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Abstract: Digital multimedia broadcasting signal is promised to be a wireless positioning signal.
This paper mainly studies a multimedia broadcasting technology, named China mobile multimedia
broadcasting (CMMB), in the context of positioning. Theoretical and practical analysis on the CMMB
signal suggests that the existing CMMB signal does not have the meter positioning capability.
So, the CMMB system has been modified to achieve meter positioning capability by multiplexing the
CMMB signal and pseudo codes in the same frequency band. The time difference of arrival (TDOA)
estimation method is used in base station positioning receivers. Due to the influence of a complex
fading channel and the limited bandwidth of receivers, the regular tracking method based on pseudo
code ranging is difficult to provide continuous and accurate TDOA estimations. A pseudorange
measurement scheme based on snapshot is proposed to solve the problem. This algorithm extracts
the TDOA estimation from the stored signal fragments, and utilizes the Taylor expansion of the
autocorrelation function to improve the TDOA estimation accuracy. Monte Carlo simulations and
real data tests show that the proposed algorithm can significantly reduce the TDOA estimation
error for base station positioning receivers, and then the modified CMMB system achieves meter
positioning accuracy.
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1. Introduction

As the main positioning technology, global navigation satellite systems (GNSS) have many
advantages, such as large coverage area, high positioning accuracy, and fine robust [1]. However,
due to the loss of GNSS signals by obstructions from buildings, the positioning effectiveness and
accuracy of the GNSS are limited in urban canyons and indoor environments [2,3]. Therefore, terrestrial
radio positioning systems and their enhancements to the GNSS are got increasing attention.

Recently, with the rapid development of data and multimedia services, digital multimedia
broadcasting technologies have been widely used. This paper mainly studies a digital multimedia
broadcasting technology, named China mobile multimedia broadcasting (CMMB). It has been
recognized that novel wireless positioning methods can be designed by utilizing the CMMB signal [4,5].
When compared with the GNSS, the positioning technology based on CMMB signals has many
potential advantages: the signal transmission power is stronger and the frequency band is U Band
(470–798 MHz) [6], which contributes to better urban or indoor propagation than the GNSS of L Band.
However, the CMMB standard did not take account the use of CMMB signals for location based service
(LBS) at the beginning of the design. The CMMB system mainly adopts single frequency network (SFN)
to achieve ground network coverage, and the receiving sensitivity of CMMB receivers is −95 dBm [6].
Figure 1 shows the terrestrial SFN coverage of the CMMB system, and the base station receives and
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forwards the multimedia data transmitted by the broadcast satellite. The receiver must receive three or
more CMMB base station signals in order to achieve high accuracy positioning, but with the existing
CMMB receivers it is difficult to receive more than three CMMB signals in the SFN model. In addition,
the CMMB system cannot provide the basic positioning information of the base station, such as base
station location, height, and delay correction [7]. Based on these facts, it is difficult to achieve high
accuracy indoor and outdoor seamless positioning by using the existing CMMB signal.
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Figure 1. Terrestrial single frequency network coverage of the China mobile multimedia broadcasting
(CMMB) system.

