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Abstract: Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global
Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock
status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper,
the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed
by analyzing statistical characteristic of FLD output. The approximate probability distribution of
frequency-locked detector is theoretically derived by using a statistical approach, which reveals
the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio
(C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection
threshold and lock probability related to C/N0 can be further discovered by utilizing this probability.
Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers
is provided based on mean-time-to-lose-lock analysis.
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1. Introduction

In the Global Positioning System (GPS) receiver, the lock detector is usually used to indicate
the signal tracking status by comparing with a threshold. Code, frequency and phase are tracked by
delay, frequency, and phase locked loops, respectively. These loops have their own indicators [1,2].
The GPS receiver mainly relies on phase locked loop (PLL) and delay locked loop (DLL) to track
signal and frequency locked loop (FLL) is a transition part to bridge acquisition and PLL + DLL.
However, in high performance GPS receivers, such as high dynamic and high sensitivity receivers,
the FLL has been widely used when the carrier phase could not be tracked by PLL or aids PLL to track
signal [3,4]. It indicates the significance of analyzing frequency-locked detector. For example, a detailed
discussion and comparison of PLL and FLL can be found in [5]. Yang and Huang [6] proposed a
non-linear carrier NCO unit to track carrier precisely by selecting interpolating filter orders, which is
derived from the frequency discriminator in high dynamic situation. Curran et al. [7] discussed the
design and steady-state performance of one first-order, two second-order FLL loop filters, and four
carrier frequency discriminators, then a new FLL design under weak signal conditions was proposed.
Meanwhile, FLLs have some distinct advantages over PLL counterparts [8]. By neglecting absolute
phase error and permitting relative phase rotation of the received signal and the local carrier replica,
an FLL can, typically, acquire and track signals that are at higher frequency offsets than a PLL. It is easy
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to understand that FLL plays a key role in facilitating reliable signal tracking. The frequency-locked
detector (FLD) is used to indicate FLL signal tracking state. Natali [9] presented several AFC loops and
performance for different signal. Messerschmi [10] has described two simply implemented frequency
detectors to aid PLL timing and carrier acquisition, even with very small loop bandwidths and large
initial frequency offsets. Mileant and Hinedi [11] proposed an FLD based on square law, which
experiences less degradation due to phase jitter than the absolute value detector. Linn and Peleg [12]
suggested a family of PLDs for M-PSK receivers operating in additive white Gaussian noise channels
and derived the statistical properties of PLD. Kratyuk et al. [13] discussed Frequency detector for fast
frequency lock of digital PLLs, which provides frequency difference information at each reference
cycle to guarantee fast frequency acquisition. Previous researches mainly focus on the structure of FLL
and its detector, but how to set the FLL detector threshold is seldom discussed, which make it hard
to indicate the tracking frequency is stabilized or not. Our main purpose is to analyze the statistical
performance of FLD by mean-time-to-lose-lock approaches, and make comparison with PLD, which
has been studied by Jin et al. [14].

2. Frequency-Locked Detector Output C2ϕ

In the GPS receiver, the GPS signal received by the antenna is down converted to intermediate
frequency through low noise amplifier, filters, and down-converter [15], the obtained signal S(t) can
be written as follows:

S(t) = AC(t)D(t) cos[(ωIF + ωDoppler)t + φ0] + n(t) (1)

where A is the signal amplitude, C(t) is PRN code of GPS, D(t) is the navigation data, ωIF is the
intermediate frequency, ωDoppler is the Doppler frequency shift, φ0 is the initial carrier phase, n(t) is
the additive white Gaussian noise.

