe the leaf
expansion phenology of individual trees. In autumn, we found that the decrease of canopy greenness,
as well as the increase of redness, were correlated with the percentage of leaves that had changed
color on trees. The time of greatest canopy redness corresponded to the beginning of abscission,
and the trajectory of leaf fall correlated with decreasing redness. These results leverage the novel
method of drone photogrammetry to advance our understanding of how digital image metrics relate
to foliar phenology and canopy structural development throughout the leaf life cycle, from budburst
to abscission.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/12/2852/s1.
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