In order to achieve high accuracy indoor and outdoor positioning, the existing CMMB system
should be modified. Pseudo codes are used as the ranging signal in the pseudorange measurement,
whose spread spectrum gain is higher than that of the multimedia broadcasting signal. Then, pseudo
codes have larger effective coverage area than the multimedia broadcasting signal. Hence, the modified
CMMB system is multiplexing the communication signal and pseudo codes in the same frequency
band, and pseudo codes are used for positioning. When transmitting the fusion signal, we control the
transmit power of PRN codes to prevent the impact of PRN codes on the communication of CMMB
signals. When the power of the CMMB signal is higher than that of PRN codes by 18 dB or more,
then the CMMB receiver can ignore the impact of PRN codes and perform normal demodulation.
The existing deployment of the CMMB system does not change, only some other equipment are added
on the original basis, and the positioning service can be done. The positioning part of the modified
CMMB system is a direct-sequence spread spectrum code division multiple access (DSSS-CDMA)
system, employing binary phase shift keying (BPSK) modulation. The basic information of the
base stations for positioning is also added, which consists of coordinated universal time (UTC),
base station number, air pressure, and base station coordinates. Figure 2 shows the flowchart of the
signal generation of the modified system. The signal bandwidth of base station receivers is designed
8 MHz, which is much larger than the chipping rate of GNSS signals. So, the accuracy of the pseudo
code range measurements can be improved. In contrast to the GNSS, the range between the base
stations and the receivers changes very slowly in the indoor environment. So, the positioning signal
cannot experience significantly the Doppler effects and the impairment that is caused by the delay
of ionosphere propagation, which will lead to easier signal acquisition [8]. Therefore, high accuracy
positioning can be achieved by adding some simple modifications to the deployed CMMB facilities.
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Figure 2. Flowchart of the signal generation.

In the modified CMMB system, the time difference of arrival (TDOA) is the main pseudorange
measurement method and the key to achieve high accuracy positioning. Due to pseudorange codes
being added in the modified CMMB system, the signals from different stations can be tracked using
similar GNSS receiver tracking algorithms. When signal-to-noise ratio (SNR) is ideal and the propagate
channel is stable, the accurate code phase difference is obtained by tracking algorithms, and then
TDOAs are obtained. However, in the complex fading channel and low SNR, the signal strength
violently fluctuates, and the traditional tracking loop is difficult to maintain the stability of the signal
tracking. Then, the tracking channel cannot accurately output the pseudo code phase of the base
station signal to the receiver, and the TDOA cannot be retrieved. Especially for signals from the
far base station, the mean time to lose lock (MTTL) rises and continuing tracking is difficult [9].
There are many studies to solve the complex fading channel problems [10–13]. In Reference [10],
the algorithm of the radio propagation path under non-line-of-sight (NLOS) is studied to improve the
positioning accuracy of the time of arrival (TOA), but the process of obtaining TOA is not described in
detail. The rake receiver that is described in [11] can improve the time of stable tracking in the fading
channel, but it has not studied how to use it for high accuracy ranging. Refs. [12,13] proposed the
signal tracking loop architecture and the loop adjustment algorithm in the fading channel, which can
reduce the average lockout time of the loop under the Rayleigh channel. But, the premise of the above
algorithms is accurate channel estimation, otherwise the accurate TOA cannot be an output. In addition,
the limited bandwidth of receivers also affects the accuracy of the TDOA estimation, thus affecting
the positioning accuracy. Refs. [14,15] improve the code phase estimation accuracy of band-limited
receivers using curve fitting, but these algorithms require more observations and the fitting accuracy
is limited. The non-causal smoothing estimator is added to improve the measurement accuracy in
snapshot GNSS receivers [16,17], but the premise of the algorithm is that the weak signal must be
stable tracking. This paper proposes a novel pseudorange measurement algorithm for positioning
in the fading channel. The basic idea of the proposed algorithm is to extract the TDOA estimation
from the stored signal fragments, and to utilize the Taylor expansion of the autocorrelation function to
get the accuracy TDOA. The receiver takes a snapshot of the receiving signal at the appropriate time,
and then analyzes the stored signal by replay to get the TDOAs.

The rest of this paper is organized as follows. In Section 2, the fusion signal model, including
the CMMB signal and pseudo codes, is given and the autocorrelation function with band-limited is
analyzed. Section 3 presents a pseudorange measurement scheme that is based on snapshot and the
Taylor expansion of the autocorrelation function. Section 4 gives simulation results, real data tests and
performance analysis of the proposed algorithm. Finally, the conclusions are shown in Section 5.

