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Abstract: During the propagation of ultrasonic waves in structures, there is usually energy loss due to
ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound
energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic
transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic
energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile,
the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are
usually employed to describe the characteristics of ultrasound energy diffusion. The existence of
multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport
of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as
a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound
energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with
a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the
help of piezoceramic transducers. The experimental results of two categories of damages at different
locations reveal that the existence of damage changes the energy transport between the actuator
and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure,
the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the
simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately
linearly with the diameter of the simulated damage. However, when two or more modes of Lamb
waves are excited, due to the existence of different group velocities between the different modes,
the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not
strictly linear with the size of the damage. Therefore, it is recommended that only one dominant mode
of Lamb wave should be excited during the characterization process, in order to ensure that the linear
relationship between the damage size and the characteristic parameters is maintained. In addition,
the findings from this paper demonstrate the potential of developing future damage detection
algorithms using the linear relationships between damage size and the ultrasound energy diffusion
coefficient or ultrasonic energy dissipation coefficient when a single dominant mode is excited.

Keywords: piezoceramic transducers; ultrasound energy diffusion; small size damage; Lamb waves;
damage detection; structural health monitoring
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1. Introduction

Structural health monitoring (SHM) has been receiving an increasing amount of attention
in recent years [1–7]. For damage detection in an SHM system, a PZT (lead zirconate titanate)
transducer is usually utilized as an actuator to generate ultrasonic waves along a structure, and other
PZT transducers are used as sensors to detect the changes in both environmental and operational
conditions [8–12] and structural damages [13–18]. The damage-induced changes in properties such
as electromechanical impedance [19–28], ultrasonic energy [29–34], nonlinear characteristics of Lamb
waves [35–38], and other ultrasonic parameters [39,40], are further employed to estimate the health
state of the structure [41–46] or locate the damage [47–51]. However, previous studies of damage
detection mainly focus on how to make use of these structural changes to estimate or locate the damage,
but do not consider the ultrasonic changes which are brought about by structural damage.

In fact, the interaction between structural damage and ultrasonic changes can be explained
by ultrasound energy diffusion [52–54]. Studies of ultrasound energy diffusion indicate that the
change of ultrasound energy is associated with energy losses due to energy diffusion and energy
dissipation. They also indicate that the ultrasound energy diffusion is mainly related to the structures,
including damages distributed in the medium, while ultrasonic energy dissipation is mainly caused
by energy absorption due to the inhomogeneity of the medium [52–57]. Weaver [52,55] theoretically
studied the characteristics of ultrasound energy diffusion in an aluminum foam and polycrystals,
and established a mathematical model to reveal the relationship between the ultrasonic diffusion
energy and microstructure. Weaver’s study was validated by experimental investigation and numerical
simulation, which were carried out by Anugonda et al. [53] and Schubert and Koehler [54], respectively.
In recent years, applications of ultrasound diffusion to detect damage detection in concrete structures
were also developed [58–62].

However, the aforementioned studies of ultrasound energy diffusion mainly involve concrete
structures; little attention is paid to ultrasound energy diffusion in metallic structures, especially in
thin plate-like structures. Since the scattering characteristics of the waves in concrete structures are
much stronger than those in metallic structures, the effect of ultrasound energy diffusion will be
much weaker in a metallic structure. Moreover, due to the existence of dispersion and multimodes
of Lamb waves [63–67], different modes of Lamb waves propagate in the structure with different
group velocities, and the energy of different modes is transported asynchronously. This makes the
characteristics of ultrasound energy diffusion in thin plate-like structures more complicated. Therefore,
the characteristics of ultrasound energy diffusion in metallic plate structures need further investigation.

