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Abstract: Embedded Lead Zirconate Titanate (PZT) transducers have been widely used in research
related to monitoring the health status of concrete structures. This paper presents a dynamic model of
an embeddable PZT transducer with a waterproof layer and a protecting layer. The proposed model
is verified by finite-element method (FEM). Based on the proposed model, the factors influencing
the dynamic property of the embeddable PZT transducers, which include the material and thickness
of the protecting layer, the material and thickness of the waterproof layer, and the thickness of
the PZT, are analyzed. These analyses are further validated by a series of dynamic stress transfer
experiments on embeddable PZT transducers. The results show that the excitation frequency can
significantly affect the stress transfer of the PZT transducer in terms of both amplitude and signal
phase. The natural frequency in the poling direction for the PZT transducer is affected by the material
properties and the thickness of the waterproof and protecting layers. The studies in this paper will
provide a scientific basis to design embeddable PZT transducers with special functions.

Keywords: Lead Zirconate Titanate (PZT) transducers; embeddable PZT transducer; dynamic model
of PZT transducers; effect of waterproof layer; effect of protecting layer

1. Introduction

Piezoceramic materials, which are characterized by their low cost, fast response, wide bandwidth,
effective electromechanical coupling [1,2], dual actuation and sensing capacities [3], and ease of
integration with various structures [4,5], are often used to construct transducers with multiple
functions [6–8]. The embeddable Lead Zirconate Titanate (PZT) transducers, which are fabricated by
sandwiching a waterproofed PZT patch with electric wires between two protective layers, can be used
as an actuator or a sensor to generate a stress wave or to sense a stress wave. The embeddable PZT
transducers have been widely used in researches that are related to structural health monitoring in
the civil engineering field. Gu et al. developed a smart aggregate (SA) by embedding piezoelectric
transducers into a concrete block during casting, and the proposed method was used to monitor the
strength of concrete structures at early ages [9]. Song et al. developed an SA based impact monitoring
system to detect the collision of over-height vehicles with bridges [10]. In addition, SAs have been used
in researches to detect damages in reinforced-concrete beams [11–13], columns [14], shear walls [15],
frame structures [16], Fiber Reinforced Polymer (FRP) repaired concrete column [17], and bridges [18].
The smart aggregates were also employed to monitor the process of soil freeze and thaw [19],
the very-early-age concrete hydration [20,21], the grout compactness of post-tensioning tendon
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duct [22], and the debonding between the steel tube and the confined concrete core of Concrete-Filled
Steel Tubes (CFSTs) [23]. In addition, the smart aggregates can work as an embedded AE sensors for
the health monitoring of concrete structures [24]. Recently, the wireless smart aggregate technology for
concrete structural health monitoring was reported [25].

The embedded or surface bonded piezoelectric transducers (PZTs) can be used to monitor the
curing progression and to detect applied stress, damage onset, and damage propagation in concrete,
by means of the electromechanical impedance (EMI) method [26–28]. The Combination of smart
aggregates with surface bonded PZTs for structural health monitoring can provide an effective way
to assess both the local and overall conditions of the structure [29]. The embedded transducers are
especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad
frequency band [30]. Yang et al. developed a reusable PZT transducer setup for the monitoring
of the initial hydration of concrete and structural health, and the impedance analyzer was used
to acquire the admittance signatures of the PZT [31]. Annamdas et al used the electromechanical
impedance (EMI)-based technique with piezoceramic (PZT) sensors to monitor the underground
support structures [32]. Yang et al. proposed the comprehensive method of health monitoring and
damage assessment of rocks, employing smart optical fiber sensor (OFS) and piezoelectric impedance
sensor [33]. Yang et al. proposed a sub-frequency interval approach in electromechanical impedance
technique for the health monitoring of concrete structure by dividing the large frequency (30–400 kHz)
range into sub-frequency intervals and calculating their respective root mean square deviation (RMSD)
values [34].

