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Abstract: This paper proposes a new scheme of reconstructing current sensor faults and estimating
unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First,
the original PMSM system is transformed into two subsystems; the first subsystem has unknown
system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor
faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented
subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding
mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO
in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed
using the second SMO in the augmented subsystem, which has sensor faults. The gains of the
proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality
(LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments.
The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate
unknown load disturbance for the PMSM-driven system.

Keywords: permanent magnet synchronous motor (PMSM); sliding mode observers (SMOs); current
sensor; fault reconstruction; unknown load disturbance estimation

1. Introduction

The permanent magnet synchronous motor (PMSM) has been widely used in high-speed trains
and electric vehicles, due to its good dynamic response, high torque-to-current ratio, high power
density and excellent tracking precision [1]. The reliable operation of PMSM is the basic requirement
for the application of high-speed trains and electric vehicles. However, current sensor failure often
occurs in the complex PMSM-driven system. The current sensor is located in the feedback channel
of the PMSM control system. Even a tiny fault of the current sensor may lead to the misoperation of
the PMSM system and destroy the stability of the system. Moreover, the nonlinearities and system
disturbances can cause a misleading alarm. Therefore, it is necessary to study the fault diagnosis and
fault reconstruction of the PMSM current sensor and improve the overall performance of the PMSM
system. This paper proposes a new scheme of reconstructing current sensor faults and estimating
unknown load disturbance for the PMSM-driven system.

In recent years, many control methods have been proposed to diagnose the current sensors fault
of PMSM. An approach of current sensor fault detection and isolation (FDI) for PMSM drives is
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presented based on signal analysis instead of currents’ residual generation through observers in [2].
A new approach is proposed for current sensor fault diagnosis of permanent magnetic synchronous
generator (PMSG) drives in wind energy conversion systems (WECSs) using the measured phase
currents in [3]. In [2,3], it can only detect current fault, but not reconstruct and locate current fault.
The method of current sensor fault reconstruction for PMSM drives is presented on the α-β axis in [4].
A current sensor fault reconstruction algorithm for the interior PMSM (IPMSM) system based on active
flux linkage by the sliding mode observer is presented in [5,6]. An on-line software fault detection,
localization and system reconfiguration method is proposed for PMSM based on the monitoring signals
of “abc” currents, DC-link voltage and rotor speed/position in [7]. The current sensor fault diagnosis
is presented for the PMSM drive system in [8] based on the differential algebraic method. However,
the unknown load disturbance is not considered for the PMSM drive systems in [4–8].

Almost all real dynamic systems can be represented as fully-Lipschitz nonlinear systems, at least
locally [9]. The problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems
with sensor biases is dealt with by sliding mode observers in [10]. An observer-based sensor fault
estimation method for generalized Lipschitz nonlinear systems in the presence of input disturbance
and measurement noise is developed in [11]. A sensor fault estimation method is presented for
a general class of uncertain Lipschitz nonlinear augmented systems in [12]. A model-based FDI
scheme for robot manipulators with actuator and sensor faults is investigated in [13]. State and fault
estimations for a class of uncertain Lipschitz nonlinear systems is proposed using a descriptor from
the observer and an adaptive sliding mode observer in [14]. The problems of simultaneous actuator
and sensor fault detection for a class of uncertain Lipschitz nonlinear systems are considered when
the observer matching condition is not satisfied in [15]. Fault reconstruction problems for a class of
uncertain Lipschitz nonlinear systems with actuator faults, sensor faults and external disturbances are
considered in [16]. An observer-based fault reconstruction method for polymer electrolyte membrane
(PEM) fuel cells is presented by the adaptive-gain second-order sliding mode (SOSM) observer in [17].
A high gain observer with multiple sliding modes for simultaneous state and fault estimations for
MIMO nonlinear systems is developed in [18]. A higher-order sliding mode observer based on the
super-twisting algorithm for state and unknown input estimations is developed for estimating the
road adhesion coefficient in [19]. A new scheme for estimating the actuator and sensor fault for
Lipschitz nonlinear systems with unstructured uncertainties is proposed using the sliding mode
observer technique in [20,21].

Inspired by the above surveys, the PMSM is taken as a Lipschitz nonlinear system. This paper
proposes a new scheme of reconstructing current sensor faults and estimating unknown load
disturbance for the PMSM-driven system. Two sliding mode observers (SMOs) are designed:
the unknown load disturbance is estimated by the first SMO in subsystem, which has unknown load
disturbance, and the sensor faults are reconstructed using the second SMO in augmented subsystem
which have sensor faults. The gains of the proposed SMOs and their stability analysis are developed
via the solution of linear matrix inequality (LMI). The adoption of the LMI algorithm makes it easier to
obtain the key parameters of the design of SMOs and relaxes the selection criteria for the PMSM-driven
system. The scheme can be applicable for incipient fault, intermittent fault, high frequency and low
frequency fault or any other types of faults. This makes the theory of the sliding mode observer
applicable to the engineering of PMSM current sensor fault reconstruction.

The remainder of this paper is organized as follows: The system description of PMSM is presented
in Section 2, and the model of PMSM is converted into two subsystems. Section 3 designs two SMOs
such that the unknown load disturbance is estimated, and the current sensor faults are reconstructed.
Stability of the system is proven using Lyapunov analysis. The sufficient conditions for the stability
of the scheme are derived and expressed as linear matrix inequalities (LMI). The proposed method
is applied to the PMSM systems in Section 4. The overall architecture is tested in simulation and
experiment, providing good results. The simulation and experiment results are shown in Section 5.
Finally, conclusions are given in Section 6.
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2. System Description

The dynamic mathematical model of PMSM can be defined in the d-q reference frame as
follows [22]: 
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where Rs is the stator resistance (Ω); ud, uq, id, iq, Ld and Lq represent the d-q axis stator voltages (V),
currents (A) and inductances (Wb), respectively; ψr is the amplitude of the permanent magnet flux
linkage (Wb); ωe and θe are the electrical angular velocity (rad/s) and the electrical angle (rad); np is
the number of pole pairs; TL is load torque (N·m); J and B are the total moment of inertia (kg·m2) and
the viscous friction coefficient (Nm·s/rad).

