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Abstract: This paper presents a highly sensitive flexural plate-wave (FPW)-based microsystem for
rapid detection of tetrahydrocannabinol (THC) in human urine. First, a circular-type interdigital
transducer (IDT) was integrated with a circular-type silicon-grooved reflective grating structure (RGS)
to reduce insertion loss. Then, with lower insertion loss (−38.758 dB), the FPW device was used to
develop a novel THC biosensor, and the results reveal that this FPW-THC biosensor has low detection
limit (1.5625 ng/mL) and high mass-sensitivity (126.67 cm2/g). Finally, this biosensor was integrated
with field-programmable gate array (FPGA) board and discrete components for prototyping a FPW
readout system, whose maximum error was 12.378 kHz to ensure that the linearity of detection up to
R-square is equal to 0.9992.

Keywords: flexural plate-wave; tetrahydrocannabinol; circular-type interdigital transducer; reflective
grating structure; low insertion loss; field-programmable gate array; readout system

1. Introduction

Drug abuse and addiction have been serious health and social problems in recent years, which also
lead to a high crime rate [1,2]. Among all illegal drugs in Taiwan, marijuana is the most controversial
one, which affects human both mentally and physically [3]. For example, smoking marijuana will
cause increased heartbeat, lowered blood pressure, blunted short-term memories, and lost focus.
Therefore, a reliable, effective, and portable screening microsystem used in early detection will
certainly reduce, or even prevent, drug abuse and addiction. Tetrahydrocannabinol (THC) is the main
ingredient of marijuana, an active chemical in cannabis, and one of the oldest hallucinogenic drugs
ever known. Notably, detecting THC concentration is important as well as carcinoembryonic antigen
(CEA) concentration for diseases or tumors related to lung, liver, stomach, colorectal, and breast, etc.

Urinanalysis is the main drug testing method among which enzyme-linked immunosorbent
assay (ELISA) techniques [4], surface plasmon resonance (SPR) [5], high performance liquid
chromatography (HPLC) [6,7] and gas chromatography-mass spectrometry (GC-MS) [8–10] are
mostly used. Although these four technologies present high sensitivity and accuracy, their expensive
instruments, large dimensions, time-consuming sample pretreatment, and lack of real-time monitoring
functions limit their applications. To solve the above issues, acoustic sensors have been developed
for molecular mass detection in the last two decades [11–15], including thickness shear mode (TSM),
surface acoustic wave (SAW), shear horizontal acoustic plate mode (SH-APM), and flexural plate-wave
(FPW). Table 1 qualitatively summarizes the characteristics of the four sensor families discussed.
For biosensing application in contact with liquid, there are some points to be concerned: (1) high mass
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sensitivity; (2) particle motions are transverse only, or have phase velocities lower than the speed of
sound in the liquid to avoid the energy dissipation; and (3) low operating frequency for easy detecting
circuit design. Among the three points concerned above, the FPW sensor is the most suitable for
biosensing applications since it has high mass sensitivity at low operating frequency Thus, it is used as
the biosensor in this paper.

Table 1. Comparison of four main types of acoustic sensors.

Device Mass Sensitivity
(cm2/g) Motion at Surface Wave Velocity

(Relative to Liquid)
Operating Frequency

(MHz)

TSM 1–10 Transverse Fast 1–10
SAW 100–200 Transverse and normal Fast 30–300
APM 20–40 Transverse Fast 25–200
FPW 100–1000 Transverse and normal Slow 2–20

This paper presents a FPW-based biosensor for rapid detection of THC antigen in urine by
using micro-electromechanical systems (MEMS) and cystamine-glutaraldehyde-based self-assembled
monolayers (SAMs) technologies. To further justify the detection architecture, this biosensor needs
a readout system. Wang et al. reported a high-precision readout system based on FPW sensors,
where the resonant frequency shift is proportional to CEA concentration [16]. However, the input
range of operational amplifier (OPA) requires at least 20 MHz bandwidth, and using too many OPAs
result in higher power consumption and larger layout area. To resolve the bandwidth problem, we used
an amplitude to voltage converter (AVC), and since the output DC voltage of AVC is proportional to the
amplitude of the input signal, the filter of the previous design composed of OPAs is no longer required.

2. Fabrication of FPW-Based THC Biosensor and Design of Readout System Circuit

2.1. Fabrication of FPW-Based THC Biosensor

The main processing steps of the FPW transducer are shown in Figure 1: (a) deposit SiO2/Si3N4

(0.5/0.15 µm), etch Si-groove RGS (0.3 µm), and pattern backside SiO2/Si3N4; (b) deposit and pattern
Cr/Au (0.02/0.15 µm) ground electrode; (c) deposit and pattern ZnO (1 µm); (d) deposit and pattern
Cr/Au (0.02/0.18 µm) IDTs; (e) etch the backside silicon by using 30 wt % KOH at 60 ◦C and
30 wt % KOH at 27 ◦C; (f) the THC antibody has to be coated on the back-side silicon cavity to
catch the THC antigen in urine. For the detailed manufacturing process flows, please refer to [17].