Stress waves are often used in structural damage detection and health monitoring [35–38],
and PZT transducers are commonly used for generating and detection stress waves. The mechanical
model of the embedded PZT transducer is extremely important in manufacturing these transducers
for the damage detection based on the response signal of PZT transducers. An electromechanical
impedance (EMI) model for the health monitoring of cylindrical shell structures was presented
and experimentally verified [39]. An extended formulation of an eighteen-node assumed strain
three-dimensional element was proposed to analyze fully coupled mechanical-electric problems [40].
The viscous damping and shear strain correction factors were introduced in an analytical
electro-mechanical model of a piezoelectric transducer [41]. An efficient electromechanically coupled
geometrically nonlinear zigzag theory was developed for the buckling analysis of hybrid piezoelectric
beams under electro-thermo-mechanical loads [42]. A parametric model for PZT embedded in the
concrete was proposed, and the stress response that was caused by the drying shrinkage of concrete,
temperatures, embedded depth, embedded materials, and thickness of the waterproof layer was
analyzed [43–45]. The stress distribution in SAs was investigated to compute the sensitivity of the
seismic compressive stress and shear stress in concrete structures [46,47]. A finite-element approach
to model the nonlinear behavior of piezo-integrated structures was developed, and the constitutive
relations were extended to include quadratic and cubic nonlinear terms [48]. A modeling approach was
proposed to analyze the system stiffness and natural frequency behavior of a distributed compliant
mechanism with embedded PZT actuators, using a general-purpose finite-element system [49].
The electromechanical coupling properties that were caused by the packaging manner and position
of PZT were analyzed for cement-based PZT transducers [50]. The sensitivity of a type of embedded
active PZT sensor in structural impact damage detection was studied via theoretical and experimental
analyses, and a new embedded two-dimensional (2D) electromechanical impedance model, in which
the PZT patch can be protected from external impacts or disturbances, was formulated [51].
The finite-element method was applied to study the piezoelectric performance of PZT and to evaluate
the effective properties of piezoelectric fiber composites [52]. Madhav and Soh proposed the embedded
PZT–structure interaction model to extract the mechanical impedance of the PZT patch embeddable
plane structure [53].

In addition, a PZT transducer can be used as an energy harvesting device [54–56] and lead to
the development of a structural damage identification technique that is based on the impedance
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method [57–59]. Many different electromechanical impedance models have been proposed to
characterize the interaction between a PZT transducer and the host structure [60–64]. Karayannis et al.
used the signals of the piezoelectric transducer to predict the forthcoming failures at early
damage stages and the proposed an integration analytical approach based on the electromechanical
admittance [65]. A portable real-time Wireless impedance/Admittance Monitoring System (WiAMS)
in damage diagnosis of shear-critical RC beams was experimentally studied [66,67]. The effects
of temperature and load on impedance and conductance spectra of the sensor were investigated
with impedance-based approach by Xu et al. [68], and the root mean square deviation (RMSD)
index was employed to intuitively indicate the impedance variation of the embedded PZT sensor
under temperature and load. The model of the electromechanical impedance (EMI) of piezoceramics
transducers was further developed and applied to aircraft structural health monitoring [69].

The effect of the bond layer on the electro-mechanical response of a smart system was
experimentally studied, and the effects of shear lag due to the finite thickness bond layer were
successfully identified [70]. Ong et al. proposed a one-dimensional electro-mechanical (EM) impedance
model to account for the shear lag between the PZT patch and the host structure [71]. Madhav and Soh
presented a three-dimensional (3D) interaction model of a PZT-structure, which considers the mass of
both the PZT transducers and the adhesive, and experimentally verified its correctness [72].

Embedded PZT transducers not only detect the internal stress of civil structures, but also have
the capacity to detect internal damages by emitting and detecting stress waves, whose frequencies
are considerably higher than that of the structural vibration. Therefore, it is essential to study the
dynamic property of embedded PZT transducers and assure the relationship between the stress and the
output signal of transducers in different frequency ranges [73]. However, current mechanical models
of embedded PZT transducers are limited in that they neglect the effect of the excitation frequency on
the mechanical model.

When considering the limitation of the aforementioned mechanical models, this paper presents
a dynamic stress transfer model for embedded PZT transducers that is achieved by considering a PZT
transducer with a structure of a waterproof layer and a protecting layer. The proposed model is
validated using the finite-element method. The effects of the excitation frequencies, material property
and thickness of the protecting layer and waterproof layer, and thickness of the PZT transducer on the
dynamic performance of the embedded PZT transducers are analyzed. Finally, the proposed model is
validated via a series of experiments.

2. Dynamic Model of the Embeddable PZT Transducer

An embeddable PZT transducer used in the damage detection of concrete structures can be
characterized as a PZT patch with water proof layers and protection (covering) layers, as shown in
Figure 1. Such an embeddable PZT transducer can be typically applied to monitor the stress or detect
the elastic wave that propagates in the structures.
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The function of the waterproof layer is to offer electric protection of the PZT patch, whereas the
protecting (covering) layer offers mechanical protection to the fragile PZT patch. The embeddable
PZT transducer that is considered here tends to use the d33 mode to measure the stress and acquire
the stress wave in the poling direction of d33. Therefore, two assumptions are made to derive the
mechanical model of the embeddable PZT sensor:

1. The PZT patch is only subjected to the axial stress from the poling direction, and the stresses from
other directions are neglected.