The dynamic mathematical model of IPMSM with current sensors fault can be described
as follows:
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where fq and fd denote the current sensor fault of the q-axis and d-axis.
Equation (2) can be transformed into the following nonlinear system:{

ẋ(t) = Ax(t) + f (x, t) + Bu(t) + Dd(t)

y(t) = Cx(t) + E f s(t),
(3)

where x(t) ∈ Rn, x =
[
ωe θe iq id

]T
is the state vector; u(t) ∈ Rm, u =

[
uq ud

]T
is the

measurable input vector; y(t) ∈ Rp, y =
[
ωe iq id

]T
is the measurable output vector; d(t) ∈ Rr,

d = TL is unknown input disturbances; fs(t) ∈ Rq, fs(t) =
[

fq fd

]
denote the sensor faults, which is

unknown bounded; A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known matrices; D ∈ Rn×r is the known
corresponding disturbance distribution matrix; E ∈ Rp×q is the known distribution matrix of sensor
faults; f (x, t) ∈ Rn is the known nonlinear function. For System (2), n = 4, m = 2, p = 3, q = 2, r = 1
and p ≥ q + r.

Proposition 1. The known nonlinear term f (x, t) is assumed to satisfy the Lipschitz condition:

‖ f (x, t)− f (x̂, t)‖ ≤ γ ‖x− x̂‖ .
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Proposition 2. The function d denotes the unknown input disturbances, but bounded, and it satisfies ‖d‖ ≤ ρd.
Furthermore, the unknown sensor fault fs is bounded, and it satisfies ‖ fs‖ ≤ ρs.

Proposition 3. C and D are full column rank, and rank(CD) = rank(D) = r.

If Assumption 3 holds, there are two transformation nonsingular matrices T and S [23].
The original System (3) can be transformed into the following two subsystems.

{
ẋ1 = A11x1 + A12x2 + B1u + f1(x, t) + D1d

y1 = C11x1,
(4){

ẋ2 = A21x1 + A22x2 + B2u + f2(x, t)

y2 = C22x2 + E2 fs,
(5)

where x =
[

x1 x2

]T
, x1 ∈ Rr, x2 ∈ Rn−r; y =

[
y1 y2

]T
, y1 ∈ Rr, y2 ∈ Rp−r. A11 ∈ Rr×r,

A12 ∈ Rr×(n−r), A21 ∈ R(n−r)×r, A22 ∈ R(n−r)×(n−r), B1 ∈ Rr×m, B2 ∈ R(n−r)×m, C11 ∈ Rr×r,
C22 ∈ R(p−r)×(n−r), D1 ∈ Rr×r, E2 ∈ R(p−r)×q, f1 ∈ Rr, f2 ∈ Rn−r.

The matrix transformation in Systems (4) and (5) is as follows:

TAT−1 =

[
A11 A12

A21 A22

]
, TB =

[
B1

B2

]
, TD =

[
D1

0

]
, SE =

[
0

E2

]
, SCT−1 =

[
C11 0
0 C22

]
.

where C11 and D1 are invertible matrices, and rank(D1) = r.

Remark 1. Subsystem (4) contains only unknown disturbances d, without sensor fault fs; while Subsystem (5)
has only sensor faults fs, without unknown disturbances d. The sensor faults fs and the unknown disturbance
d can be completely decoupled in the new systems.

For Subsystem (5), define a new state x3 =
∫ t

0 y2(τ)dτ, so that:

ẋ3 = Asx3 + Bsy2, (6)

where x3 ∈ Rp−r is the new state vector; As, Bs are the filter matrices to be designed, As ∈ R(p−r)×(p−r),
As is an arbitrary filter matrix; Bs ∈ R(p−r)×(p−r), Bs is a full rank constant matrix.

If As is chosen as the zero matrix and Bs is chosen as the identity matrix, substituting Equation (5)
into Equation (6), Equation (6) can now be expressed as follows:

ẋ3 = C22x2 + E2 fs. (7)

Based on Equation (5) and (7), the augmented new subsystem can be expressed as follows:

[
ẋ2

ẋ3

]
=

[
A22 0
C22 0

][
x2

x3

]
+

[
A21

0

]
x1 +

[
f2(x, t)

0

]
+

[
B2

0

]
u +

[
0

E2

]
fs

x3 =
[
0 I

][x2

x3

]
.

(8)

The augmented System (8) can then be rewritten in a more compact form as:{
ẋ0 = A0x0 + A1x1 + F2(x, t) + B0u + E0 fs

y0 = C0x0,
(9)
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where x0 =
[

x2 x3

]T
, y0 = x3; x0 ∈ Rn+p−2r, y0 ∈ Rp−r, A0 =

[
A22 0
C22 0

]
, A1 =

[
A21

0

]
, F2 =[

f2(x, t)
0

]
, B0 =

[
B2

0

]
, E0 =

[
0

E2

]
, C0 =

[
0 Ip−r

]
. A0 ∈ R(n+p−2r)×(n+p−2r), A1 ∈ R(n+p−2r)×r,

B0 ∈ R(n+p−2r)×m, C0 ∈ R(p−r)×(n+p−2r), E0 ∈ R(n+p−2r)×q, F2 ∈ Rn+p−2r.
Accordingly, Subsystem (4) is rewritten as:{

ẋ1 = A11x1 + A2x0 + B1u + f1(x, t) + D1d

y1 = C11x1,
(10)

where A2 =
[

A12 0r×(p−r)

]
, A11 ∈ Rr×r, A12 ∈ Rr×(n−r), A2 ∈ Rr×(n+p−2r), C11 ∈ Rr×r, B1 ∈ Rr×m,

D1 ∈ Rr×r, f1 ∈ Rr, y1 ∈ Rr.

