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Abstract: Adrenocorticotropic hormone (ACTH) plays an essential role in regulating corticosteroid
hormone production, which has important functions in a myriad of critical physiological functions.
In this proof-of-concept study, a miniaturized immunosensor was developed for the highly sensitive
detection of ACTH using electrochemical impedance spectroscopy (EIS) in connection with disposable
screen-printed gold electrodes (SPGEs). A film of 3,3′-dithiobis[sulfosuccinimidylpropionate] (DTSSP)
was prepared to immobilize anti-ACTH antibodies covalently on the nanostructured SPGE surface.
The surface-immobilized anti-ACTH antibodies captured the biotinylated ACTH (biotin-ACTH) and
non-labelled ACTH for the competitive immunoassay. After coupling of a streptavidin-alkaline
phosphatase conjugate (Streptavidin-ALP), the bio-catalysed precipitation of an insoluble and
insulating product onto the sensing interface changed the charge transfer resistance (Rct) characteristics
significantly. The detection limit of 100 fg/mL was determined for ACTH in a 5 µL sample volume,
which indicated that this versatile platform can be easily adapted for miniaturized electrochemical
immunosensing of cancer marker biomolecules. High selectivity and sensitivity of our immunoassay
to detect ACTH in real samples demonstrated its promising potential for future development and
applications using clinical samples.

Keywords: electrochemical; biosensor; adrenocorticotropin hormone; impedance; screen-printed
gold electrode

1. Introduction

Adrenocorticotropic hormone (ACTH) is a 39-amino acid peptide hormone (4.5 kDa) released
from the anterior pituitary gland [1]. ACTH is an essential component of the hypothalamic-pituitary
adrenal axis, regulating corticosteroid hormone production, which has important functions in a myriad
of critical physiological functions [2–4]. Dysregulation of ACTH secretion, resulting from conditions
such as hypopituitarism [5] or Cushing’s syndrome [6], can be life threatening if not diagnosed and
treated properly, and in the most severe cases, it can cause death because of vascular collapse [7].
ACTH-secreting pancreatic neuroendocrine tumours, although rare, were reported to be responsible
for about 15% of ectopic Cushing syndrome [8,9]. They represent a challenging entity because their
diagnosis is frequently difficult, and clear-cut morphologic criteria useful to differentiate them from
other types of symptoms have not been described [8,9]. For early and accurate assessment of altered
ACTH secretion, advances in its detection are required; however, there are challenges associated with
the diagnosis for altered ACTH level. ACTH deficiency is often misdiagnosed due to the general
symptoms such as weight loss, vomiting, nausea, and muscle weakness. Furthermore, the fluctuation
of ACTH in serum (<4.1 to 51.4 pg/mL) makes diagnosis even more problematic [10]. To address these
challenges in diagnosis, a rapid, sensitive, and selective detection method is needed. Various detection
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methods exist for the detection of ACTH, such as radioimmunoassays [11,12], chemiluminescence
assays [13], and enzyme-linked immunosorbent assays [14]. Current issues concerning these methods
include sensitivity and specificity along with expensive bench-top instrumentation that requires skilled
technicians and time-consuming procedures [15]. In this report, we present a proof-of-principle
study on impedimetric detection of ACTH using disposable screen-printed gold electrodes (SPGEs).
Our immunoassay is a cost-effective approach that requires low sample volumes. SPGEs can be
mass-produced at low-cost, and each experiment can be performed on a new and analogous surface
to prevent possible cross-contamination errors between surfaces that were exposed to biological
samples [16]. Each SPGE can be discarded after use and eliminate carry-over contamination from
tedious cleaning, and require less reagents for detection [17–19]. Furthermore, current advances in
instrumentation allow these SPGEs to be compatible with portable devices that are in the size of
a smart-phone for convenient point-of-care measurements [20–23].