2. Fusion Signal Model and Autocorrelation Function with Band-Limited

In this section, a novel fusion signal is designed that multiplexes communication signal and
pseudo codes in the same frequency band. The autocorrelation function with band-limited is described
and analyzed.
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2.1. Fusion Signal Mode

The CMMB system transmits the digital multimedia broadcasting signal using orthogonal
frequency division multiplexing (OFDM) technology [18]. One frame of the CMMB signal is one second,
and is divided into 40 time slots. Each time slot contains one beacon and 53 OFDM symbols. At the
beginning of the CMMB signal design, the beacon includes a transmitter identification signal named
TxID, and two identical synchronous signals. The TxID signal is the number of the corresponding
base station, and the synchronous signals and the transmitted data symbols are the same. However,
the TxID signal in the existing CMMB signal is empty, and the base station receivers are not concerned
with the TxID. Even if the base station receivers receive a large number of the CMMB signals at some
point, it is impossible to distinguish the different signals from different base stations. Therefore, pseudo
codes and the CMMB signal are multiplexed in the same frequency band, and then the modified CMMB
system can provide high accuracy positioning services for us. Pseudo codes are divided into two kinds
to be superimposed on the CMMB signal, the longer pseudo codes are called long codes and the short
ones are called short codes, as shown in Figure 3. Due to the TxID being empty, short codes and the
CMMB signal have the same transmit power. In order not to affect the normal communication of the
CMMB signal, the power of long codes is lower than the CMMB signal 20 dB. The length of one bit
positioning data is the same as the length of one time slot broadcasting signal, and the time slot of
pseudo codes is perfectly aligned with the CMMB signal. The CMMB system and the positioning
system can share the same 1 pps pulse signal to adjust the fusion signal broadcasting, and then it
achieves the synchronization between the modified base stations. Because the power of short codes is
stronger than that of long codes, the receiver is acquired with short codes and is tracked with short
and long codes.
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The novel fusion signal of the kth time slot is expressed as:

s(i)k (t) =


sCMMB(t) + c(i)SC(t) (k− 1)TF ≤ t < (k− 1)TF + TSC

sCMMB(t) + αc(i)LC(t) (k− 1)TF + TSC ≤ t ≤ kTF
0 others

(1)

where, superscript i stands for the base station number, sCMMB(t) is the CMMB signal, cSC(t),
and cLC(t) denote short codes and long codes, respectively, TF is the time length of the time slot,
TSC is the time length of the short codes.

The novel signal of ith base station is:

s(i)(t) =
∞

∑
k=−∞

d(i)k (t)s(i)k (t) (2)
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where dk(t) denotes the positioning data. The transmitting signal of ith base station is:

S(i)(t) = s(i)(t) cos(2π fct + ϕ0,i(t)) (3)

where fc is the carrier frequency, ϕ0,i(·) is the initial phase.
Thanks to the orthogonality of pseudo codes, the received signals from base stations can be

analyzed separately [19]. The fusion signal is received by radio frequency (RF) antenna of the receivers,
and the output of RF antenna is expressed as:

r(t) =
N

∑
i=1

A(i)s(i)(t− τi) cos(2π( fc + fd,i)t + ϕ0,i(t)) + ω(t) (4)

where N is the number of the received signals from N different base stations, A(i) is the signal amplitude,
τi is the incoming signal delay, fd,i is the incoming Doppler shift, ω(t) stands for the additive Gaussian
white noise (AWGN) component with zero mean (µ = 0) and variance (σ2

n). The output signal
of RF antenna is converted to intermediate frequency (IF) through the amplifier, mixer, and filter,
and finally IF signal is output to the baseband processor by the analog-to-digital converter (ADC)
model. The CMMB signal is filtered out. Neglecting the quantization effect, the incoming signal of the
baseband processor can be expressed as:

r(nTs) =
N

∑
i=1

A(i)
ADCc(i)P (nTs − τi)ej2π( f IF+ fd,i)nTs+ϕ0,i + ω(n) (5)

where A(i)
ADC is the signal amplitude after ADC, Ts is sampling time, f IF denotes the intermediate

frequency, cP(·) is the positioning signal, and r(n) = r(nTs).