In this paper, the characteristics of ultrasound energy diffusion in an aluminum plate due to small
damages are studied with the help of piezoceramic transducers. The existence of multimodes of Lamb
waves in metallic plate structures results in the asynchronous energy transport of different modes.
A mode of Lamb waves has a great influence on the ultrasound energy diffusion, and thus needs to
be chosen appropriately. In this research, both single dominant modal excitation and multimodal
excitation are conducted. With the excitation of only one dominate mode of Lamb wave in the
plate structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the
diameter of the damage, while the ultrasonic energy dissipation coefficient increases approximately
linearly with the diameter of the simulated damage. However, when two or more modes of Lamb
waves are excited, due to the existence of different group velocities between different modes, the energy
transport of different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear
with the size of the damage. Therefore, it is recommended that only one dominant mode of Lamb
wave should be excited during the characterization process in order to ensure the linear relationship
between the damage size and the characteristic parameters. We hope that the findings in this study
can offer guidelines for the future development of damage detection algorithms based on ultrasonic
energy diffusion.

The rest of the paper is organized as follows. In Section 2, the fundamentals of ultrasound energy
diffusion are presented, and the process of computing the ultrasound energy diffusion is developed.
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In Section 3, the influence of the dispersive characteristics of the Lamb wave on the ultrasound energy
diffusion is analyzed. In Section 4, an experimental setup of an aluminum plate with a through-hole,
whose diameter is varied from 0.6 mm to 1.2 mm, is designed to characterize the ultrasound energy
diffusion. The experimental results are analyzed and discussed in Section 5. At last, Section 6 concludes
the paper and suggests areas for future work.

2. Fundamentals of Ultrasound Energy Diffusion

Based on the theory of ultrasound energy diffusion, the spectral energy density describes the
energy diffusion of an ultrasonic wave, and the spatiotemporal evolution of spectral energy density
E(
→
r , t) can be given by the ultrasound energy diffusion equation [52,68,69],

∂E(
→
r , t)

∂t
+ D∇2E(

→
r , t)− σE(

→
r , t) = E0δ(

→
r −→r 0)δ(t− t0) (1)

where D is the frequency-dependent ultrasound energy diffusion coefficient, which is related to the
distribution of damage in the medium; σ is the frequency-dependent ultrasonic energy dissipation
coefficient, which is related to the inhomogeneity of the medium; E0 is the initial energy, which is stored
at point

→
r 0 at time t0; and δ is the Dirac delta function. It should be emphasized that the ultrasound

energy diffusion coefficient D is influenced by the microstructure, and the ultrasonic dissipation energy
coefficient σ is mainly influenced by the material of the structure. Therefore, the ultrasound energy
diffusion coefficient D and ultrasonic energy dissipation σ can be employed to identify the small-size
damage in a structure.

The series solution to Equation (1) for a three-dimensional structure is given by Equation (2) [57–59],

E(x, y, z, t) = E0e−σt{1 + g(x, x0, a)g(y, y0, b)g(z, z0, c)
+[g(x, x0, a) + g(y, y0, b) + g(z, z0, c)]
+g(x, x0, a)g(y, y0, b)
+g(x, x0, a)g(z, z0, c)
+g(y, y0, b)g(z, z0, c)}E0e−σt

(2)

where g(X, X0, A) =
∞
∑

m=1
2 cos(mπ X0

A ) cos(mπ X
A )e
−Dt(mπ

A )2
, a, b, and c are dimensions of the structure,

(x0, y0, z0) indicates the location of ultrasonic actuator, and (x, y, z) indicates the location of sensor
where the energy is measured.

Furthermore, for an infinite one-dimensional structure, the solution to Equation (1) is expressed
as [53],

E(x, t) = E0
1

2
√

πDt
e−

x2
4Dt e−σt (3)

where E0 is the initial energy stored at the excitation point.
Equations (2) and (3) indicate that the ultrasound energy density is related to the locations of

the energy input and the energy receiver, as well as the structural dimension. These relationships
are distinct from those for the ultrasound energy diffusion coefficient and the ultrasound energy
dissipation coefficient, which are only related to the medium. If the distance between the actuator
and the sensor changes, or the dimension of the structure changes, the ultrasound energy density will
also change. However, the ultrasound energy diffusion coefficient and ultrasound energy dissipation
coefficient would not be influenced.