2. Materials and Methods

2.1. Reagents

Anti-ACTH polyclonal antibody was purchased from EMD Millipore (Darmstadt, Germany).
Biotin-labelled adrenocorticotropic hormone (ACTH) (1–39, Human) and non-labelled ACTH
(1–39, Human) were purchased from AnaSpec (Fremont, CA, USA). Streptavidin-conjugated
alkaline phosphatase (Streptavidin-ALP), disodium 5-bromo-4-chloro-3-indolyl phosphate (BCIP),
3,3′-dithiobis[sulfosuccinimidylpropionate] (DTSSP) and ethanolamine were purchased from
Sigma-Aldrich (Oakville, ON, Canada). The screen-printed gold electrodes (SPGEs) were obtained from
BioDevice Technology (Ishikawa, Japan). Follicle-stimulating hormone (FSH), human growth hormone
(hGH), rat blood, and plasma samples were kindly prepared and donated by Dr. Paul Le Tissier
(University of Edinburgh, Edinburgh, UK). Other reagents were of analytical grade, and were used
as received.

2.2. Surface Modification and Electrochemical Impedance Spectroscopy

The principal of the detection method is shown in Figure 1. (a) A layer of 3,3′-dithiobis
[sulfosuccinimidylpropionate] (DTSSP) was formed on SPGE surface through Au–S bonding.
The working electrode of the SPGE was incubated with 80 µL of 2 mM DTSSP in 100 mM Na2CO3

for 48 h at −4 ◦C. DTSSP acted as the linker molecule to immobilize the antibodies covalently on
the nanostructured surface. The preparation of nanostructures with scanning electron microscope
images were described in our previous publication [21]. An aliquot (15 µL) of anti-ACTH antibodies
at a desired concentration in 50 mM phosphate buffer solution with 100 mM NaCl (pH 7.4) was
spotted onto the working electrode surface and incubated for 12 h at −4 ◦C. (c) An aliquot (5 µL) of
the desired concentration of biotin-ACTH was incubated on the surface for 30 min. The antibodies
interacted with the biotin-labelled ACTH (biotin-ACTH). The antibody-modified electrodes were
thoroughly rinsed with water and immersed in 100 mM ethanolamine solution (ethanol) for 1 h
at 25 ◦C in order to block all unreacted NHS active ester groups. (d) An aliquot (20 µL) of
streptavidin-conjugated alkaline phosphatase (Streptavidin-ALP) was spotted on the electrode surface
and incubated for 1 h. Biotin moieties captured the streptavidin-ALP. (e) Finally, an aliquot (20 µL)
of 0.3 mM disodium 5-bromo-4-chloro-3-indolyl phosphate (BCIP) was spotted on the surface and
incubated for 10 min to form the insoluble 5,5′-dibromo-4,4′-dichloro indigo product. As the product
precipitated, it formed an insulating layer on the surface [24–27]. (f) For the competitive detection of
ACTH, known concentrations of non-labelled ACTH were mixed with 100 pg/mL biotin-ACTH and
exposed to the antibody-modified SPGEs followed by the same experimental steps as described above.
As non-biotinylated ACTH from spiked samples displaced the biotinylated ACTH (not shown in this
image), streptavidin-ALP conjugates were also rinsed away from the surface, decreasing the formation
of insoluble product. After each modification step, SPGEs were rinsed with Milli-Q water rigorously.
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The changes in charge transfer resistance (Rct) were measured using electrochemical impedance
spectroscopy (EIS). EIS was performed using a µAutolab II Electrochemical Analyzer (Metrohm,
Herisau, Switzerland) in conjunction with Frequency Response Analyzer (FRA) software. EIS were
recorded using 10 mM [Fe(CN)6]3−/4− as the redox probe in 50 mM PBS with 100 mM NaCl (pH 7.4) in
a frequency, ω, ranging from 1 Hz to 10 kHz at a dc potential of 0.30 V, corresponding to the recorded
Fe(CN)6