2.2. Autocorrelation Function with Band-Limited

We can only use the autocorrelation function to distinguish the signals from different modified
base stations. When pseudo codes have these two characteristics of the infinite period and the ideal
autocorrelation, the autocorrelation function of cP(t) can be expressed as:

RP(τ) =

{
1− |τ|/Tc |τ| ≤ Tc

0 others
(6)

where τ is the incoming signal delay, Tc is the chip period, and the shape of the correlation peak is
shown in Figure 4a. The normalized power spectral density of cP(t) is

GP( f ) = Tc sin c2(π f Tc) (7)

and the shape of GP( f ) is shown in Figure 4b.
In the modified CMMB system, the positioning signal is filtered into the same bandwidth as the

CMMB signal. At the same time, the bandwidth of the base station receiver is limited. On the one
hand, filtering leads to a loss of signal power; on the other hand, the shape of the autocorrelation
function in the receiver is not the triangle given by Equation (6). The frequency response of the ideal
low pass filter is

HL( f ) =

{
1 | f | ≤ B/2

0 others
(8)

where B is the RF bandwidth of the receiver. The proportion of the signal power that can pass through
the part of the filter is

η =
∫ B/2

−B/2
GP( f )d f (9)
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Figure 5 illustrates the proportion of the signal component through the filter in the total signal
under different bandwidths, and chip rate fc = 1/Tc.

Sensors 2017, 17, 2783  6 of 18 

 

L

f B
H f

others

/ 21
( )

0


 


 (8) 

where B is the RF bandwidth of the receiver. The proportion of the signal power that can pass through 

the part of the filter is 

B

PB
G f f

/2

/2
( )d


   (9) 

Figure 5 illustrates the proportion of the signal component through the filter in the total signal 

under different bandwidths, and chip rate 
c c

f T1/ . 

 

Figure 5. The proportion of the signal component through the filter in the total signal under different 

bandwidths. 

In the receiver, acquisition and tracking are based on the autocorrelation between the incoming 

signal and the local replica codes [20,21]. Assuming that the incoming signal is exactly the same 

modulation scheme and spread spectrum sequences as the local replica codes, the differences are that 

the incoming signal passes through the filter defined by Equation (8) and the local replica codes are 

not filtered. Then, the autocorrelation function is 

B j f

L PB
R G f f

/2 2

/2
( ) ( )e d


 

   (10) 

L
R ( )  under several different filtering bandwidths is shown in Figure 6, and 

c
f 5MHz . It can 

be found that when the filtering bandwidth is narrow, the autocorrelation function becomes smooth 

near 0 . 

Figure 5. The proportion of the signal component through the filter in the total signal under
different bandwidths.

In the receiver, acquisition and tracking are based on the autocorrelation between the incoming
signal and the local replica codes [20,21]. Assuming that the incoming signal is exactly the same
modulation scheme and spread spectrum sequences as the local replica codes, the differences are that
the incoming signal passes through the filter defined by Equation (8) and the local replica codes are
not filtered. Then, the autocorrelation function is

RL(τ) =
∫ B/2

−B/2
GP( f )ej2π f τd f (10)

RL(τ) under several different filtering bandwidths is shown in Figure 6, and fc = 5 MHz. It can
be found that when the filtering bandwidth is narrow, the autocorrelation function becomes smooth
near τ = 0.
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3. A Pseudorange Measurement Scheme Based on Snapshot

Since continuous positioning signals exist, it makes the receiver possible to track the positioning
signals from different base stations with regular GNSS-like algorithms, and the receiver contains several
tracking channels to get TDOAs. However, in the fading channel, due to the violent fluctuations of
the signal strength, the regular tracking loop is difficult to maintain the stability of the signal tracking,
or even the losses of lock. Then, the tracking channel cannot output the accurate pseudo-code phase,
and TDOAs cannot be obtained. In this section, a pseudorange measurement scheme that is based on
snapshot is proposed to solve the above problem. When considering the impairment caused by the
limited bandwidth, Taylor expansion is utilized to improve the pseudorange accuracy.