The logarithmic form of Equation (3) is

ln E(x, t) = C0 −
x2

4Dt
− σt− 0.5 ln(Dt) (4)

where C0 is a constant that is related to the initial energy.
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For a given structure, the constant C0, the ultrasound energy diffusion coefficient D and
the ultrasonic energy dissipation σ in Equation (4) can be determined by curve fitting using the
experimental data, and the detailed procedure is listed below:

(1) divide the time-domain signal into short segments by a time window of a length of ∆t with
a specific window overlap ratio γ,

(2) compute the spectral power of each segment by discrete-time Fourier transform (DTFT),
(3) compute the spectral energy density by summing up the power spectrum of each segment in

a specific bandwidth ∆f centered at frequency fc, and
(4) determine the ultrasound energy diffusion coefficient D and ultrasonic energy dissipation σ by

curve fitting.

3. Dispersive Characteristics of Lamb Waves

Based on the theory of ultrasound energy diffusion, when the wavelength is on the order of the size
of the damages, the ultrasonic waves will be greatly influenced by the multiple scattering effects due
to the damages, and the ultrasonic signals can be separated into diffusive and dissipative components.
The dispersive characteristics of the Lamb wave will affect the ultrasound energy diffusion.

According to the principles of Lamb waves, Lamb waves propagate in thin plate-like structures
with two parallel free boundaries, and the motion of Lamb waves is the resultant motion of
antisymmetric motion Ai and symmetric motion Si (i = 0, 1, 2 . . . ), which are expressed by
Rayleigh-Lamb equations [70]

Symmetric motion : tan(qh)
tan(ph) = −

4k2qp
(k2−q2)

2

Antisymmetric motion : tan(qh)
tan(ph) = −

(k2−q2)
2

4k2qp

(5)

where p2 = ω2/c2
L − k2, q2 = ω2/c2

S − k2, λ = 2π/k, ω = 2π f , c2
L = 2µ(1−ν)

ρ(1−2ν)
, c2

S = µ/ρ. In addition,
h is the half-thickness of the plate; µ, ν, and ρ are the shear modulus, Poisson’s ratio, and mass density
of the medium, respectively; λ, k, and f are the wavelength, wavenumber, and frequency of the waves,
respectively; and cS and cL are the transverse and longitudinal velocities of the waves, respectively.
Equation (4) indicates that, for a given structure, both the group velocity ci = ω/ki and wavelength λ

change with the frequency f, and this change of group velocity with frequency causes the Lamb waves
to be highly dispersive.

Figure 1 plots the dispersive curves of the group velocity of Lamb waves for a given structure
(half-depth h = 0.75 mm). It can be seen from Figure 1 that for a given structure, the group velocities of
different modes at a certain frequency are different, which means that the ultrasonic energy that is
transported by different modes of Lamb waves is asynchronous. Therefore, in order to obtain a strong
effect of ultrasound energy diffusion, the modes of Lamb waves should be chosen carefully.

In addition, for the purpose of easily separating the diffusive and dissipative components of
the ultrasonic signals, the wavelengths of all of the modes of Lamb waves should be less than the
maximum size of all the damages. Figure 2 plots the wavelength of Lamb waves for a given structure
(half-depth h = 0.75 mm).

However, based on the tuned Lamb wave theory [71], when a PZT is attached to a given structure
to excite Lamb waves, there are many tuned frequencies at which the displacement of one certain
mode of Lamb wave is zero. Among these tuned frequencies, such frequencies where there is only one
dominant mode of Lamb wave can be obtained by a numerical method.
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Figure 1. Dispersive curve of group velocity (Alloy 5052, half-depth h = 0.75mm). 
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Figure 2. Dispersive curve of wavelength (Alloy 5052, half-depth h = 0.75 mm). 
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4. Experimental Setup

To investigate the characteristics of the ultrasound energy diffusion of Lamb waves,
an experimental setup is designed and fabricated, as shown in Figure 3. The experimental setup mainly
consists of an aluminum plate (Alloy 5052) bonded with two PZT disks (shown in Figure 4), an amplifier
with a bandwidth of 0–3.0 MHz and a fixed gain of 50 (Trek Model 2100H) for a piezoceramic load,
a signal generation, a data acquisition system (a Ni PXIe-1082 chassis with a Ni PXI-5412 arbitrary
waveform generator and a Ni PXIe-5105 digitizer), and a monitor.