3−/4− standard reduction potential, with a superimposed root mean squared AC voltage
amplitude of 5 mV. Analysis of the raw impedance data was based on complex non-linear least-squares
(CNLS) regression fitting to the Randles equivalent circuit, as shown in Figure 2. EIS is a highly sensitive
detection method and allows for a wide range of biosensing applications [28–32]. EIS measurements
are interpreted using the Randles equivalent circuit, consisting of ohmic resistance (Rs) of electrolyte,
double layer capacitance (Cdl), charge-transfer resistance (Rct), and Warburg impedance (Zw) [33–35].
The observation of Zw as a component of the equivalent circuit was attributed to the nanostructured
topology of the surface [23], which might have facilitated the diffusion process [36]. Upon the
adsorption of insoluble indigo product on the electrode surface, the accessibility of the solution-based
redox probe [Fe(CN)]3−/4− to the surface was suppressed, which significantly increased Rct, enabling
highly sensitive detection of ACTH.
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Figure 1. Illustration for the SPGE-based detection of ACTH. (a) Self-assembled film of 3,3′-
dithiobis[sulfosuccinimidylpropionate] (DTSSP) was formed on nanostructured gold surface. (b) 
NHS-moieties of DTSSP enabled the covalent immobilization of antibodies on the surface. (c) The 
biotinylated adrenocorticotropic hormone (biotin-ACTH) was captured by immobilized antibodies. 
(d) Streptavidin-conjugated alkaline phosphatase (Streptavidin-ALP) was then coupled to biotin-
ACTH. (e) Amplification reaction was initiated by adding the water-soluble substrate mixture, 5-
bromo-4-chloro-3-indolyl phosphate (BCIP), which produced insoluble indigo dimer (see inset for 
dimerization reaction). (f) Electrode interface was monitored using electrochemical impedance 
spectroscopy (EIS) after each surface modification step. 

Figure 1. Illustration for the SPGE-based detection of ACTH. (a) Self-assembled film of 3,3′-
dithiobis[sulfosuccinimidylpropionate] (DTSSP) was formed on nanostructured gold surface.
(b) NHS-moieties of DTSSP enabled the covalent immobilization of antibodies on the surface.
(c) The biotinylated adrenocorticotropic hormone (biotin-ACTH) was captured by immobilized
antibodies. (d) Streptavidin-conjugated alkaline phosphatase (Streptavidin-ALP) was then coupled to
biotin-ACTH. (e) Amplification reaction was initiated by adding the water-soluble substrate mixture,
5-bromo-4-chloro-3-indolyl phosphate (BCIP), which produced insoluble indigo dimer (see inset
for dimerization reaction). (f) Electrode interface was monitored using electrochemical impedance
spectroscopy (EIS) after each surface modification step.
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Figure 2. (a) Plot for the Rct of various biotin-ACTH concentrations after fitting the raw data to
equivalent circuit model using CNLS regression. (b) Plot for the Rct ratio of various non-labelled
ACTH concentrations after fitting the raw data to equivalent circuit model using CNLS regression
Error bars indicate the standard deviation of six replicate measurements (n = 6). Other conditions were
as described in the Section 2.

2.3. Scanning Electron Microscopy (SEM)

SPGE surfaces were observed using a Hitachi S530 scanning electron microscope (Hitachi, Tokyo,
Japan) in the Centre for the Neurobiology of Stress at UTSC. The surfaces were electrically connected
to the sample stub by smearing silver paste between the SPGE and the metallic stub. The surfaces
were monitored at an acceleration voltage of 20 kV with a working distance of 5.0 mm.

3. Results and Discussion

The electrochemical detection relied on the formation of the insoluble product on the electrode
surface, which significantly increased the Rct over a short period of time. Calibration studies
were performed using varying concentrations of antibody and streptavidin-ALP (data not shown).
The optimum concentrations for antibodies and streptavidin-ALP were determined as 10% (v/v)
and 100 ng/mL, respectively. As shown in Figure 2a, concentrations between 10 fg/mL to 1 ng/mL
of biotin-ACTH were calibrated. The concentration dependence of Rct was studied using various
concentrations of non-labelled ACTH in the presence of 1 ng/mL biotin-ACTH. The binding affinity of
non-labelled ACTH was found to be stronger than that of biotin-labelled ACTH, because polyclonal
antibodies were utilized in this study. A significant decrease was observed in Rct after exposure of
non-labelled ACTH to the polyclonal antibodies, because the non-labelled ACTH was not able to
capture streptavidin-ALP due to its lack of biotin moieties.