2. The distribution of axial stress along the poling surface is homogeneous.

The symmetrical component of the PZT model in Figure 2 is selected for analysis, where hs and
hw are the thicknesses of the protecting layer and waterproof layer, respectively, and hp is the half
thickness of the PZT patch. The wave propagation equations of the protecting layer, waterproof layer,
and PZT patch are as follows:

Ep
∂2up
∂y2 = ρp

∂2up
∂t2

Ew
∂2uw
∂y2 = ρw

∂2uw
∂t2

Ec
∂2uc
∂y2 = ρc

∂2uc
∂t2

(1)

where up, uw and uc are the displacement of the PZT, the waterproof layer and protecting layer along
the y direction, respectively; Ep, Ew, and Ec are the elastic moduli of the PZT patch, waterproof layer,
and protecting layer, respectively; and, ρp, ρw, and ρc are the densities of the PZT patch, waterproof
layer, and protecting layer, respectively.
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When the external force is a harmonic vibration F0eiωt, only the steady state is considered. Then,
the displacements of the PZT, waterproof layer and protecting layer along the y direction are Up eiωt,
Uw eiωt and Uc eiωt, respectively. Equation (1) becomes,

Ep
d2Up
∂y2 + ρpω2Up = 0

Ep
d2Up
dy2 + ρpω2Up = 0

Ec
d2Uc
dy2 + ρcω2Uc = 0

(2)

The general solutions of Up, Uw and Uc are,

UP = C1 sin(Γpy) + C2 cos(Γpy)
Uw = C3 sin(Γpy) + C4 cos(Γpy)
Uc = C5 sin(Γpy) + C6 cos(Γpy)

 (3)
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where Γp = ρpω2/Ep, Γw = ρwω2/Ew and Γc = ρcω2/Ec. The boundary conditions for the PZT,
the waterproof layer, and the protecting layer are,

Up = 0, f or y = 0 (4)

Up = Uw

Ep
dUp
dy = Ew

dUw
dy

}
f or y = hp (5)

Uw = Uc

Ew
dUw
dy = Ec

dUc
dy

}
f or y = hp + hw (6)

Ec A
dUc

dy
= F0 f or y = hp + hw + hs (7)

where A is the area of the PZT poling surface and ε0 is defined as F0/(EsA). The following linear system
of equations is obtained by substituting the above boundary conditions into Equation (3),



sin 0 cos 0 0 0 0 0
sin(Γph1) 0 − sin(Γwh1) − cos(Γwh1) 0 0

EpΓp cos(Γph1) 0 −EwΓw cos(Γwh1) EwΓw cos(Γwh1) 0 0
0 0 sin(Γwh2) cos(Γwh2) − sin(Γch2) − cos(Γch2)

0 0 EwΓw cos(Γwh2) −EwΓw sin(Γwh2) −EcΓc cos(Γch2) EcΓc sin(Γch2)

0 0 0 0 Γc cos(Γch3) −Γc sin(Γch3)





C1

C2

C3

C4

C5

C6


=



0
0
0
0
0
0


(8)

The values of constants C1–C6 can be computed by solving Equation (8). Please note that C1–C6

all have the parameter ε0. Then, the mode shape of the PZT transducer is expressed as,

dUp

dy
= C1Γp cos(Γpy) (9)

The strain along the y direction εp is derived as,

εp =
2
hp

∫ hp

0

dUp

dy
dyeiωt =

2
hp

C1 sin(Γphp)eiωt (10)

There is a linear relationship between the output voltage and the strain along the poling direction
of the PZT patch. The output voltage of PZT can be expressed as,

V =
εpd33 A

s33C
(11)

where d33 is the piezoelectric constant of the PZT transducer; S33 is the elastic coefficient of the PZT
transducer; and, C is the capacitance of the PZT transducer.

The strain transfer mechanism along the poling direction of the PZT transducer must be considered
to analyze the dynamic property of the transducer.