Remark 2. Subsystem (4) can be changed to the augmented System (10). Subsystem (5) can be changed to the
augmented System (9), which shows that the sensor fault is converted to equivalent pseudo actuator fault by
introducing state variable x3. Then, the sensor fault reconstruction can be realized with the method of actuator
fault reconstruction.

3. Sensors’ Fault Reconstruction and Unknown Disturbance Estimation Using Sliding
Mode Observers

In this section, two sliding mode observers are designed for Subsystem (9) and Subsystem (10)
respectively; one of which is to reconstruct the sensor fault, while the other one is to estimate the
unknown disturbance. The simultaneous reconstruction of the sensor faults and estimation of the
unknown disturbance are studied.

3.1. Sliding Mode Observers Design

Proposition 4. The nonlinear term f1(x, t), F(x, t) satisfies the Lipschitz condition,

‖ f1(x, t)− f1(x̂, t)‖ ≤ γ1 ‖x− x̂‖ , (11)

‖F(x, t)− F(x̂, t)‖ = ‖ f2(x, t)− f2(x̂, t)‖ ≤ γ0 ‖x− x̂‖ , (12)

where γ1, γ0 are Lipschitz constants.

Proposition 5. For every complex number s with nonnegative real part [21]:

rank

[
sIn − A D

C 0

]
= n + rank(D). (13)

This is known as the minimum phase condition.

Lemma 1. If Assumption 5 holds, then the pairs (A11, C11) and (A0, C0) are observable [23], there exist
matrices L0 and L1, such that A01 = A11 − L1C11 and A00 = A0 − L0C0 are stable and the following
Lyapunov equations hold:

AT
00P0 + P0 A00 = −Q0, (14)

AT
01P1 + P1 A01 = −Q1, (15)

where P1, Q1, P0, Q0 are all symmetric positive definite (SPD) matrices.
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Proposition 6. There exists an arbitrary matrix F0 ∈ R(n+q−2r)×(n+q−2r), F1 ∈ Rr×r, such that:

P0E0 = CT
0 FT

0 , (16)

P1D1 = CT
11FT

1 , (17)

where C0 ∈ R(p−r)×(n+p−2r), E0 ∈ R(n+p−2r)×q, D1 ∈ Rr×r, C11 ∈ Rr×r.

For Subsystem (10), the proposed sliding mode observer is constructed:{
˙̂x1 = A11 x̂1 + A2 x̂0 + B1u + f1(x̂, t) + D1w1 + L1(y1 − ŷ1)

ŷ1 = C11 x̂1,
(18)

where w1 is the input control signal of the sliding mode, defined by:

w1 =

−ρ1
F1(ŷ1 − y1)

‖F1(ŷ1 − y1)‖
i f ŷ1 − y1 6= 0

0 i f ŷ1 − y1 = 0,
(19)

where F1 ∈ Rr×r is the matrix to be designed, ρ1 is the scalar function to be designed and ρ1 ≥ ρd.
For Subsystem (9), the proposed sliding mode observer is constructed:{

˙̂x0 = A0 x̂0 + A1 x̂1 + F2(x̂, t) + B0u + E0w0 + L0(y0 − ŷ0)

ŷ0 = C0 x̂0,
(20)

where w0 is the input control signal of the sliding mode, defined by:

w0 =

−ρ0
F0(ŷ0 − y0)

‖F0(ŷ0 − y0)‖
i f ŷ0 − y0 6= 0

0 i f ŷ0 − y0 = 0,
(21)

where F0 ∈ R(n+q−2r)×(n+q−2r) is the matrix to be designed, ρ0 is the scalar function to be designed
and ρ0 ≥ ρs.

The state estimation errors are defined as:

e =
[
e1 e0

]T
, (22)

where e1 = x1 − x̂1, e0 = x0 − x̂0.
The output estimation errors are as follows:

ey1
= y1 − ŷ1 = C11e1

ey0 = y0 − ŷ0 = C0e0.
(23)

Based on Equations (9), (10), (18) and (20), the corresponding error dynamic equations are
given by:

ė1 = (A11 − L1C11)e1 + A2e0 + f1(x, t)− f1(x̂, t) + D1(d−w1)

= A01e1 + A2e0 + f1(x, t)− f1(x̂, t) + D1(d−w1),
(24)

ė0 = (A0 − L0C0)e0 + F2(x, t)− F2(x̂, t) + E0( fs −w0)

= A00e0 + A1e1 + F2(x, t)− F2(x̂, t) + E0( fs −w0).
(25)

Define the sliding mode surface as:

s = { (e1, e0)| e1 = 0, e0 = 0}. (26)
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Lemma 2 (Schur complement [24]). For a given symmetric matrix S =

[
S11 S12

S21 S22

]
, where S11 ∈ Rr×r,

the following three conditions are equivalent:

1. S < 0;
2. S11 < 0, S22 − ST

12S−1
11 S12 < 0;

3. S22 < 0, S11 − S12S−1
22 ST

12 < 0.