Sensors 2017, 17, 2796 6 of 17

Sensors 2017, 17, 2796  6 of 17 

 

 
Figure 3. The experimental setup with the data acquisition system. 

 
(a) 

(b) 

Figure 4. An aluminum plate with PZT (lead zirconate titanate) disks: (a) an aluminum plate (Alloy 
5052) with a PZT transmitter and a PZT sensor; (b) a PZT on the aluminum plate. 

Since the ultrasound energy diffusion coefficient and the ultrasound energy dissipation 
coefficient are not influenced by the locations of the actuator and the sensor nor the dimension of the 
plate, an aluminum plate with a dimension of 450 mm × 200 mm × 1.5 mm is selected, and as shown 
in Figure 5, two PZT disks are bonded on the plate by epoxy at two fixed locations. The size of the 
PZT disk is Φ12 mm × 1 mm, and the locations of these two PZTs are also shown in Figure 6. During 
the experiments, one of the two PZTs is chosen as an actuator, and the other is used as a sensor. 

To investigate the relationship between the size of the damage and the ultrasound energy 
diffusion coefficients, two different damage categories are tested, and for each category, the 
simulated damage is a through-hole with different center locations. For each category, three 
specimens are tested. The locations of the simulated damages are listed in Table 1. For each damage 
category, the diameter of the hole is increased from 0.6 mm to 1.2 mm with an increment of 0.2 mm. 

Figure 3. The experimental setup with the data acquisition system.

Sensors 2017, 17, 2796  6 of 17 

 

 
Figure 3. The experimental setup with the data acquisition system. 

 
(a) 

(b) 

Figure 4. An aluminum plate with PZT (lead zirconate titanate) disks: (a) an aluminum plate (Alloy 
5052) with a PZT transmitter and a PZT sensor; (b) a PZT on the aluminum plate. 

Since the ultrasound energy diffusion coefficient and the ultrasound energy dissipation 
coefficient are not influenced by the locations of the actuator and the sensor nor the dimension of the 
plate, an aluminum plate with a dimension of 450 mm × 200 mm × 1.5 mm is selected, and as shown 
in Figure 5, two PZT disks are bonded on the plate by epoxy at two fixed locations. The size of the 
PZT disk is Φ12 mm × 1 mm, and the locations of these two PZTs are also shown in Figure 6. During 
the experiments, one of the two PZTs is chosen as an actuator, and the other is used as a sensor. 

To investigate the relationship between the size of the damage and the ultrasound energy 
diffusion coefficients, two different damage categories are tested, and for each category, the 
simulated damage is a through-hole with different center locations. For each category, three 
specimens are tested. The locations of the simulated damages are listed in Table 1. For each damage 
category, the diameter of the hole is increased from 0.6 mm to 1.2 mm with an increment of 0.2 mm. 

Figure 4. An aluminum plate with PZT (lead zirconate titanate) disks: (a) an aluminum plate
(Alloy 5052) with a PZT transmitter and a PZT sensor; (b) a PZT on the aluminum plate.

Since the ultrasound energy diffusion coefficient and the ultrasound energy dissipation coefficient
are not influenced by the locations of the actuator and the sensor nor the dimension of the plate,
an aluminum plate with a dimension of 450 mm × 200 mm × 1.5 mm is selected, and as shown in
Figure 5, two PZT disks are bonded on the plate by epoxy at two fixed locations. The size of the PZT
disk is Φ12 mm × 1 mm, and the locations of these two PZTs are also shown in Figure 6. During the
experiments, one of the two PZTs is chosen as an actuator, and the other is used as a sensor.

To investigate the relationship between the size of the damage and the ultrasound energy diffusion
coefficients, two different damage categories are tested, and for each category, the simulated damage
is a through-hole with different center locations. For each category, three specimens are tested.
The locations of the simulated damages are listed in Table 1. For each damage category, the diameter
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of the hole is increased from 0.6 mm to 1.2 mm with an increment of 0.2 mm. Therefore, there are
10 different damages in total, and three different excitation pulses are employed to excite Lamb waves
for each damage.
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the impedance.

Table 1. Locations of the damages.