3. Numerical Simulation

To analyze the dynamic stress transfer property of an embeddable piezoceramic transducer,
the finite element method (FEM) is used to compute the stress transfer process for the
PZT-waterproof-layer-protecting-layer structure that is subjected to a harmonic excitation at different
frequencies by ANSYS software. The plane82 element is used to simulate the PZT patch, waterproof
layer, and the protecting layer. All parameters of three layers are shown in Table 1, and the width of
PZT transducer is 0.01 m. The half model of the symmetrical structure in Figure 2 along the y axis
is analyzed. For boundary conditions of the model, the displacement in the x direction is restrained
when x is equal to 0, and the displacement in the y direction is constrained when y is equal to 0.
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First, the modal analysis is performed. The first three modal frequencies are 48.18, 101.08,
and 139.9 kHz. The first three mode shapes are shown in Figure 3. The first modal shape is the
vibration along the y direction, the second modal shape is the twisting vibration along the z axis,
and the third modal shape is the stretching vibration along the x direction. Since the PZT patch mainly
depends on the piezoelectric constant d33, the shearing and twisting components along the poling
direction only affect the output voltage slightly. Therefore, the previous assumptions are reasonable in
this paper.
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Table 1. Parameters of the PZT: waterproof layer and protecting layer.

PZT Patch Waterproof Layer Protecting Layer

hp 0.001 m hw 0.0001 m hc 0.015 m
ρp 7600 kg/m3 ρw 1105 kg/m3 ρc 2700 kg/m3

Ep 7.65 × 1010 N/m2 Ew 3 × 109 N/m2 Ec 5 × 1010 N/m2

Then, the harmonic response analysis is performed to simulate the PZT transducer when it is
subjected to the harmonic exciting. The force with the amplitude of 0.02 N is loaded in y direction,
and the frequency range is from 0 to 50 kHz. Figure 4 presents the comparison between the numerical
simulation results and theoretical ones for excitation frequencies of 1, 10, 30, and 50 kHz. The numerical
and theoretical results are consistent, which demonstrates the rationality of the proposed method.

In addition, according to above analysis, it can be seen that the PZT strain distributed along
y direction gradually increases when the excitation frequency is increased from 1 kHz to 30 kHz,
as shown in Figure 4a–c. When frequency is 50 kHz, which is beyond the first model frequency,
the magnitude of strain is much larger, but the direction of strain is opposite of that in Figure 4d.
The excitation frequency tends to influence the strain transfer property of PZT transducers.
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Figure 4. Theoretical and numerical solutions of the PZT strain distribution along the y direction.
(a) The excitation frequency is 1 kHz; (b) The excitation frequency is 10 kHz; (c) The excitation
frequency is 30 kHz; and, (d) The excitation frequency is 50 kHz.

4. Parametric Analysis

A numerical example is used to illustrate the effect of the excitation frequency, protecting layer,
waterproof layer, and PZT patch on the dynamic properties of the transducer. Table 1 shows the
parameters of the embeddable PZT transducer. The protecting and waterproof layers are made of
marble and epoxy resin, respectively. The harmonic excitation eiωt is loaded along the y direction.
The change in strain amplitude is analyzed.

4.1. Effect of the Excitation Frequency

Figure 5 shows the change in strain amplitude when the driving frequency increased from 0 to
1 kHz. The strain amplitude is 3.438 × 10−4 when the driving frequency is zero. The strain amplitude
increases to 3.439 × 10−4 when the driving frequency increased by 1 kHz. The strain amplitude only
increases by 0.03% when the driving frequency increased from 0 to 1 kHz, which is within the scope of
the natural frequency of civil structures. Therefore, the driving frequency does not considerably affect
the amplitude of the PZT sensor, and the relationship between the output voltage and strain can be
expressed by a constant of sensitivity.

Figure 6 shows the change in strain amplitude when the driving frequency increased from 1 kHz
to 100 kHz. The first natural frequency of the PZT sensor system is 48 kHz. The strain amplitude of the
PZT patch increases dramatically when the loading frequency approaches 48 kHz. The relationship
between the signal amplitude and strain cannot be expressed by a constant value of sensitivity.
In addition, the PZT sensor is more likely to receive a stress wave signal of higher frequency than
a vibration signal of lower frequency.

The driving frequency also affects the phase of the output signal. Figure 7 shows the distribution
of dUp/dy along the y direction and the loading signal and output PZT signal. When the driving
frequency is less than the natural frequency of the PZT transducer along the poling direction,
then dUp/dy is larger than 0, as shown in Figure 7a, and the vibration directions of the PZT transducer
and loading are identical, as shown in Figure 7b. However, when the driving frequency is larger than
the natural frequency of the PZT sensor along the poling direction, dUp/dy is less than 0, as shown
in Figure 7c, and the vibration directions of PZT and loading are opposite, as shown in Figure 7d.
When the signal phase is measured, the phase difference that is caused by the vibration mode is not
negligible. In addition, it is assumed that there are two PZT sensors at the same locations with natural
frequencies ωA and ωB; when the excitation frequency is between ωA and ωB, there will be a phase
difference of π between two PZT sensors.