Lemma 3 ([25]). If g(x, u, t) satisfies the Lipschitz condition, there is a symmetric positive definite matrix P
that satisfies the following equation:

2εTP(g(x1, u, t)− g(x2, u, t)) ≤ k2εTPPε + εTε, (27)

where ε = x1 − x2, k is the Lipschitz constant.

3.2. Lyapunov Stability Analysis

Theorem 1. Under Assumptions 1–5, if the following LMI holds,
H1 P1 AT

1 P0 + P1 A2 0
P1 −1/γ2

1 0 0
AT

2 P1 + P0 A1 0 H2 P0

0 0 P0 1/γ2
0

 < 0, (28)

where H1 = AT
11P1 + P1 A11 − YT

1 − Y1 + Ir, H2 = AT
0 P0 + P0 A0 − YT

0 − Y0 + In+p−2r, Y1 = P1L1C11,
Y0 = P0L0C0, if there exist matrices P1 > 0, P0 > 0, then the error dynamical Systems (24) and (25) are
asymptotically stable, and e0, e1 will converge to the zero point in finite time.

Proof of Theorem 1. Consider the following Lyapunov function:

V = V1 + V0 = eT
1 P1e1 + eT

0 P0e0, (29)

where V1 = eT
1 P1e1, V0 = eT

0 P0e0.
The derivative of the Lyapunov function V1 with respect to time is:

V̇1 =ėT
1 P1e1 + eT

1 P1ė1

= [A01e1 + A2e0 + f1(x, t)− f1(x̂, t) + D1(d−w1)]
T P1e1

+ eT
1 P1 [A01e1 + A2e0 + f1(x, t)− f1(x̂, t) + D1(d−w1)]

=eT
1

(
AT

01P1 + P1 A01

)
e1 + 2eT

1 P1 A2e0 + 2eT
1 P1 [ f1(x, t)− f1(x̂, t)]

+ 2eT
1 P1D1(d−w1).

(30)

Similarly, the derivative of V0 can be obtained as:

V̇0 =ėT
0 P0e0 + eT

0 P0ė0

= [A00e0 + A1e1 + F2(x, t)− F2(x̂, t) + E0( fs −w0)]
T P0e0

+ eT
0 P0 [A00e0 + A1e1 + F2(x, t)− F2(x̂, t) + E0( fs −w0)]

=eT
0 (AT

00P0 + P0 A00)e0 + 2eT
0 P0 A1e1 + 2eT

0 P0 [F2(x, t)− F2(x̂, t)]

+ 2eT
0 P0E0( fs −w0).

(31)
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Combining (30) and (31) yields:

V̇ = eT
1 (AT

01P1 + P1 A01)e1 + 2eT
1 P1 A2e0 + 2eT

1 P1[ f1(x, t)− f1(x̂, t)]

+ 2eT
1 P1D1(d−w1) + eT

0 (AT
00P0 + P0 A00)e0 + 2eT

0 P0 A1e1

+ 2eT
0 P0 [F2(x, t)− F2(x̂, t)] + 2eT

0 P0E0( fs −w0).

(32)

It is easy to see that from Propositions 2 and 5:

eT
1 P1D1(d−w1) = eT

1 C̄T
11FT

1 d− eT
1 C̄T

11FT
1 w1

= F1ey1d− ρ1F1ey1
F1ey1∥∥F1ey1

∥∥ ≤ ∥∥F1ey1
∥∥ (ρd − ρ1) ≤ 0,

(33)

eT
0 P0E0( fs −w0) = eT

0 CT
0 FT

0 fs − eT
0 CT

0 FT
0 w0

= F0ey0 fs − ρ0F0ey0
F0ey0∥∥F0ey0

∥∥ ≤ ∥∥F0ey0
∥∥ (ρs − ρ0) ≤ 0.

(34)

From Lemma 3, we find that:

2eT
1 P1[ f1(x, t)− f1(x̂, t)] ≤ γ2

1eT
1 P1P1e1 + eT

1 e1, (35)

2eT
0 P0[F(x, t)− F(x̂, t)] ≤ γ2

0eT
0 P0P0e0 + eT

0 e0. (36)

Combining (33)–(36) yields:

V̇ ≤ eT
1 (AT

01P1 + P1 A01)e1 + 2eT
1 P1 A2e0 + γ2

1eT
1 P1P1e1 + eT

1 e1

+ eT
0 (AT

00P0 + P0 A00)e0 + 2eT
0 P0 A1e1 + γ2

0eT
0 P0P0e0 + eT

0 e0

≤
[

e1

e0

]T [
AT

01P1 + P1 A01 + γ2
1P1P1 + I P1 A2 + AT

1 P0

AT
2 P1 + P0 A1 AT

00P0 + P0 A00 + γ2
0P0P0 + I

] [
e1

e0

]
.

(37)

To satisfied V < 0, it follows that:[
AT

01P1 + P1 A01 + γ2
1P1P1 + I P1 A2 + AT

1 P0

AT
2 P1 + P0 A1 AT

00P0 + P0 A00 + γ2
0P0P0 + I

]
< 0. (38)

Then, Inequality (38) can be transformed into the following LMI feasibility problem:
H1 P1 AT

1 P0 + P1 A2 0
P1 −1/γ2

1 0 0
AT

2 P1 + P0 A1 0 H2 P0

0 0 P0 1/γ2
0

 < 0, (39)

where H1 = AT
11P1 + P1 A11 − YT

1 − Y1 + Ir, H2 = AT
0 P0 + P0 A0 − YT

0 − Y0 + In+p−2r, Y1 =

P1L1C11,Y0 = P0L0C0.
Then, the observer error dynamics (24) and (25) is asymptotically stable, and e0, e1 will converge

to the zero point in finite time.
This completes the proof.
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3.3. Sensor Fault Reconstruction and Unknown Load Disturbance Estimation