Damage Category Number Location of Damage Center (mm, mm)

D1 (0, 0)
D2 (0, −60)

To obtain the maximum output from the actuator, the excitation frequency of the pulse should be
near the resonant frequency of the bonded PZT disk. The electrical impedance of the PZTs is measured
by using an impedance analyzer (Wayne Kerr 6500B), and the impedance curve is shown in Figure 6.
In addition, considering that the wavelengths of all of the modes of Lamb waves should be less than
the maximum size of all of the damages, in order to study the influence of the dispersive characteristics
of Lamb waves on the ultrasound energy diffusion, the center frequency of the excitation pulse is
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selected as 1.8~2.4 MHz, and the pulse is a Hanning-windowed tone burst with a peak amplitude of
2.8 volts. During the experiments, the Ni PXI-5412 arbitrary waveform generator is used to generate
the pulse at a sampling frequency of 50 MHz. The pulse is then sent to the actuator after it is amplified,
and the signal is recorded by the Ni PXIe-5105 digitizer at a sampling frequency of 60 MHz. The total
sampling time is 1000 µs. Figure 7 shows the excitation pulse in the time and frequency domains.
All of the experiments were conducted in the same room with an environmental temperature of 30 ◦C,
and all of the data was measured with environmental noise.
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5. Experimental Results

After the temporal signals were obtained, they were further processed to obtain the
ultrasonic energy density, the ultrasound energy diffusion coefficient, and the ultrasonic energy
dissipation coefficient.

To decrease the adverse effect of the epoxy between the aluminum and the PZT on the location
error of the PZTs, the ultrasound energy diffusion coefficient and the ultrasonic energy dissipation
coefficient are normalized by the value when there is no damage in the aluminum plate.

Figure 8 shows the measured temporal signal with environmental noise. The parameters for signal
processing described in Section 2 are selected as ∆t = 16.67 µs, γ = 0.9, ∆f = 0.15 MHz, fc = 2.1 MHz,
and the total recorded time t = 1 ms. The ultrasonic energy density is then obtained by the steps listed
in Section 2. The ultrasound energy density curve under an excitation pulse with a center frequency of
f = 2.1 MHz (when there is no damage) is plotted in Figure 9, and the red curve in Figure 9 is obtained
by curve fitting, based on Equation (4).
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Figure 9. Ultrasonic energy density curves of Lamb waves with different damages under an excitation
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5.1. Influence of Damage Size on Ultrasound Energy Diffusion

According to Figure 6, one resonant frequency of the PZT patch is about 2.1 MHz, which was
therefore selected as the central frequency for the excitation pulse. With this excitation, the responses of
the plate with damage categories D1 and D2 were recorded. Tables 2–5 respectively list the normalized
ultrasound energy diffusion coefficients of damage categories D1 and D2. Tables 2 and 3 reveal that
the normalized ultrasound energy diffusion coefficient monotonously decreases from 94.71% to 91.46%
when the diameter of damage D1 increases from 0.6 mm to 1.2 mm, while the normalized ultrasonic
energy dissipation coefficient monotonously increases from 103.92% to 114.79%. Tables 4 and 5 show
that the normalized ultrasound energy diffusion coefficient monotonously decreases from 96.46% to
94.24% when the diameter of damage D2 increases from 0.6mm to 1.2 mm, while the normalized
ultrasonic energy dissipation coefficient monotonously increases from 103.84% to 107.02%.

Table 2. Normalized ultrasound energy diffusion coefficient for damage category D1 (unit: %).

Damage Size (mm) Sample Number Average
1 2 3

0 100 100 100 100

Φ0.6 98.46 94.71 97.64 96.94
Φ0.8 98.15 92.76 96.73 95.88
Φ1.0 96.69 92.31 96.20 95.06
Φ1.2 94.22 91.46 95.29 93.67

Table 3. Normalized ultrasonic energy dissipation coefficient of damage category D1 (unit: %).

Damage Size (mm) Sample Number Average
1 2 3

0 100 100 100 100

Φ0.6 103.92 108.84 104.43 105.73
Φ0.8 104.74 111.72 106.36 107.61
Φ1.0 105.48 113.46 106.37 108.44
Φ1.2 106.22 114.79 107.32 109.44
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Table 4. Normalized ultrasound energy diffusion coefficient of damage category D2 (unit: %).