Sensors 2017, 17, 2801 9 of 21
Sensors 2017, 17, 2801 9 of 21 

 

 
Figure 5. Frequency-PZT strain amplitude curve (0 Hz–1 kHz). 

 
Figure 6. Frequency-PZT strain amplitude curve (1 kHz–100 kHz). 

 

(a) (b)

(c) (d)

Figure 7. dUp/dy distribution along the y direction, the excitation signal and the PZT strain signal. (a) 
Distribution of dUp/dy when the excitation frequency is 20 kHz; (b) PZT strain signal and excitation 
signal when the excitation frequency is 20 kHz; (c) Distribution of dUp/dy when the excitation 
frequency is 50 kHz; and, (d) PZT strain signal and excitation signal when the excitation frequency is 50 
kHz. 

0 200 400 600 800 1000
0.000343

0.0003435

0.000344

0.0003445

0.000345

Frequency (Hz)
P

Z
T

 s
tra

in
 a

m
pl

itu
de

0 20 40 60 80 100
0

0.050

0.100

0.150

Frequency (kHz)

P
Z

T
 s

tra
in

 a
m

pl
itu

de

-0.5 -0.3 -0.1 0.1 0.3 0.5
0.3394

0.3394

0.3394

0.3394

0.3394

0.3394

0.3394

0.3394

0.3394

0.3395

y/2hp

dU
p/d

y

0 1 2 3 4 5

x 10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

S
tra

in

 

 
excitation signal
PZT strain signal

-0.5 -0.3 -0.1 0.1 0.3 0.5
-0.7392

-0.739

-0.7388

-0.7386

-0.7384

-0.7382

-0.738

y/2hp

dU
p/d

y

0 0.2 0.4 0.6 0.8 1

x 10
-4

-6

-4

-2

0

2

4

6

Time (s)

S
tra

in

 

 
excitation signal 
PZT stain signal

Figure 5. Frequency-PZT strain amplitude curve (0 Hz–1 kHz).
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Figure 7. dUp/dy distribution along the y direction, the excitation signal and the PZT strain signal.
(a) Distribution of dUp/dy when the excitation frequency is 20 kHz; (b) PZT strain signal and excitation
signal when the excitation frequency is 20 kHz; (c) Distribution of dUp/dy when the excitation frequency
is 50 kHz; and, (d) PZT strain signal and excitation signal when the excitation frequency is 50 kHz.
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4.2. Effect of the Protecting Layer

The protecting layers of the embeddable PZT transducers can be made from many types of
materials. In this section, the effect of the protecting layer on the dynamic property is analyzed.
The material properties of different protecting layers are listed in Table 2, where Ec/ρc = c2 and c is
the longitudinal wave velocity of the material. Figure 8 shows the change in strain amplitude with
different frequencies. The first natural frequencies for PZT sensors increase with the increases in the
longitudinal wave velocity of the protecting layer materials. Therefore, the PZT sensor with a carbon
steel protecting layer has the highest natural frequency for the poling direction vibration, whereas that
with a concrete protecting layer has the lowest natural frequency for the poling direction vibration.

Table 2. Parameters of different protecting layer materials.

Material Destiny (kg/m2) Elastic Modulus (GPa) Ec/ρc

concrete 2500 23 9.20 × 106

brass 8000 70 11.41 × 106

granite 3000 43 14.54 × 106

marble 2700 55 20.37 × 106

Carbon steel 7400 206 27.83 × 106
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Figure 8. Frequency-strain curve with different protecting layer materials.

Embeddable PZT transducers are commonly made with protecting layers of different thicknesses,
which can affect the dynamic property of the transducer significantly. In this section, the effect of the
protecting layer thickness on the dynamic property of the transducer is studied. Figure 9 shows the
PZT strain amplitude with different frequencies when the protecting layer is 5 mm, 10 mm, and 15 mm
thick. A thicker protecting layer corresponds to a larger natural frequency of the sensor. Therefore,
a thicker protecting layer should be used in a transducer in order to increase the natural frequency of
the sensor.
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Figure 9. Frequency-strain curve with different protecting layer materials.