After a finite period of time, the system state reaches the sliding surface. According to the sliding
mode equivalence principle [26], the following equations are obtained:{

e1 = ė1 = 0

e0 = ė0 = 0,
(40)

Substituting Equation (40) into error dynamics Equations (24) and (25) yields:

0 = [ f1(x, t)− f1(x̂, t)] + D1(d−w1eq), (41)

0 = [F2(x, t)− F2(x̂, t)] + E0( fs −w0eq). (42)

Since lim
t→∞

e(t) = 0, lim
t→∞

[F(x, t)− F(x̂, t)] = 0, lim
t→∞

[ f1(x, t)− f1(x̂, t)] = 0, it follows from

Equations (41) and (42) that: {
d→ w1eq

fs → w0eq,
(43)

where w1eq, w0eq can be approximated as:
w1eq = −ρ1

F1(ŷ1 − y1)

‖F1(ŷ1 − y1)‖+ δ

w0eq = −ρ0
F0(ŷ0 − y0)

‖F0(ŷ0 − y0)‖+ δ
,

(44)

where δ is a small positive constant to reduce the chattering effect. It can obtain a smooth fault and
disturbance reconstruction.

The unknown input disturbance d and sensor faults fs can be estimated as:
d̂ = −ρ1

F1(ŷ1 − y1)

‖F1(ŷ1 − y1)‖+ δ

f̂s = −ρ0
F0(ŷ0 − y0)

‖F0(ŷ0 − y0)‖+ δ
.

(45)

4. Example: Reconstruct Current Sensor Faults and Estimate the Unknown Load for PMSM

In this section, taking the PMSM drive system as an example, the effectiveness of the scheme
in sensor fault reconstruction and unknown load estimation is demonstrated. The nonsingular
transformation matrices T and S are chosen as:

T =


1 0 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

 , S =

1 −1 −1
0 1 0
0 0 1

 ,

then, the PMSM System (2) can be converted into the following two subsystems:
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ω̇e︸︷︷︸
ẋ1

=

[
−B

J

]
︸ ︷︷ ︸

A11

ωe︸︷︷︸
x1

+
[
0

3n2
p

2J ψr 0
]

︸ ︷︷ ︸
A12

θe

iq

id


︸ ︷︷ ︸

x2

+

(
3n2

p(Ld − Lq)

2J
idiq

)
︸ ︷︷ ︸

f1(x)

+

[
−

np

J

]
︸ ︷︷ ︸

D1

TL︸︷︷︸
d

ωe︸︷︷︸
y1

= 1︸︷︷︸
C11

· ωe︸︷︷︸
x1

,

(46)



θ̇e

i̇q

i̇d


︸ ︷︷ ︸

ẋ2

=

 1
− ψr

Lq

0


︸ ︷︷ ︸

A21

ωe︸︷︷︸
x1

+

0 0 0
0 − Rs

Lq
0

0 0 − Rs
Ld


︸ ︷︷ ︸

A22

θe

iq

id


︸ ︷︷ ︸

x2

+

 0 0
1
Lq

0

0 1
Ld


︸ ︷︷ ︸

B2

[
uq

ud

]
︸ ︷︷ ︸

u

+

 0
− Ld

Lq
ωeid

Lq
Ld

ωeiq


︸ ︷︷ ︸

f2(x)[
iq
id

]
︸︷︷︸

y2

=

[
0 1 0
0 0 1

]
︸ ︷︷ ︸

C22

θe

iq

id


︸ ︷︷ ︸

x2

+

[
1 0
0 1

]
︸ ︷︷ ︸

E2

[
fq

fd

]
︸︷︷︸

fs

.

(47)

For Subsystem (47), a new state x3 =
∫ t

0 y2(τ)dτ is defined, and As = 0 and Bs = I are chosen;
it can be obtained from Equation (7):

ẋ3 = C22x2 + E2 fs =

[
0 1 0
0 0 1

]
︸ ︷︷ ︸

C22

θe

iq

id


︸ ︷︷ ︸

x2

+

[
1 0
0 1

]
︸ ︷︷ ︸

E2

[
fq

fd

]
︸︷︷︸

fs

=

[
iq + fq

id + fd

]
. (48)

From Equation (7), it is easy to see: x0 =
[

x2 x3

]T
=
[
θe iq id

∫ (
iq + fq

)
dt

∫
(id + fd) dt

]T

y0 = x3.
(49)

The subsystems (47) can be rewritten as:




θ̇e

i̇q
i̇d

ẋ31

ẋ32


︸ ︷︷ ︸

x0

=


0 1 1 0 0
0 − ψr

Lq
− Rs

Lq
− ψr

Lq
0 0

0 0 − Rs
Ld

0 0
0 1 0 0 0
0 0 1 0 0


︸ ︷︷ ︸

A0


θe

iq

id
x31

x32


︸ ︷︷ ︸

x0

+


1
− ψr

Lq

0
0
0


︸ ︷︷ ︸

A1

ωe︸︷︷︸
x1

+


0 0
1
Lq

0

0 1
Ld

0 0
0 0


︸ ︷︷ ︸

B0

[
uq

ud

]
︸ ︷︷ ︸

u

+


0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

E0

[
fq

fd

]
︸︷︷︸

fs

+


0

− Ld
Lq

ωeid
Lq
Ld

ωeiq
0
0


︸ ︷︷ ︸

F2[
x31

x32

]
︸ ︷︷ ︸

y0

=

[
0 0 0 1 0
0 0 0 0 1

]
︸ ︷︷ ︸

C0

[
θe iq id x31 x32

]T

︸ ︷︷ ︸
x0

.