According to [4,16,17], LOS (line of sight) signal through the front-end A/D sampling,
quantization and integration, the in-phase, and quadrature-phase integrations at ith interval are
Ii and Qi, which are shown as:

Ii ≈
√

2 C
N0

TcohR(τ) sin c(π∆ fiTcoh) cos(π∆ fiTcoh + ∆φi) + nI,i

=
√

2 C
N0

TcohR(τ) sin c(π∆ fiTcoh) cos(∆θi) + nI,i

= Ai cos(ϕi)

(2)

Qi ≈
√

2 C
N0

TcohR(τ) sin c(π∆ fiTcoh) sin(π∆ fiTcoh + ∆φi) + nQ,i

=
√

2 C
N0

TcohR(τ) sin c(π∆ fiTcoh) sin(∆θi) + nI,i

= Ai sin(ϕi)

(3)

where C/N0 is carrier to noise ratio, Tcoh is coherent integration time, R(τ) is the auto-correlation
function of PRN code, τ is the code phase delay between received and local replica, ∆ fi and ∆φi
are the frequency error between received and local replica and the initial phase error between
received and local replica, ∆θi is total phase error that includes ∆ fi and ∆φi in the ith intervals.
nI,i, nQ,i are independent white Gaussian noises corresponding to the I and Q branches, respectively.
For the convenience of calculation, we take normalization processing of nI,i~N(0, 1), nQ,i~N(0, 1) [14].
Ai and ϕi are signal amplitude and average phase estimation, containing noise component, relative to√

2 C
N0

TcohR(τ) sin c(π∆ fiTcoh) and ∆θi. Detailed discussions of the effects of signal quantization are
given in [18,19].

The output of frequency-locked detector during a period of time was proposed by [20], which is
shown as:

C2ϕ =
1
M

M

∑
i=1

Di
Pi

(4)
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where Di = (Dot)2 − (Cross)2, Pi = (Cross)2 + (Dot)2, Dot + jCross = (Ii + jQi)(Ii−1 + jQi−1). M is
the times of accumulation.

Further, according to Spiegel [21], (4) can be simplified as:

Di = (Dot)2 − (Cross)2 = [(Dot)2 + (Cross)2] cos(2ϕi − 2ϕi−1) (5)

C2ϕ = 1
M

M
∑

i=1

Di
Pi

= 1
M

M
∑

i=1

(Doti)
2 − (Crossi)

2

(Doti)
2 + (Crossi)

2

= 1
M

M
∑

i=1

[(Doti)
2 + (Crossi)

2] cos(2ϕi − 2ϕi−1)

(Doti)
2+ (Crossi)

2

= 1
M

M
∑

i=1
cos(2ϕi − 2ϕi−1)

= 1
M

M
∑

i=1
cos(2∆ϕi)

(6)

where ϕi−1 and ϕi are average phase estimation errors in the (i − 1)th and ith intervals, respectively.
∆ϕi is the difference between ϕi and ϕi−1.

3. Distribution of FLD Output C2ϕ

According to Zhuang [22], the statistical properties of ϕ obeys Rician distribution with |ϕ| ≤ π,
its probability density function is

f (ϕ) =
1

2π
e−

C
N0

Tcoh

1 +

√
2

C
N0

Tcoh cos(ϕ− ∆θ) exp(
C
N0

Tcoh cos2(ϕ− ∆θ))

a∫
−∞

e−
x2
2 dx

 (7)

where a = cos(ϕ − ∆θ)
√

2 C
N0

Tcoh. The approximate simplification of (7) shows that ϕ is nearly
subjected to Gaussian distribution under high C/N0, while it obeys uniform distribution under low
C/N0. Based on the different distribution of ϕ, under different C/N0 conditions, we can analyze the
distribution characteristics of FLD output C2ϕ individually.

3.1. C2ϕ Distribution under Frequency Lock

When frequency locked loop is in lock and C/N0 is high, we can make the following assumptions:

exp(− C
N0

Tcoh) ≈ 0 (8)

cos2(ϕ− ∆θ) = 1− sin2(ϕ− ∆θ) ≈ 1− (ϕ− ∆θ)2 (9)

cos(ϕ−∆θ)
√

2 C
N0

Tcoh∫
−∞

e−
x2
2 dx ≈

√
2π (10)

Based on the previous assumptions, (7) can be simplified to

f (ϕ) ≈ 1√
2π ∗ ( 1

2TcohC/N0
)
∗ exp(− (ϕ− ∆θ)2

2 ∗ ( 1
2TcohC/N0

)
)|ϕ| ≤ π (11)

where ϕ follows Gaussian distribution with the mathematical expectation ∆θ and variance
1/(2Tcoh · C