4.3. Effect of the Waterproof Layer

In general, epoxy resin materials, which have a shear modulus of 1–5 GPa, are used as the
waterproof layer of SAs. Because the density range of epoxy resin materials is small, an epoxy resin
material with a larger elastic modulus has a higher longitudinal wave velocity. Figure 10 is the
frequency-strain amplitude curve with different waterproof layer materials, where the density of the
waterproof layer is 1105 kg/m3 and the elastic modulus is 1.5, 3, and 4.5 GPa. The natural frequency
of the PZT sensor increases with the increases of the elastic modulus of the waterproof layer.
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Figure 10. Frequency-strain curve with different water-proof layer materials.

For the safety and durability of a PZT sensor, the water proof/protecting layer is necessary.
Although the magnitude of signal greatly reduces if layers of water proof/protecting layers are used,
PZT sensors can be manufactured with waterproof layers of different thicknesses, according to the
results of this study. Figure 11 shows the PZT strain amplitude with different frequencies when the
waterproof layer is 0.5 mm, 1 mm, and 1.5 mm thick. The natural frequency of the transducer increases
with the decreases of the thickness of the waterproof layer. Therefore, a thinner waterproof layer
should be used to achieve a higher natural frequency in the embeddable PZT transducer.
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Figure 11. Frequency-strain curve with different waterproof layer thicknesses.

4.4. Effect of the PZT Thickness

The effect of the PZT thickness on the dynamic property of the PZT transducer is studied in this
section. Figure 12 shows the frequency-strain amplitude curve when the half thickness of the PZT
patch is 0.25, 0.5, and 1 mm. The results confirm the minor effect of the thickness of the PZT patch on
the natural frequency of the PZT sensor.
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5. Experiment

5.1. Introduction

In this section, the stress transfer experiment that was performed on the transducer is described.
The embeddable PZT transducer used in this study is shown in Figure 13. Without additional
illustration, the dimensions of the protecting layer are 15 mm × 15 mm × 15 mm, and the dimensions
of the PZT patch are 15 mm × 15 mm × 1 mm. The transducer was manufactured by connecting wires
on the poling surface of the PZT patch, covered with epoxy resin as the waterproof layer and protected
with the protecting layer.

To compare the dynamic property between two different PZT sensors, the specimen was made
by bonding two transudes on both sides of the PZT patch of the actuator, as shown in Figure 14.
The harmonic voltage was loaded in the actuator, and the outputs of two transducers were analyzed.
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The excitation device was the arbitrary waveform generator, and the oscilloscope was used as the date
acquisition system, with a sampling rate of 3.13 M/s.

The specimen was located on the bench clamp, as shown in Figure 15, and the plasticine was used
as a buffer layer between the specimen and the bench clamp such that the experiment was not affected
by the clamping force from the bench clamp. The details of the specimens are provided in Table 3.
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Table 3. Test specimens.

Specimen Transducers Protecting
Layer Material

Waterproof
Layer Material

Waterproof Layer
Thickness

PZT Patch
Thickness

Specimen 1 SA-1 carbon steel epoxy resin 0.4 mm 1 mm
SA-2 marble epoxy resin 0.4 mm 1 mm

Specimen 2 SA-1 marble epoxy resin 0.4 mm 1 mm
SA-2 plexiglas epoxy resin 0.4 mm 1 mm

Specimen 3 SA-1 marble Silicon 0.4 mm 1 mm
SA-2 marble epoxy resin 0.4 mm 1 mm

Specimen 4 SA-1 marble Silicon 0.4 mm 1 mm
SA-2 marble epoxy resin 0.4 mm 1 mm

Specimen 5 SA-1 marble epoxy resin 0.25 mm 1 mm
SA-2 marble epoxy resin 0.45 mm 1 mm

Specimen 6 SA-1 marble epoxy resin 0.25 mm 1 mm
SA-2 marble epoxy resin 0.45 mm 1 mm

Specimen 7 SA-1 marble epoxy resin 0.45 mm 0.5 mm
SA-2 marble epoxy resin 0.45 mm 1 mm

Specimen 8 SA-1 marble epoxy resin 0.45 mm 0.5 mm
SA-2 marble epoxy resin 0.45 mm 1 mm