As non-labelled ACTH displaced the biotin-ACTH on the antibody-modified surfaces, the difference
between Rct in the presence and absence of non-labelled ACTH increased significantly. As shown in
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Figure 2b, the Rct ratio ∆Rct/Ri was calculated using the formula ∆Rct = Rf − Ri, where Rf displays
the Rct that was detected after exposure of antibody-modified SPGEs to non-labelled ACTH, and Ri

displays the Rct that was detected in the absence of target proteins with the rest of the experimental steps
performed as described in the Materials & Methods section. The Rct began to plateau beyond 100 pg/mL
ACTH, suggesting a dynamic range between 100 fg/mL and 100 pg/mL in PBS. This dynamic range is
102 magnitude larger than the dynamic range of the ACTH sensor published [37], offering a more versatile
detection platform. A detection limit was observed as 100 fg/mL. The limit of blank was the highest
analyte concentration expected to be determined, when replicates of a blank sample containing no analyte
were tested. Assuming a Gaussian distribution of the raw analytical data from blank samples, the limit of
blanks would represent 95% of the observed values. Thus, the limit of detection was calculated as the
sum of the limit of the blank and 1.645 (95% confidence interval) of the standard deviation of the signals
obtained from the lowest concentration of analyte. This detection limit was about 100-fold more sensitive
than a commercially available ELISA-based kit, which had a detection limit in the 10 pg/mL range [38].
Furthermore, the selectivity of our immunosensor was challenged in the presence of interfering proteins.

Two pituitary gland hormones, human growth hormone (hGH) and follicle stimulating hormone
(FSH), that might be present in real samples were used in control experiments as shown Figure 3a.
The Rct percentage ∆Rct/Ri × 100% (Figure 3b) was calculated using the formula ∆Rct = Rf − Ri,
where Rf displays the Rct that was detected after exposure of antibody-modified SPGEs to ACTH,
hGH, or FSH as the target protein in the competitive assay, and blank is the signal obtained after all
modifications that were made in the absence of biotin-ACTH. Ri displays the Rct that was detected
in the absence of target proteins with the rest of the experimental steps performed as described in
the Materials & Methods section. The ∆Rct/Ri percentage was significantly high for ACTH at 64% in
comparison with the non-target proteins hGH and FSH. Relatively low ∆Rct/Ri ratios of 23% and 18%
for hGh and FSH, respectively, were attributed to much lower non-specific adsorption of those proteins
on the electrode surface. Control experiments were performed to further challenge the immunosensor
using various plasma and whole blood samples.
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Figure 3. (a) Nyquist plots for the detection of ACTH, hGH, and FSH at 100 fg/mL in PBS fitted with
the Randles equivalent circuit. (b) Plot for the Rct ratios calculated for ACTH, hGH, and FSH after
fitting the raw data to equivalent circuit model using CNLS regression. Error bars indicate the standard
deviation of six replicate measurements (n = 6). Other conditions were as described in Section 2.
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After 100 fg/mL ACTH, hGH, and FSH were spiked in undiluted plasma (Figures 4a and 4b-blue
bars) and blood (Figure 4b-red bars), those samples were used as the target protein solutions in
the experimental steps as described above, blank is the signal obtained after all modifications
that were made in the absence of biotin-ACTH. There was an increase in the responses, which
were attributed to the fouling of surfaces after exposure to undiluted plasma and blood samples.
However, ∆Rct/Ri percentage was significantly higher for ACTH in both undiluted plasma and blood
samples compared to those obtained with hGH and FSH. In this study, ethanolamine was found
sufficient to quench the active-NHS ester groups on the electrode surface to suppress the covalent
attachment of ACTH molecules non-specifically. Bovine serum albumin (BSA) and polyethylene
glycol (PEG) modifications are commonly utilized to avoid non-specific adsorption issues on electrode
surfaces [35,39,40]. We have also investigated the applications of various PEGylated linker molecules
and BSA on our biosensor surfaces to suppress non-specific adsorption issues, and the results of those
studies will be published elsewhere.
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plasma as fitted with the Randles equivalent circuit. (b) Plot for the Rct ratios calculated for ACTH, hGH,
and FSH in whole blood (red) and plasma (blue) samples after fitting the raw data to equivalent circuit
model using CNLS regression. Error bars indicate the standard deviation of six replicate measurements
(n = 6). Other conditions were as described in Section 2.

4. Conclusions

Our proof-of-concept study demonstrates that electrochemical immunosensors provide
a promising platform to detect rare cancer biomarkers such as ACTH in undiluted real samples.
Enzymatic amplification of impedimetric response at disposable miniaturized SPGEs enabled a low
detection limit. High selectivity and sensitivity of our immunoassay exemplify its promising potential
for future development and applications using clinical samples.
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