Damage Size (mm) Sample Number Average
1 2 3

0 100 100 100 100

Φ0.6 98.97 96.46 97.46 97.63
Φ0.8 98.24 97.16 96.86 97.42
Φ1.0 98.48 95.73 96.03 96.74
Φ1.2 94.43 94.24 95.34 94.67

Table 5. Normalized ultrasonic energy dissipation coefficient of damage category D2 (unit: %).

Damage Size (mm) Sample Number Average
1 2 3

0 100 100 100 100

Φ0.6 104.75 105.44 103.84 103.67
Φ0.8 104.07 103.95 104.32 104.11
Φ1.0 103.26 105.51 105.23 104.66
Φ1.2 106.48 106.55 107.02 106.68

However, compared with the dimensions of the aluminum plate, the volume proportion of the
through-hole is still very small, even though the diameter of the through-hole increases from 0.6 mm
to 1.2 mm, and therefore the relative change of ultrasound energy density is small compared with the
relative change of the diameter of the simulated hole.

Figures 10 and 11 respectively plot the ultrasound energy coefficients versus the damage size for
the damage cases of D1 and D2.

Both Figures 10 and 11 demonstrate that the average of the ultrasound energy diffusion coefficient
decreases approximately linearly with the diameter of the through-hole damage, while the ultrasonic
energy dissipation coefficient increases approximately linearly with the diameter of the same damage.
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5.2. Influence of Dispersion of Lamb Waves on Ultrasound Energy Diffusion

As discussed in Section 3, due to the existence of the dispersions of Lamb waves, the propagation
characteristics of Lamb waves are complicated. Therefore, the influence of the dispersion of Lamb
waves on the ultrasound energy diffusion is also investigated.

Figures 12 and 13 respectively show the ultrasound energy coefficients of damage category D1
under excitation pulses with different center frequencies. Figure 14 plots the normalized displacements
of different modes of Lamb waves, which are obtained based on the tuned Lamb wave theory [71].
Tables 6 and 7 respectively list the normalized displacements and group velocities of different modes
of Lamb waves at different frequencies.
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Table 6. Normalized displacements of different modes of Lamb waves.
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2.1 0.0023 0.0030 0.016
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Table 7. Group velocities of different modes of Lamb waves.

Frequency/MHz Mode of Lamb Waves/ms−1

S0 S1 A0 A1

1.8 1898 - 3101 3726
2.1 2267 3559 3075 3243
2.4 3491 4391 3052 3108

Figures 12a and 13a indicate that all of the normalized ultrasound energy diffusion coefficients in
the presence of damage were less than those without damage. However, the changes of the normalized
ultrasound energy diffusion coefficients under excitation pulses with center frequencies of f = 1.8 MHz
and f = 2.4 MHz were no longer linear to the damage size.

Figures 12b and 13b show that, in the presence of damage, all of the normalized ultrasonic
energy dissipation coefficients were larger than those without damage. However, the changes of the
normalized ultrasonic energy dissipation coefficients under excitation pulses with center frequencies
of f = 1.8 MHz and f = 2.4 MHz were also no longer linear to the damage size.

As shown in Figure 14 and listed in Table 6, when the center frequency was 1.8 MHz,
the normalized displacement of the A0 mode was about 1/3 of that of the A1 mode. When the
center frequency was 2.1 MHz, the normalized displacement of the S0 mode and the A0 mode were
about 1/7 and 1/5 of that of the A1 mode, respectively. When the center frequency was 2.4 MHz,
the normalized displacement of the A0 mode was about 9/16 of that of the S1 mode. Therefore, when
the excitation frequencies were 1.8 MHz and 2.4 MHz, which are both far from the tuned frequency,
there were mainly two modes (A0 and A1 modes for 1.8 MHz, S1 and A0 modes for 2.4 MHz), which
transported most of the energy (the energy was proportional to the power of the displacement) of
the excitation pulse. On the contrary, when the frequency was 2.1 MHz, which is near to the tuned
frequency, there was mainly only one mode (A1 mode) in the plate. In addition, after considering
the group velocities listed in Table 7, when the frequencies were 1.8 MHz and 2.4 MHz, respectively,
the differences of the group velocities of the two dominant modes were 625 m/s and 1339 m/s,
respectively. These results indicated that the energy transport of these two dominant modes was
asynchronous, and therefore, the ultrasound energy diffusion is not strictly linear to the size of the
damage when the center frequency of the excitation is 1.8 MHz and 2.4 MHz.