N0
) (σ2 = 1/(Tcoh · C

N0
)). Then, we can get the probability distribution function of ∆ϕ

shown below. When considering noise of ith and (i − 1)th are independent with each other, ϕi and
ϕi−1 are independent of each other, while ∆θi and ∆θi−1 (mathematical expectation of ϕi and ϕi−1) are
approximately equal to zero under frequency lock and interval is small. Thus, we can calculate the
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mathematical expectation E{∆ϕi} and variance VAR{∆ϕi}, and probability distribution function of
∆ϕ, which are shown as follows:

E{∆ϕi} = E{ϕi} − E{ϕi−1} = ∆θi − ∆θi−1 ≈ 0 (12)

VAR{∆ϕi} = VAR{ϕi − ϕi−1} = VAR{ϕi}+ VAR{ϕi−1} = σ2 (13)

f (∆ϕi) =

+∞∫
−∞

f (∆ϕi − ϕi−1, ϕi−1)dϕi−1 =
1√
2πσ

exp(−
∆ϕ2

i
2σ2 ) (14)

The distribution characterization of FLD output represents a Gaussian stochastic process through
a cosine system. We can get the mathematical expectation and variance of C2ϕ in (6) as follows:

E{C2ϕ} = E{ 1
M

M
∑

i=1
cos(2∆ϕi)}

= 1
M

M
∑

i=1

∞∫
−∞

cos(2∆ϕi)p(∆ϕi)d∆ϕi

≈ 1√
2πσ

∞∫
−∞

cos(2∆ϕi) exp(−∆ϕ2
i

2σ2 )d∆ϕi

= exp(−2σ2)

(15)

VAR{C2ϕ} = VAR{ 1
M

M
∑

i=1
cos(2∆ϕi)}

= 1
M2

M
∑

i=1
VAR{cos(2∆ϕi)}

= E{cos2(2∆ϕ)}−E2{cos(2∆ϕ)}
M

= 1
M

1√
2πσ

∞∫
−∞

cos2(2∆ϕ) exp(−∆ϕ2

2σ2 )d∆ϕ− 1
M exp(−4σ2)

= 1
2M (1 + e−8σ2

)− 1
M e−4σ2

(16)

When the signal is locked, ∆ϕi is stable around zero. Therefore, C2ϕ approximates to

C2ϕ =
1
M

M

∑
i=1

cos(2∆ϕi) ≈ 1− 2
M

M

∑
i=1

∆ϕ2
i (17)

For simplification, we can assume a new variable Y related with C2ϕ, which nearly follows the
chi-square distribution

Y =
(1− C2ϕ)M

2σ2 =
M

∑
i=1

(
∆ϕi

σ
)

2
∼ χ2(M) (18)

According to (18), the probability distribution function of FLD output is shown as:

fC2ϕ
(c2ϕ) =

M
2σ2 fY(

M−Mc2ϕ

2σ2 ) |c2ϕ| ≤ 1 (19)

where fY(y) is the probability distribution function of the random variable Y(Y ∼ χ2(M)).

3.2. C2ϕ Distribution under Frequency Unlock

Under low C/N0 condition, frequency loop may be unlocked. After simplification of Equation (7),
ϕ is uniformly distributed in (−π, π), and its probability distribution function is shown as:

f (ϕ) ≈ 1
2π

|ϕ| ≤ π (20)
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When M = 1, the probability distribution functions of ∆ϕ and fC2ϕ
(c2ϕ) are shown follows,

respectively:

f∆ϕ(∆ϕ) =

{
1

2π + ∆ϕ

4π2 (−2π, 0)
1

2π −
∆ϕ

4π2 (0, 2π)
(21)

fC2ϕ
(c2ϕ) =

 1

π
√
(1 + c2ϕ)(1− c2ϕ)

|c2ϕ| ≤ 1 (22)

According to (22), the expectation and variance of C2ϕ are provided:

E{C2ϕ} =
+∞∫
−∞

cos(2∆ϕ) f (∆ϕ)d∆ϕ = 0 (23)

VAR{C2ϕ} = E{C2
2ϕ} − E2{C2ϕ} =

+∞∫
−∞

cos2(2∆ϕ) f (∆ϕ)d∆ϕ = 0.5 (24)

From the above section, the distribution of FLD output in unlock situation is completely different
from that in lock situation.