3.1. Pseudorange Measurement Scheme

The basic idea of this scheme is to abandon the pseudorange measurement method in the
traditional tracking mode, and to use the stored signal fragment to extract TDOAs. The premise
of the algorithm is that the receiver has stably tracked a strong positioning signal. The receiver takes
a snapshot of the received signal at the appropriate time, and analyzes the stored data by replay to
obtain TDOAs. As long as the snapshot data is not impaired by the fading channel, then the receiver
can output the right pseudorange.

The whole procedure of the proposed algorithm is shown in Figure 7. When the receiver starts,
the data selector selects the path form the in-phase (I) or quadrature (Q) signals to the matched filter.
The matched filter searches for the short codes of all the possible base station signals. The logic decision
module performs an acquisition decision on the signal from the nearby base station and outputs the
synchronize information for the late successful tracking. From the periodicity of the positioning signal,
as shown in Equation (1) and Figure 3, when a strong positioning signal is stably tracked, the temporal
prior information can be extracted to determine the time of arrival of the next short codes. At the
moment of the arrival of the next short codes, I/Q data of short codes is stored in the memory and the
storage time is TSC, and the snapshot is completed. If the sampling rate of the receiver is fs, then the
length of the stored I/Q data is

nSC = dTSC fse (11)
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and nsc is longer than the length of the matched filter nL. After the snapshot, the stored data is
correlated with the local codes in the matched filter, and the output of the matched filter can be
expressed as

V(n) =

√√√√(
n+nL−1

∑
k=n

I(k)cL(k))
2

+ (
n+nL−1

∑
k=n

Q(k)cL(k))
2

= AV RL(τ) + w(n) (12)

where I(k) and Q(k) are in-phase and quadrature signals, respectively, cL(k) is the local code, is the
amplitude of the stored signal, w(·) is the noise distributed by Rayleigh. For the convenient of
discussion, it is assumed that the receiver receives the PN sequence X and Y of the short codes.
Since there is a difference in the arrival time between X and Y, their locations in the memory are in
order, as shown in Figure 8. Each memory address represents the relative location of each sample
point in the discrete time domain.
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The logic decision is used to find the correlation peak and transmit the correlation results near
the correlation peak to the correlation peak fitting module. The fitting module fits the location of
the correlation peak to obtain the relative relationship between the correlation peak and the memory
address. In Figure 8, the start location of the PN sequence X is located between the memory address
nX and nX + 1, with the offset δX . The following equations can be listed according to Equation (12).{

V(nX) = AV RL(δX)

V(nX + 1) = AV RL(1/ fs − δX)
(13)

If Rp(·) is used instead of RL(·), δX can be expressed as

δX =
V(nX + 1) fs + V(nX)( fc − fs)

[V(nX + 1) + V(nX)] fc fs
(14)
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The start location of the PN sequence Y is located between the memory address nY and nY + 1,
with the offset δY. δY can be got by using the above same method. Then, TDOA is written as

τXY = τX − τY =
nX − nY

fs/ fc
+ δX − δY (15)

Through this snapshot-replay method, even if the receiver cannot stably track the weak signal,
TDOAs can be output as long as the short codes of the weak signal can be acquired. However,
the accuracy of the TDOA that is calculated by Equation (14) does not take into account the impact of
bandwidth, it is not accurate, and there is a large computational error.

3.2. Improve the Pseudorange Accuracy Using Taylor Expansion

Taylor expansion is used to improve the computational accuracy of TDOAs. For the sake of
analyzing, the factor β is added, and then the receiver RF bandwidth is expressed as

B = β/Tc (16)

and Equation (10) is expanded and simplified.