(50)
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The subsystems (46) can be rewritten as:

ω̇e︸︷︷︸
x1

=

(
−B

J

)
︸ ︷︷ ︸

A11

ωe︸︷︷︸
x1

+
[
0

3n2
p

2J ψr 0 0 0
]

︸ ︷︷ ︸
A2


θe

iq
id

x31
x32


︸ ︷︷ ︸

x0

+

(
3n2

p(Ld − Lq)

2J
idiq

)
︸ ︷︷ ︸

f1(x)

+

(
−

np

J

)
︸ ︷︷ ︸

D1

TL︸︷︷︸
d

ωe︸︷︷︸
y1

= 1︸︷︷︸
C11

· ωe︸︷︷︸
x1

.

(51)

The IPMSM parameters are listed in Table 1.

Table 1. Parameters of the permanent magnet synchronous motor.

Parameters Unit Values

stator resistance (Rs) Ω 2.875
number of pole pairs (np) pairs 4

q-axis inductance (Lq) H 0.0075
d-axis inductance (Ld) H 0.0025

rotor PM flux (ψr) Wb 0.175
rotational inertia (J) kg·m2 0.0008

viscous friction coefficient (B) Nm·s/rad 0.0001

Substitute the IPMSM parameters into the PMSM-driven system; the new Subsystem (50) can be
represented in state-space form as:


θ̇e

i̇q
i̇d

ẋ31
ẋ32


︸ ︷︷ ︸

ẋ0

=


0 0 0 0 0
0 −383.3 23.3 0 0
0 0 −1150 0 0
0 1 0 0 0
0 0 1 0 0


︸ ︷︷ ︸

A0


θe

iq
id

x31
x32


︸ ︷︷ ︸

x0

+


1

−23.333
0
0
0


︸ ︷︷ ︸

A1

ωe︸︷︷︸
x1

+


0 0

133.33 0
0 400
0 0
0 0


︸ ︷︷ ︸

B0

[
uq

ud

]
︸ ︷︷ ︸

u

+


0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

E0

fs +


0

− 1
3 ωeid

3ωeiq
0
0


︸ ︷︷ ︸

F0(x)

y0 =

[
y01
y02

]
=

[
0 0 0 1 0
0 0 0 0 1

]
︸ ︷︷ ︸

C0

[
θe iq id x31 x32

]T

︸ ︷︷ ︸
x0

=
[

x31 x32

]T

︸ ︷︷ ︸
x3

,

(52)

and the new Subsystem (51) can be represented in state-space form as:
ω̇e︸︷︷︸
ẋ1

= 0.125︸ ︷︷ ︸
A11

ωe︸︷︷︸
x1

+
[
0 5250 0 0 0

]
︸ ︷︷ ︸

A2

[
θe iq id x31 x32

]T

︸ ︷︷ ︸
x0

+
(
−1200idiq

)︸ ︷︷ ︸
f1(x)

− 5000︸︷︷︸
D1

TL︸︷︷︸
d

y1 = ωe︸︷︷︸
x1

.
(53)

The Lipschitz constant of PMSM was chosen to be γ1 = γ2 = γ = 0.6 [27]. The LMI toolbox in
MATLAB is used to solve the LMI. The following solutions for the SMOs can be computed as:
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P1 = [0.0140], P0 =


9.4885 0.0373 0 −0.0001 0
0.0373 0.8029 0 0.0010 0

0 0 0.2416 0 0.0001
−0.0001 0.0010 0 9.5667 0

0 0 0.0001 0 9.5667

, L1 = [3464], L0 =


0.0010 0
0.2401 0

0 0.2185
5.7244 0

0 5.7243

, F1 = [−70.1723], F0 =

[
9.5667 0.0000
0.0000 9.5667

]
.

For (53), the SMO as (18) is designed:

˙̂ωe︸︷︷︸
ẋ1

= 0.125︸ ︷︷ ︸
A11

ω̂e︸︷︷︸
x̂1

+
[
0 5250 0 0 0

]
︸ ︷︷ ︸

A2

[
θ̂e îq îd x̂31 x̂32

]T

︸ ︷︷ ︸
x̂0

+
(
−1200îd îq

)︸ ︷︷ ︸
f1(x)

+ (−5000)︸ ︷︷ ︸
D1

w1

+ 3464(y1 − ŷ1)

ŷ1 = ω̂e︸︷︷︸
x1

,

(54)

where w1 is the input signal of sliding mode, expressed as:

w1 =

−ρ1
−70.1723(ŷ1 − y1)

‖−70.1723(ŷ1 − y1)‖+ δ
i f ŷ1 − y1 6= 0

0 i f ŷ1 − y1 = 0.

For (52), the SMO as (20) is designed:



˙̂θe
˙̂iq
˙̂id
˙̂x31
˙̂x32


︸ ︷︷ ︸

˙̂x0

=


0 0 0 0 0
0 −383.3 23.3 0 0
0 0 −1150 0 0
0 1 0 0 0
0 0 1 0 0


︸ ︷︷ ︸

A0


θ̂e

îq

îd
x̂31

x̂32


︸ ︷︷ ︸

x̂0

+


1

−23.333
0
0
0


︸ ︷︷ ︸

A1

ω̂e︸︷︷︸
x1

+


0 0

133.33 0
0 400
0 0
0 0


︸ ︷︷ ︸

B0

[
uq

ud

]
︸ ︷︷ ︸

u

+


0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

E0

w0 +


0

− 1
3 ω̂e îd

3ω̂e îq
0
0


︸ ︷︷ ︸

F0(x̂)