4. Comparison between Theoretical and Simulation Results of C2ϕ

The statistics characteristic of C2ϕ has been discussed in the previous sections. It provides a
threshold setting that indicates the lock/unlock condition of FLD. In order to validate the validity of
the theoretical analysis, we will compare between theoretical and simulation results.

The probability density functions of C2ϕ under lock and unlock conditions can be obtained from
(19) and (20), respectively. At the same time, Monte Carlo simulation experiments that software
receiver [23] acquires and tracks simulated GPS L1 signal are carried out. The parameters of the
simulation experiment are shown in Table 1.

The simulated GPS signal with 4.996 MHz intermediate frequency is generated by the software
program. Four signals with different C/N0 values and a noise signal are simulated. The software
receiver is used to process the signal and the probability density function (PDF) of FLD output can be
retrieved under different situations.

Table 1. Simulation parameters of software receiver.

Parameters Value

Signal GPS L1 Signal

Signal C/N0
High C/N0: 48 dB-Hz, 44 dB-Hz, 40 dB-Hz, 36 dB-Hz

Low C/N0: No Signal
Signal sampling rate 12 MHz

Coherent integration length 1 ms
Doppler frequency 0 Hz
Simulation times 5000 times, 5 s (M = 1 M = 20)

The comparison between theoretical and simulation results are shown in Figures 1–3. Figures 1 and 2
show the PDF of C2ϕ with different average length M when signal presented. However, both of the
figures indicate that maximum probability point of the horizontal axis moves closer to one when
increasing the C/N0 values, which means that ∆ϕi become smaller. Normally, C2ϕ decreases when
reducing C/N0. Maximum probability points in probability density curves change dramatically with
different C/N0 values in Figure 1 but no evident differences in Figure 2. It means that probability
density curve could not indicate C2ϕ changing with different C/N0 because of interference by noise
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when M = 1 in Figure 2. So, M should be set larger. Figure 3 shows C2ϕ obeys uniform distribution
when no signal presented.Sensors 2017, 17, 2808  7 of 14 
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4.1. Lock Probability Analysis of FLD Output

The output distribution of FLD is mainly related with the C/N0 of the received signal. With a
given C/N0 = λ, the locked threshold of the tracking loop can be determined by the false alarm
probability PFA and the lock probability PD.

PFA = P{C2ϕ > Th|noise input only } =
1∫

Th

1

π
√
(1 + c2ϕ)(1− c2ϕ)

dc2ϕ (25)

PD = P{C2ϕ > Th|C/N0 = λ}
= P{Y =

M(1−C2ϕ)

2σ2 < M(1−Th)
2σ2 |C/N0 = λ}

= FY(
M(1−Th)

2σ2 |C/N0 = λ)

(26)
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where FY(y) is the distribution function of the random variable Y(Y ∼ χ2(M)). Figures 4–6 describe the
relationships between the lock probability and the false alarm probability. As shown in Figures 4 and 5,
the lock probability increases with the increasing coherent integration time under the same C/N0.
The lock probability can be also increased by decreasing the threshold, but the false alarm probability
also increases under that situation. Figure 6 shows the relation between the FLD output false alarm
probability and threshold. As a result, in order to set optimal FLD threshold, C/N0 and false alarm
should be considered at same time.
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4.2. Mean-Time-To-Lose-Lock (MTLL) of FLD

In order to evaluate the performance of the tracking loop, we need to analyze the
mean-time-to-lose-lock (MTLL) of the frequency tracking loop. The time should be shorter when the
signals are not present, while longer when the signals are present. The distinct threshold will influence
how long the tracking loop can detect loop state changes. To be more specific, MTLL (E{TF}) is used
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to indicate the average time required that tracking loop detect state changed from false alarm to correct
detection under no signal condition. MTLL (E{TD}) will imply that how long tracking loop change
the signal detection state to missing detection state when the signal presented. Over a total time TT,
MTLL (E{TF}) under false alarm PFA can be obtained [14] as:

E{TF}|TT−>∞ =
TT
∑

N=1
NPN

FA(1− PFA)|TT−>∞

= 1
1−PFA

(27)

where the false alarm probability PFA with a certain threshold (M = 1) is shown in (25), N is time slot.
MTLL (E{TF}) indicates average time that frequency locked loop used to detect no signal state.