5.2. Effect of the Protecting Materials

The effect of the protecting layer on the dynamic property was studied using Specimens 1 and
2, where the protecting layer was manufactured from Plexiglas, marble, and carbon steel. Figure 16
shows the numerical and experimental values of the phase difference between SA-1 and SA-2 of
specimens 1 and 2. The errors between the numerical and experimental values are less than 5%.
In addition, the changes of phases are related to the natural frequencies of transducers. Based on
Figure 16, it can be concluded that the natural frequencies of two transducers in Specimen 1 should,
respectively, be 48 kHz and 55 kHz, and the natural frequencies of two transducers in Specimen 2
should, respectively, be 30 kHz and 48 kHz. Figure 17 shows the excitation signal and PZT transducer
signals from transducers in Specimens 1. When the excitation frequency is 52 kHz, then the phase of
the transducers with a marble protecting layer increases by π compared to that of the excitation signal,
which indicates that the natural frequency of the transducer with a marble protecting layer is less than
52 kHz. Therefore, the natural frequency of the transducer with a marble protecting layer should be
48 kHz, and that with a carbon steel protecting layer should be 55 kHz. Similarly, Figure 18 shows
that when the excitation frequency is 40 kHz, the signal phase of the transducer with the Plexiglas
protecting layer increases by π, which indicates that the natural frequency of the transducer with
a Plexiglas protecting layer should be 30 kHz, and that with a marble protecting layer should be 48 kHz.
The numerical and experimental results are similar, which validates the above analysis.
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Figure 16. Phase difference between PZT-1 and PZT-2 from Specimens 1 and 2. (a) Specimen 1;
(b) Specimen 2.
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Figure 17. PZT transducer signal of Specimen 1. (a) 38 kHz Excitation Frequency; (b) 52 kHz Excitation
Frequency; and, (c) 70 kHz Excitation Frequency.
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Figure 18. PZT transducer signal of Specimen 2. (a) 20 kHz Excitation Frequency; (b) 40 kHz Excitation
Frequency; and, (c) 60 kHz Excitation Frequency.

5.3. Effect of the Waterproof Layer Materials

Epoxy resin and silicon are used as the waterproof layer in transducers. For Specimens 3 and 4,
the dynamic properties of the transducers with a waterproof layer of epoxy resin and silicon
were tested. The phase difference of the two transducers in Specimens 3 and 4 is shown in
Figure 19, which reveals the strong similarity between the experimental results and the numerical
results. The natural frequencies of the PZT transducers in Specimens 3 and 4 should be 16 and
48 kHz, respectively. Figures 20 and 21 show the excitation signal and PZT transducer signals
of Specimens 3 and 4, respectively. When the excitation frequency is 30 kHz, then the signal of the
transducer with a silicon waterproof layer changes by π, which illustrates that the natural frequency
of the transducer is less than 30 kHz. Hence, the natural frequency of the transducer with a silicon
waterproof layer is 16 kHz, whereas the natural frequency of transducer with an epoxy resin waterproof
layer is 48 kHz.
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Figure 19. Phase difference between PZT transducers from Specimens 3 and 4. (a) Specimen 3;
(b) Specimen 4.
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Figure 20. PZT transducer signal of Specimen 3. (a) 4 kHz Excitation Frequency; (b) 30 kHz Excitation
Frequency; and, (c) 55 kHz Excitation Frequency.
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Figure 21. PZT transducer signals of Specimens 4. (a) 4 kHz Excitation Frequency; (b) 30 kHz Excitation
Frequency; and, (c) 55 kHz Excitation Frequency.

5.4. Effect of the Thickness of the Waterproof Layer

Specimens 5 and 6, whose waterproof layers are 0.25-mm and 0.45-mm thick, respectively,
were manufactured to test the dynamic properties of PZT sensors with different thicknesses of the
waterproof layers. Figure 22 shows the phase difference of two PZT transducers in Specimens 5 and 6.
The natural frequencies of the PZT sensors in Specimens 5 and 6 were 46 and 56 kHz, respectively.
Figures 23 and 24 show the excitation signal and PZT transducer signal when the excitation frequency
was 20, 50, and 65 kHz. With an increase in the excitation frequency, the signal phase of the transducer
with the 0.45-mm-thick waterproof layer changes first, which illustrates that the natural frequency
for the transducer with the 0.45-mm-thick waterproof layer is 46 kHz, and the other one is 56 kHz.
The experimental results are similar to the numerical results. The natural frequency of the transducer
increases with the increasing thickness of the waterproof layer.
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Figure 22. Phase difference between the PZT sensors in Specimens 5 and 6. (a) Specimen 5; (b) Specimen 6.
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Figure 23. PZT transducer signals of Specimen 5. (a) 20 kHz Excitation Frequency; (b) 50 kHz Excitation
Frequency; and, (c) 65 kHz Excitation Frequency.