+


0.0010 0
0.2401 0

0 0.2185
5.7244 0

0 5.7243


︸ ︷︷ ︸

L0

(y0 − ŷ0)

ŷ0 =

[
ŷ01

ŷ02

]
=

[
0 0 0 1 0
0 0 0 0 1

]
︸ ︷︷ ︸

C0

[
θ̂e îq îd x̂31 x̂32

]T

︸ ︷︷ ︸
x̂0

=
[

x̂31 x̂32

]T

︸ ︷︷ ︸
x̂3

,

(55)

where w0 is the input signal of sliding mode, expressed as:

w0 =


−ρ0

[
9.5667 0.0000
0.0000 9.5667

]
(ŷ0 − y0)∥∥∥∥∥

[
9.5667 0.0000
0.0000 9.5667

]
(ŷ0 − y0

∥∥∥∥∥+ δ

i f ŷ0 − y0 6= 0

0 i f ŷ0 − y0 = 0.
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Select ρ1 = 100, ρ0 =

[
10000 0

0 10000

]
and δ = 0.01, to complete the SMO design.

5. Simulations and Experiments

To check the performance of the proposed scheme, simulations are performed on
MATLAB/Simulink. The complete sliding mode observer-based current sensor fault reconstruction
and unknown load estimation scheme is shown in Figure 1.

PMSM 
System Sensor

SMO 0#

SMO 1#

u

d sf

1x̂

0x̂

ˆ
sf

d̂

0eqw

1eqw

y 2y
23 3 s sx xA B y

1x
2x

1y

2x̂

3x̂

PMSM 
System Sensor

SMO 0#

SMO 1#

u

d sf

1x̂

0x̂

ˆ
sf

d̂

0eqw

1eqw

y

0̂k

1̂k

2y
23 3 s sx xA B y

1x
2x

1y

2̂x

3̂x

Figure 1. Schematic of the sensor fault reconstruction and unknown input disturbances estimation
by SMO.

5.1. Simulation Results

The initial rotor electrical angular velocity is set to 300 rad/s. The load torque is set as 2 Nm.
The id = 0 control scheme is carried out on an IPMSM.

5.1.1. Case 1: Incipient Fault of Current Sensor

In the case of incipient faults of the d-axis and q-axis current sensor, the faults are expressed as
follows [28]:

fq1(t) =

{
0

2 exp(0.0667t)
t < 0.5s
t ≥ 0.5s

, fd1(t) =

{
0

tanh(t)
t < 0.5s
t ≥ 0.5s

(56)

Figures 2–5 exhibit the states and their estimated values, respectively. Figures 6 and 7 show the d-q
axis sensor incipient faults and their estimated trajectories, respectively. Figure 8 shows the unknown
load disturbances and its estimated trajectories. It can be seen from the figures that both d-q axis
current sensor incipient faults and unknown input load disturbances can be accurately reconstructed
in the PMSM-driven system.
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Figure 2. State ωe and its estimated value ω̂e.
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Figure 3. State θe and its estimated value θ̂e.
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Figure 4. State iq and its estimated value îq.
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Figure 5. State id and its estimated value îd.
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Figure 6. Sensor fault fd and its estimated value f̂d.
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Figure 7. Sensor fault fq and its estimated value f̂q.
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Figure 8. Unknown load disturbances TLa nd its estimated value T̂L.

5.1.2. Case 2: Intermittent Fault of Current Sensor

In the case of intermittent faults of the d-axis and q-axis current sensor, the faults are expressed
as follows:

fq2(t) =



0 t < 0.5s
0.5 0.5s ≤ t < 0.8s
0 0.8s ≤ t < 1s

0.8 1s ≤ t < 1.2s
0.2 1.2s ≤ t < 1.4s
0.5
0

1.4s ≤ t < 1.6s
t ≥ 1.6s

,
fd2(t) =



0 t < 0.6s
1 0.6s ≤ t < 1s
0 1s ≤ t < 1.2s

0.8 1.2s ≤ t < 1.4s
0.2 1.4s ≤ t < 1.6s
0 t ≥ 1.6s

(57)

Figures 9–12 exhibit the states and their estimated values, respectively. Figures 13 and 14 show
the d-q axis sensor intermittent faults and their estimated trajectories, respectively. Figure 15 shows the
unknown input load disturbances and its estimated trajectories. It can be seen from the figures that
both d-q axis current sensor intermittent faults and unknown input load disturbances can be accurately
reconstructed in the PMSM-driven system.
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Figure 9. State ωe and its estimated value ω̂e.
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Figure 10. State θe and its estimated value θ̂e.
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Figure 11. State iq and its estimated value îq.
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Figure 12. State id and its estimated value îd.
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Figure 13. Sensor fault fd and its estimated value f̂d.
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Figure 14. Sensor fault fq and its estimated value f̂q.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

 

 

U
nk

no
w

n 
Lo

ad
 T

L a
nd

 it
s e

sti
m

at
ed

 v
al

ue
 (N

m
)

Time (t)

 Unknown Load TL 
 Unknown Load estimation

Figure 15. Unknown load disturbances TL and its estimated value T̂L.
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5.1.3. Case 3: High Frequency and Low Frequency Fault of Current Sensor

In the case of the low frequency of the d-axis current sensor and the high frequency fault of the
q-axis, the faults are expressed as follows [29]:

fq3(t) =


0 t < 0.5s

(0.5 sin(15t) + 0.25 sin(10t))
0.2 ‖y‖2

2
‖y‖2 + 0.5

t ≥ 0.5s

fd3(t) =

{
0

sin(0.5t) + 0.2 sin(2t)
t < 0.6s
t ≥ 0.6s

(58)

Figures 16–19 exhibit the states and their estimated values, respectively. Figures 20 and 21 show
the d-q axis sensor high and low frequency faults and their estimated trajectories, respectively. Figure 22
shows the unknown input load disturbances and its estimated trajectories. It can be seen from the
figures that both d-q axis current sensor high and low frequency faults and unknown input load
disturbances can be accurately reconstructed in the PMSM-driven system.
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Figure 16. State ωe and its estimated value ω̂e.
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Figure 18. State iq and its estimated value îq.
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Figure 19. State id and its estimated value îd.
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Figure 20. Sensor fault fd and its estimated value f̂d.
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Figure 21. Sensor fault fq and its estimated value f̂q.
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Figure 22. unknown load disturbances TL and its estimated value T̂L.