Sensors 2017, 17, 2808  8 of 14 

 

1

2 2

2 2

1
{ | }

(1 )(1 )
FA

Th

P P C Th noise input only dc
c c

ϕ ϕ
ϕ ϕπ

= > =
+ −  (25) 

2 0

2
02 2

02

{ | / }

(1 ) (1 )
{ | / }

2 2
(1 )

( | / )
2

D

Y

P P C Th C N

M C M Th
P Y C N

M Th
F C N

ϕ

ϕ

λ

λ
σ σ

λ
σ

= > =

− −= = < =

−= =

 (26) 

where ( )YF y  is the distribution function of the random variable Y ( 2~ ( )Y Mχ ). Figures 4–6 
describe the relationships between the lock probability and the false alarm probability. As shown in 
Figures 4 and 5, the lock probability increases with the increasing coherent integration time under 
the same C/N0. The lock probability can be also increased by decreasing the threshold, but the false 
alarm probability also increases under that situation. Figure 6 shows the relation between the FLD 
output false alarm probability and threshold. As a result, in order to set optimal FLD threshold, C/N0 
and false alarm should be considered at same time. 

 
Figure 4. Loop lock probability under different C/N0 with M = 20. 

 

Figure 5. Loop lock probability under different C/N0 with M = 1. Figure 5. Loop lock probability under different C/N0 with M = 1.Sensors 2017, 17, 2808  9 of 14 

 

 
Figure 6. Relation between FLD false alarm probability and threshold (Th). 

4.2. Mean-Time-To-Lose-Lock (MTLL) of FLD 

In order to evaluate the performance of the tracking loop, we need to analyze the mean-time-to-
lose-lock (MTLL) of the frequency tracking loop. The time should be shorter when the signals are not 
present, while longer when the signals are present. The distinct threshold will influence how long the 
tracking loop can detect loop state changes. To be more specific, MTLL ( { }FE T ) is used to indicate 
the average time required that tracking loop detect state changed from false alarm to correct detection 
under no signal condition. MTLL ( { }DE T ) will imply that how long tracking loop change the signal 
detection state to missing detection state when the signal presented. Over a total time TT, MTLL (

{ }FE T ) under false alarm FAP  can be obtained [14] as: 

1

{ } | (1 ) |

1

1

TT
N

F TT FA FA TT
N

FA

E T NP P

P

−>∞ −>∞
=

= −

=
−


 (27) 

where the false alarm probability 
FAP  with a certain threshold (M = 1) is shown in (25), N is time 

slot. MTLL ( { }FE T ) indicates average time that frequency locked loop used to detect no signal state. 

Based on (25) and (27), we can get the relationship between MTLL ( { }FE T ) and lock threshold. 
As shown in Figure 7, it indicates that relation between MTLL ( { }FE T ) and threshold under no 
signal situation. The continuous tracking time is gradually decreased when increasing Th . MTLL (

{ }FE T ) is almost same when Th  above zero. The MTLL ( { }FE T ) of false alarm in FLD shown in 
Figure 7 is similar with that in PLD in [14]. 

 
Figure 7. Relation between MTLL ( ) and threshold  under no signal presented situation. { }FE T Th

Figure 6. Relation between FLD false alarm probability and threshold (Th).

Based on (25) and (27), we can get the relationship between MTLL (E{TF}) and lock threshold.
As shown in Figure 7, it indicates that relation between MTLL (E{TF}) and threshold under no signal
situation. The continuous tracking time is gradually decreased when increasing Th. MTLL (E{TF})
is almost same when Th above zero. The MTLL (E{TF}) of false alarm in FLD shown in Figure 7 is
similar with that in PLD in [14].
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When the signals present, the MTLL (E{TD}) can be obtained [14] as:

E{TD}|TT−>∞ =
1

1− PD
(28)

where the lock probability PD with a certain threshold Th is shown in (26). MTLL (E{TD}) indicates
the average time that the frequency locked loop takes to maintain signal detection state.