Please note that a change in the ultrasound energy diffusion can still be used to detect the existence
of damage, since there is a distinct change in the ultrasound energy diffusion when there is damage.

5.3. Discussion

As illustrated in the above sections, the ultrasonic energy diffusion changes if there is damage to
the structure, and the dispersion and multimode characteristics of Lamb waves have a large influence
on the diffusion of the ultrasound energy. When there is only one dominant mode of Lamb wave in
the structure, the ultrasound energy diffusion coefficients have a linear relationship with the diameter
of the through-hole damage. However, when there are two or more modes of Lamb waves, due to
the existence of different group velocities between the different modes, the energy transport of the
different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size
of the damage.

Therefore, it is recommended that only one dominant mode of Lamb wave should be excited
during the characterization process in order to ensure that the linear relationship between the damage
size, the characteristic parameters, and the optimal frequency can be computed in advance of the
damage through a numerical method based on the tuned Lamb wave theory. In addition, the findings
from this paper demonstrate the potential for future damage detection algorithms to be developed
using the linear relationships between damage size and the ultrasound energy diffusion coefficient or
ultrasonic energy dissipation coefficient. When a single dominant mode is excited, structural damage
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detection can be carried out by two main steps: (1) obtaining the location of the damage through
developed approaches, such as the delay-and-sum imaging algorithm, and (2) detecting the size of the
damage by using the linear relationship between the damage size, the ultrasound energy diffusion
coefficient, and the ultrasound energy dissipation coefficient.

6. Conclusions

The characteristics of ultrasound energy diffusion in a metallic plate structure in the presence of
a small through-hole are studied in this paper with the help of piezoceramic transducers. According to
the theory of ultrasound energy diffusion, the propagation of ultrasonic waves in structures is usually
associated with energy losses due to energy diffusion and energy dissipation. The ultrasound energy
diffusion coefficient is related to the microstructure of the medium, the ultrasonic energy dissipation
coefficient is related to the inhomogeneity of the medium, and both coefficients are obtained by
data fitting. To study the characteristics of ultrasound energy diffusion, an experimental setup with
an aluminum plate with a through-hole was designed and fabricated. The experimental results
of two categories of damages revealed that the presence of damage changed the energy transport
between the actuator and the sensor, as well as both the ultrasonic energy diffusion coefficient and
the ultrasonic energy dissipation coefficient. In addition, when there was only one dominant mode
of Lamb wave excited in the structure, the average of the ultrasound energy diffusion coefficient
decreased approximately linearly with the diameter of the through-hole damage, while the ultrasonic
energy dissipation coefficient increased approximately linearly with the diameter of the through-hole
damage. However, when two or more modes of Lamb waves were excited, due to the existence of
difference of group velocities between the different modes, the energy transport of different modes
was asynchronous, and the ultrasonic energy diffusion was not strictly linear with the size of the
damage. Therefore, it is recommended that only one dominant mode of Lamb wave should be excited
during the characterization process in order to ensure a linear relationship between damage size and
the characteristic parameters.

Future work will involve the in-depth experimental study of the characteristics of ultrasound
energy diffusion in a plate with complex structures and different materials, and damage detection
based on ultrasound energy diffusion and its potential applications in structural health monitoring.
For ultrasound energy diffusion-based damage size detection in a thin-plate-like structure, the center
frequency of excitation pulse should be carefully chosen to excite only one dominant mode of Lamb
wave. With findings from this paper, damage detection algorithms can be developed using the linear
relationships between the damage size and the ultrasound energy diffusion coefficient or ultrasonic
energy dissipation coefficient when a single dominant mode is excited.
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