Sensors 2017, 17, 2801 17 of 21 

 

 
(a) (b) (c) 

 

Figure 23. PZT transducer signals of Specimen 5. (a) 20 kHz Excitation Frequency; (b) 50 kHz 
Excitation Frequency; and, (c) 65 kHz Excitation Frequency. 

 
(a) (b) (c) 

 

Figure 24. PZT transducer signals of Specimen 6. (a) 20 kHz Excitation Frequency; (b) 50 kHz 
Excitation Frequency; and (c) 65 kHz Excitation Frequency. 

5.5. Effect of the PZT Thickness  

Specimens 7 and 8, which were made by the PZT transducer with thicknesses of 0.5 and 1 mm, 
illustrate the dynamic properties that are caused by the PZT transducer thickness. Figure 25 shows 
the phase difference between the two PZT sensors in Specimens 7 and 8. The numerical results are 
similar to the experimental results. The PZT thickness does not affect the natural frequency of the 
transducer considerably. 

 
(a) (b)

Figure 25. Phase difference between PZT-1 and PZT-2 for Specimens 7 and 8. (a) Specimen 7; (b) 
Specimen 8. 

  

1 1.5 2 2.5 3 3.5

x 10
-5

-0.5

0

0.5

Time (s)

A
m

pl
itu

de
 (V

)

0 0.5 1 1.5 2 2.5 3

x 10
-5

-0.6

-0.4

-0.2

0

0.2

0.4

Time (s)

A
m

pl
tu

de
 (V

)

1 1.5 2 2.5 3 3.5

x 10
-5

-0.5

0

0.5

Time (s)

A
m

pl
itu

de
 (V

)

0 1 2 3 4 5 6 7

x 10
-5

-0.5

0

0.5

Time (s)

A
m

pl
itu

de
 (V

)

0 0.5 1 1.5 2 2.5 3

x 10
-5

-0.5

0

0.5

Time (s)

A
m

pl
itu

de
 (V

)

0 0.5 1 1.5 2 2.5 3

x 10
-5

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

A
m

pl
itu

de
 (V

)

0 20 40 60 80 100

-1

-0.5

0

0.5

1

Frequency (kHz)

P
ha

se
 d

iff
er

en
ce

 (π
)

 

 

experimental result
numerical result

0 20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5

Frequency (kHz)

P
ha

se
 d

iff
er

en
ce

 (π
)

 

 

experimental result
numerical result

Figure 24. PZT transducer signals of Specimen 6. (a) 20 kHz Excitation Frequency; (b) 50 kHz Excitation
Frequency; and (c) 65 kHz Excitation Frequency.

5.5. Effect of the PZT Thickness

Specimens 7 and 8, which were made by the PZT transducer with thicknesses of 0.5 and 1 mm,
illustrate the dynamic properties that are caused by the PZT transducer thickness. Figure 25 shows
the phase difference between the two PZT sensors in Specimens 7 and 8. The numerical results are
similar to the experimental results. The PZT thickness does not affect the natural frequency of the
transducer considerably.
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Figure 25. Phase difference between PZT-1 and PZT-2 for Specimens 7 and 8. (a) Specimen 7; (b) Specimen 8.
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6. Conclusions

This paper proposes a dynamic mechanic model of the embeddable PZT transducers with
waterproof layers and protecting layers. The proposed model is validated by the FEM. Then, the effects
of the protecting layer, waterproof layer, and PZT patch on the dynamic property are analyzed. Finally,
this analysis was verified based on experiments of the dynamic stress transfer of PZT transducers.
Based on the proposed model, the factors that are influencing the dynamic property of the embeddable
PZT transducers, which include the material and thickness of the protecting layer, the material and
thickness of the waterproof layer, and the thickness of the PZT, are analyzed. The results show that the
excitation frequency can significantly affect the stress transfer of the PZT transducer in terms of both
amplitude and signal phase. The natural frequency in the poling direction for the PZT transducer is
affected by the material properties and the thickness of the waterproof and protecting layers.

Based on the dynamic transfer model that is proposed in this paper, by choosing the specific
thickness and materials of the PZT patch, the waterproof layer and protecting layer, the embeddable
PZT transducers can be more sensitive, or has a better stability of dynamic stress transfer property in
a special frequency range of stress responses. Therefore, the findings in this paper provide a scientific
basis to design embeddable PZT transducers with special functions.
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