5.2. Experiments Results

RT-LAB is a modular, distributed, real-time platform. It supports model-based design using
rapid control prototyping (RCP) and hardware-in-the-loop simulation (HILS) for complex dynamic
systems [30].

To implement the proposed scheme, HILS experiments are carried out on an OP5600 RT-LAB
platform. The RT-LAB platform is shown in Figure 23, and the configuration is shown in Figure 24.
The controller is a TMS320F2812 digital signal processor, which implements high-performance control
and computation. The inverter, PMSM system and current sensor faults are simulated by RT-LAB.
The PWM switching frequency is chosen as 5 kHz. The sampling period is chosen as 20 µs.

Figure 23. RT-LAB platform.
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s

PMSMController

RT-LAB

TMS320F2812PC

Figure 24. Configuration of the RT-LAB hardware-in-the-loop simulation (HILS) system.

5.2.1. Case 1: Incipient Faults of Current Sensor

The experiments of the d-q axis current sensor incipient faults Equation (56) are shown in
Figures 25 and 26. Figure 25 shows the states and their estimated values, respectively. Figure 26 exhibits
the d-q axis sensor incipient faults and their estimated trajectories, the unknown load disturbances and
its estimated trajectories, respectively.
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Figure 25. Experimental results of states and their estimated values. (a) States ωe, θe and their estimated
value ω̂e, θ̂e; (b) states id, iq and their estimated value îd, îq.

e

ˆe

e ê
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Figure 26. Experimental results of incipient sensor faults, unknown load and their estimated values.
(a) Sensor faults fd, fq and their estimated values f̂d, f̂q; (b) unknown load TL and its estimated value T̂L.

It can be seen from the figures that both the states, d-q axis current sensor incipient faults and
unknown input load disturbances can be accurately reconstructed and estimated by SMOs in PMSM
driven system.

5.2.2. Case 2: Intermittent Fault of Current Sensor

The experiments of d-q axis current sensor intermittent faults Equation (57) are shown in
Figures 27 and 28.
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Figure 27 shows the states and their estimated value, respectively. Figure 28 exhibits the d-q axis
sensor intermittent faults and their estimated trajectories, the unknown load disturbances and their
estimated trajectories, respectively.

It can be seen from the figures that both states, d-q axis current sensor intermittent faults and
unknown input load disturbances, can be accurately reconstructed and estimated by SMOs in the
PMSM-driven system.
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Figure 27. Experimental results of states and their estimated values. (a) States ωe, θe and their estimated
values ω̂e, θ̂e; (b) states id, iq and their estimated values îd, îq.
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Figure 28. Experimental results of intermittent sensor faults, unknown load and their estimated values.
(a) Sensor faults fd, fq and their estimated values f̂d, f̂q; (b) unknown load TL and its estimated value T̂L.

5.2.3. Case 3: High Frequency and Low Frequency Fault of Current Sensor

The experiments of the d-q axis current sensor high frequency and low frequency faults
Equation (58) are shown in Figures 29 and 30. Figure 29 shows the states and their estimated values,
respectively. Figure 30 exhibits the d-q axis sensor high frequency and low frequency faults and their
estimated trajectories, the unknown load disturbances and their estimated trajectories, respectively.

It can be seen from the figures that both states, d-q axis current sensor high frequency and low
frequency faults and unknown input load disturbances, can be accurately reconstructed and estimated
by SMOs in the PMSM-driven system.
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Figure 29. Experimental results of states and their estimated values. (a) States ωe, θe and their estimated
values ω̂e, θ̂e; (b) states id, iq and their estimated values îd, îq.
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Figure 30. Experimental results of high and low frequency sensor faults, unknown load and their
estimated values. (a) Sensor faults fd, fq and their estimated values f̂d, f̂q; (b) unknown load TL and its
estimated value T̂L.

6. Conclusions

This paper proposes a new scheme of reconstructing current sensor faults and estimating
unknown load disturbance for permanent magnet synchronous motor (PMSM)-driven systems.
The PMSM dynamic mathematical model is transformed into two subsystems; the first subsystem has
unknown load disturbance without sensor faults, and the second subsystem has sensor faults without
disturbances. Introducing a new state variable, the augmented subsystem, which has sensor faults, can
be transformed from having sensor faults to having actuator faults. Then, two SMOs are designed: the
unknown load disturbance is estimated by the first SMO, and the sensor faults can be reconstructed
by the second SMO. The sufficient conditions for the stability of the proposed scheme are given and
expressed as linear matrix inequalities (LMI). The scheme is capable pf estimating the PMSM system
states, such as electrical angle, electrical angular velocity and d-q currents, the load torque and the
sensor current faults. The scheme is applicable to incipient fault, intermittent fault, high frequency
and low frequency fault, or any other type of fault. The good results of simulation and experiment
demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown
load disturbance for PMSM-driven systems. In the future, the adaptive sliding mode observer-based
current sensor fault reconstruction and unknown load disturbance estimation will be designed for the
PMSM-driven system.
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