RL(τ) =
1

2π2βTc

 −2Tc cos(
2πβτ

Tc
) + Tc cos(

2πβ(Tc − τ)

Tc
) + Tc cos(

2πβ(Tc + τ)

Tc
)−

4βπτSi(
2πβτ

Tc
) + 2βπ(Tc − τ)Si(

2πβ(Tc − τ)

Tc
) + 2βπτSi(

2πβ(Tc + τ)

Tc
)

 (17)

where Si(k) =
∫ k

0
sin(t)

t
dt. However, Equation (17) has Si(k), it is more complicated to calculate.

In order to reduce the computational complexity of Equation (17), Taylor expansion is performed
on Si(k). Equation (18) is the result of the 24 order Taylor expansion of Si(k). The order of Taylor
expansion is also determined according to the output pseudorange accuracy. The larger the Taylor
approximation error, then the larger the TDOA calculation error.

Si(x) = x−
x3

18
+

x5

600
−

x7

35280
+

x9

3265920
−

x11

439084800
+

x13

80951270400
−

x15

19615115520000

+
x17

6046686277632000
−

x19

2311256907767808000
+

x21

1072909785605898240000

−
x23

594596384994354462720000
+ o(x25)

(18)

Since the sampling rate fs is at least twice the code rate fc, we only care about the fitting accuracy
of 0.5 chip. Figure 9 shows the error of the exact solution in the 0.6 chip after the Taylor expansion of
Equation (17). In order to observe the 24-order Taylor approximation error clearly, the 24-order Taylor
approximation error is plotted separately in Figure 10. From Figures 9 and 10, it is found that the
24-order Taylor expansion satisfies the requirement of the TDOA accuracy, and the error of the 24-order
Taylor expansion is less than 1× 10−5 within 0.5 chip. Figure 11 shows the correlation of the theoretical
calculation and that of the exact fitting calculation of the 24-order Taylor expansion. The fitting function
of 24-order Taylor can accurately calculate the correlation under band-limited. Hence, the exact TOA is
calculated by using Equations (13) and (17), and then the exact TDOA is retrieved.
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4. Performance Assessment

Based on the previous discussion, a novel pseudorange measurement algorithm that is based
on snapshot is obtained. In this section, simulations and real data tests are performed to verify the
feasibility and performance of the proposed algorithm. To achieve a comprehensive assessment of the
proposed pseudorange measurement algorithm, Monte Carlo simulations are conducted to compare
the proposed algorithm with the regular methods and to verify the reliability of the proposed algorithm.
Furthermore, the novel fusion signals are broadcasted by the modified base stations, a base station
receiver, and other related equipment is also used to implement the proposed algorithm. Finally,
we select several points in a test building to test the positioning accuracy for the static receiver.

4.1. Simulations

Monte Carlo simulations are utilized for the comprehensive evaluation of the proposed algorithm.
All of the simulations are implemented by M-files in MATLAB R2015a. To prove the effectiveness of
the novel pseudorange measurement algorithm, comparative tests are performed. The positioning
signal of the novel fusion signal adopts Gold codes and is characterized by the parameters in Table 1.
For the convenience of analysis, we selected three groups of received signals to test, in which the SNR
of a group of received signals is fixed at 0 dB, and the SNR of remaining signals changes from 0 dB
to −30 dB. The received signals are simulated by the root-raised cosine filter to compress the infinite
bandwidth to within 8 MHz, and the spectrum before and after filtering is shown in Figure 12.

Table 1. Simulation parameters.

Parameter Value

Slot time, TF 25 ms
The time of short codes, TSC 0.136 ms

Bandwidth, B 8 MHz
code rate, fc 5 MHz

Sampling frequency, fs 22 MHz
Intermediate frequency, fIF 0 Hz

Residual carrier frequency, fd1, fd2, fd3 1 kHz
Signal length 10 slot times

SNR 0~−30 dB
Data bit transition Random
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Figure 12. The spectrum of received signals: (a) is before filtering and (b) is after filtering.