Based on (26) and (28), we can get the relationship between MTLL (E{TD}) and C/N0 with a
certain lock threshold. The relationship curves are shown in Figures 8 and 9 with M = 1 and M = 20,
the continuous tracking time MTLL (E{TD}) gradually increases when increasing C/N0 or coherent
integration time. At the same time, the verification of MTLL is conducted with the help of Monte Carlo
simulation in Figures 10 and 11.

The theoretical results show that the MTLL (E{TF}) is only 2 s when the signal does not present
and the threshold Th is equal to 0 in Figure 7. Oversized noise can cause false alarm that leads to error
lock in frequency locked loop. We can judge the error lock state in is 2 s. The MTLL (E{TD}) is about
40 s when the integration time is 1 ms under signal with 40 dB-Hz C/N0, and 10 ms for the signal with
30 dB-Hz C/N0 that threshold Th is equal to 0 (M = 1) in Figure 8 when the signal present.
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The comparison with PLD [14] is shown in Figure 12. The threshold setting of PLD at 0.7 has a
similar curve to the threshold setting of FLD at 0.4, while PLD at 0.6 is similar to the FLD at 0.2. It means
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that FLD has lower threshold than PLD under similar MTLL. Therefore, FLD can track signal more
stable than PLD because of lower lock threshold. Also, the PLD threshold setting criteria experience
cannot apply directly to FLD. These should be considered in the practical receiver implementation.
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4.3. Setting Threshold with Actual Data

In order to set reasonable threshold of FLD, we can get the relationship curve about FLD output
and C/N0 based on (6) and thermal jitter of FLL [24]:

σtFLL =
1

2πTcoh

√
4FBL
C/N0

(1 +
1

Tcoh ∗ C/N0
) (29)

where σtFLL is the frequency jitter caused by thermal noise, BL is equivalent noise bandwidth of
tracking loop, F is equal to 1 and 2 for low, and high C/N0 individually. Normally, 3σtFLL is used to
estimate tracking performance of FLL. The relationship between threshold of FLD and C/N0 based on
(6) and (29) is

ThC2ϕ
=

1
M

M

∑
i=1

cos(12πTcohσtFLL) (30)

Assuming that M = 20, coherent integration length Tcoh = 1 ms, BL = 25 Hz, we can figure (30) in
Figure 13.
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Then, we recorded actual real-time data samples from the intermediate frequency (IF) signal of
GPS receiver. The data were recorded on building roof for a duration of 100 s at 62 million samples
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per second. The C/N0 of the GPS satellites were 37 dB-Hz (SVN 9), 40 dB-Hz (SVN 6), 43 dB-Hz
(SVN 29), and 47 dB-Hz (SVN 5). From Figure 11, we can know that the theoretical threshold of FLD is
0.2 (37 dB-Hz), 0.6 (40 dB-Hz), 0.8 (43 dB-Hz), and 0.9 (47 dB-Hz). Figure 14 shows the comparison of
FLD outputs and theoretical thresholds with different satellites. The results show that the theoretical
thresholds fit well with FLD outputs of real signals, which provide a solid support for FLD threshold
setting criteria.Sensors 2017, 17, 2808  13 of 14 
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5. Conclusions

The approximate probability distribution of frequency-locked detector output has been
theoretically derived by statistical approach. The mean-time-to-lose-lock (MTLL) of the frequency
tracking loop has been analyzed based on the statistical characteristic of the FLD output to evaluate
the performance of the tracking loop, as well as to compare with the PLD output. MTLL is
a kind of evaluation criteria to measure FLD or PLD performance. The relationship among
mean-time-to-lose-lock, detection threshold, and C/N0 can be revealed with this method, which
shows the difference between threshold settings in the phase-locked detector and the frequency-locked
detector. The FLD threshold is, as demonstrated by the analysis results, much lower in comparison to
the PLD threshold in the PLL with the same MTLL performance. The FLD output is an accumulation of
adjacent periods, which means that FLD can be used to indicate a weaker signal to ensure the stability
of the tracking loop. Therefore, a theoretical basis for the threshold setting in the frequency-locked
detector of the GPS receiver is provided.

Meanwhile, the result of the experiment using the actual data indicates several suggested
thresholds under different C/N0 values, which can be used as a reference for the threshold setting
criteria of FLD in receiver.
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