Sensors 2017, 17, 2783 12 of 18

The first simulation tests the TDOA estimation error under the same SNR with different code
phase deviations. Generating three groups of positioning signals under the limited bandwidth,
and then the CMMB signal is superimposed on the generated signals. The code phase differences of the
generated signals are known, and finally the Gaussian white noise is added. The stronger positioning
signal is acquired and tracked by the regular positioning algorithm, and then the remaining two groups
of the positioning signals are stored by the snapshot method described above. The residual carriers of
the stored signals are stripped off, and the TDOA of the stored signals are calculated in the following
three ways: the infinite bandwidth estimation method described by Equation (14), the quadratic fitting
method [14], and the proposed algorithm in this paper. Figure 13 shows the TDOA estimation error
under different setting code phase differences of two SNR, and the simulations are repeated 100 times
to obtain good statistical properties. It is found that the TDOA estimation error varies with the setting
code phase difference, where the fluctuation range of the infinite bandwidth estimation method is the
largest. Although the proposed algorithm is affected by SNR, the fluctuation range of the estimated
error is the smaller of the other two algorithms. The fluctuation range of the quadratic estimation
method is larger than that of the proposed method, and it is greatly affected by SNR. As the short
code part is not superimposed with CMMB signals, so this part has high SNR. Assuming that the
thermal noise background is −105 dBm, then the 0 dB SNR signal corresponds to the signal strength
of −105 dBm, which belongs to the category of weak signal. So the proposed algorithm is still effective
for weak signals.
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Figure 13. The time difference of arrival (TDOA) estimation errors under different setting code phase
differences: (a) is SNR = 0 dB and (b) is SNR = −15 dB.

The second simulation verifies the superiority of the proposed algorithm for various SNR.
The signal generation process is the same as the first simulation, and 100 simulations are performed
for each SNR with a fixed predetermined code phase difference. The average value of the absolute
value of the TDOA estimation error is shown in Figure 14. The three TDOA estimation algorithms that
are used for comparison are based on the accurate tracking of one group positioning signal, so the
TDOA errors of more than one chip caused by the acquisition error are discarded. It can be seen that
the TDOA estimation accuracy of the quadratic estimation method is higher than that of the infinite
bandwidth estimation method, and that the TDOA estimation accuracy of the proposed algorithm
is significantly higher than these two algorithms under high or low SNR. In addition, the proposed
algorithm improves the TDOA estimation accuracy and improves the estimation accuracy of the
signal amplitude, which can improve the estimation accuracy under low SNR and finally improve the
positioning accuracy of the receiver.
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4.2. Real Data Tests

To confirm that the novel algorithm exhibits better actual performance, real data tests are
conducted. The comprehensive test platform is shown in Figures 15 and 16. The test platform
consists of two parts: the modified base station and the positioning receiver. Each piece of equipment
of the modified base station is shown in Figure 15. The output frequency of the atomic clock is
10 MHz, the time distributor receives the GPS/BD signal to ensure synchronization between the
modified base stations, and the counter and the industrial personal computer do the corresponding
assistance. The synchronization between the modified base stations is up to 5 ns (1 δ). At the same time,
the time distributor also generates data messages, including UTC, base station number, air pressure,
and base station coordinates. The actuator generates the novel fusion signal, and finally the transmitter
transmits the RF signal. Figure 16 shows the positioning receiver that was developed by us. Figure 16a
is the internal and external structure of the positioning receiver. The receiver transmits the related
data to the mobile phone via Bluetooth and the mobile phone does the map display, as shown in
Figure 16b. The positioning receiver utilizes FPGA and ARM architecture for the baseband processing
and demodulation, and most of the operations are performed in the FPGA. The intermediate frequency
(IF) signal processor can convert the high frequency fusion signal into a zero-digital IF signal with
a sampling frequency of 22 MHz. Then, we build an experimental environment on our campus,
as shown in Figure 17. Four modified base stations are set up on the roof of four buildings, the 3rd and
4th floor of the other building are selected as the test sites. Finally, the receiver can be used to verify
the effectiveness of the proposed algorithm, and to test the positioning accuracy of the entire system.

Firstly, we study the transmission channel of the positioning signal. Only the modified base
station No. 2 in Figure 17 is opened, and the receiver collects the RF signal at the walking speed
on the 4th floor of the test building. The data collection time is 1.875 s, and analyzes by MATLAB.
The fixed residual carrier frequency and the local code rate that is used in the analysis (multiple analysis
make these two values close to the real values), and the results are shown in Figure 18. The abscissa
denotes the number of integral epoch, and the integral time is 25 ms; the ordinate represents the
local replica code phase with the spacing of 1/4.4 chips, and the color temperature represents the
non-coherent integral value. It can be found that the correlation peak has a uniform distribution on the
time axis, but there is a phenomenon of deep fading and prolonged fading. Therefore, we proposed a
pseudorange measurement scheme that is based on snapshot to solve the problem of channel fading.
As long as it is possible to store a fragment of received signals that is not impaired by the fading
channel, then the accuracy TDOA can be successfully solved.
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Secondly, four modified base stations are opened. We select 10 points to do static positioning
test on each test floor in the testing building, the receiver is placed at each test point for one hour.
The horizontal positioning uses the proposed algorithm and the corresponding positioning algorithms,
and the vertical positioning uses the differential pressure measurement method. Since the system does
a custom coordinate system for indoor positioning, the output positioning results are compared with
the distance between the selected points and the original point of the corresponding floor. The TDOA
method is used for horizontal positioning, and the differential pressure altimetry method is used
for vertical positioning. In indoor positioning, in addition to the system error, multipath and not
line of sight (NLOS) are the main impact of horizontal positioning results. So, except for the above
proposed algorithm, some other adaptive filtering methods are used in the receiver. The calculation of
the final horizontal positioning results mainly includes two steps: initial positioning calculation and
feature point selection [22]. Using the Chan algorithm, two iterations are performed to get the initial
positioning results. Then, the initial positioning error is compensated by the feature points, and the
final positioning results are calculated by the Newton iteration method. Figure 19a shows the TDOAs
for the No. 1 point of the 3rd floor, and the corresponding boxplot is also shown in Figure 19b. It can
be found that the fluctuations of the three TDOAs are within 0.025 chip, and the positioning result
fluctuation caused by TDOA measurement is within 1m. The average positioning errors are shown
in Figure 20, and the standard deviation of the system positioning results is shown in Tables 2 and 3.
It can be seen that the distance between point and point measured is better than 3 m, and the accuracy
of the vertical direction is better than 1 m.

Table 2. Standard deviation of the 3rd floor positioning results.

No. 1 2 3 4 5 6 7 8 9 10

RMS(X) 0.76 0.64 2.92 0.75 0.05 0.65 0.23 0.07 0.15 1.25
RMS(Y) 0.74 1.07 0.72 0.71 0.04 0.39 0.16 0.11 0.48 0.68
RMS(Z) 0.48 0.63 0.31 0.44 0.52 0.43 0.61 0.51 0.62 0.51
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No. 1 2 3 4 5 6 7 8 9 10
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RMS(Y) 0.17 0.94 0.16 1.08 0.42 0.55 0.41 0.97 0.84 0.65
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5. Conclusions

In this paper, a novel fusion signal is designed to improve the positioning accuracy of the CMMB
system, which multiplexes the CMMB and positioning signals in the same frequency band. To reduce
the impairments that are caused by complex fading channel and the limited bandwidth, a pseudorange
measurement scheme that is based on snapshot is proposed. This algorithm extracts the TDOA
estimation from the stored signal sections, and utilizes the Taylor expansion of the autocorrelation
function to improve the TDOA estimation accuracy. The algorithm has been tested by numerical
simulations and real data. The test results show that the received signals are affected by the fading
channel in the actual environment, but the proposed algorithm can significantly reduce the TDOA
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estimation error for base station positioning receivers when compared with other TDOA estimation
algorithms. Finally, the modified CMMB system can achieve meter positioning accuracy.
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