Figure 2 presents the final configurations of the FPW-based biosensor and the integrated cystamine
SAM/glutaraldehyde/THC antibody/THC antigen multilayer. SAMs technology is used in the gold
(Au) surface with cysteine dialdehyde method (cystamine-glutaraldehyde method) for chemical
adsorption, since SAMs have high stability, simple fabrication, and variability of terminal functional
groups, and are widely used for the ideal surface of basic scientific research and biological surface
science. Cystamine is a solution of molecular compounds with a sulphurated group at one end and
with an amine group, NH2, at the other end. The sulphurated group bonds to the Au electrode surface
to form a covalent bond [18–20]. Glutaraldehyde is an organic compound with aldehyde (−CHO) at
the both ends, and its main function is to bridge between cystamine and protein antibodies.
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Figure 1. Main processing steps of the proposed FPW device: (a) deposit SiO2/Si3N4, etch Si-groove 
RGS, and pattern backside SiO2/Si3N4; (b) deposit and pattern Cr/Au ground electrode; (c) deposit and 
pattern ZnO; (d) deposit and pattern Cr/Au IDTs; (e) etch the backside silicon by using 30 wt % KOH 
at 60 °C and 30 wt % KOH at 27 °C; (f) the THC antibody has to be coated on the back-side silicon 
cavity to catch the THC antigen in urine. 

The experimental procedure of the cystamine-glutaraldehyde method is as follows. (1) Immerse 
the wafer in 20 mM cystamine solution for 1 h and clean with DI water. (2) Immerse the wafer in 
glutaraldehyde solution for 1 h and clean with DI water. (3) Titrate 10 μL of THC antibody solution 
onto the upper surface of the Au electrode, which is then exposed to a temperature of 27 °C and a 
relative humidity of 100% RH for 1 h. The wafer was then cleaned with wash buffer, PBS, and DI 
water. (4) Titrated 20 μL of BSA solution on the upper surface of the Au electrode, and after a 30-min 
reaction, the surface is cleaned with wash buffer, PBS, and DI water. (5) Titrated 10 μL of THC urine 
specimens at six different concentrations (1.5625, 3.125, 7.25, 12.5, 25, and 50 ng/mL) on the upper 
surface of the Au electrode for measurement. 

Figure 1. Main processing steps of the proposed FPW device: (a) deposit SiO2/Si3N4, etch Si-groove
RGS, and pattern backside SiO2/Si3N4; (b) deposit and pattern Cr/Au ground electrode; (c) deposit and
pattern ZnO; (d) deposit and pattern Cr/Au IDTs; (e) etch the backside silicon by using 30 wt % KOH
at 60 ◦C and 30 wt % KOH at 27 ◦C; (f) the THC antibody has to be coated on the back-side silicon
cavity to catch the THC antigen in urine.

The experimental procedure of the cystamine-glutaraldehyde method is as follows. (1) Immerse
the wafer in 20 mM cystamine solution for 1 h and clean with DI water. (2) Immerse the wafer in
glutaraldehyde solution for 1 h and clean with DI water. (3) Titrate 10 µL of THC antibody solution
onto the upper surface of the Au electrode, which is then exposed to a temperature of 27 ◦C and
a relative humidity of 100% RH for 1 h. The wafer was then cleaned with wash buffer, PBS, and DI
water. (4) Titrated 20 µL of BSA solution on the upper surface of the Au electrode, and after a 30-min
reaction, the surface is cleaned with wash buffer, PBS, and DI water. (5) Titrated 10 µL of THC urine
specimens at six different concentrations (1.5625, 3.125, 7.25, 12.5, 25, and 50 ng/mL) on the upper
surface of the Au electrode for measurement.
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Figure 2. Schematic diagram for the integration of cystamine SAM, glutaraldehyde, THC antibody, 
and THC antigen in multilayers. 

2.2. FPW Readout System Circuit Design 

The proposed FPW readout system, as shown in Figure 3, is mainly divided into two parts: the 
sensor and the measurement circuit. The measurement circuit was composed of a scanning signal 
generator, and control circuit (FPGA), AVC, gain stage, and peak detector (power detector). Note that 
the scanning signal generator and control circuit were implemented by FPGA to ensure reliability. 
The scanning signal generator generated sinusoidal waves with various frequency, which was used 
as the testing resonance frequency. Featured with that of the input signal and with the resonance 
frequency, the FPW sensor generated a corresponding output with the highest amplitude. The 
amplitude to voltage converter (AVC) then transformed AC signals into DC voltages, Vp and Vn. The 

Figure 2. Schematic diagram for the integration of cystamine SAM, glutaraldehyde, THC antibody,
and THC antigen in multilayers.

2.2. FPW Readout System Circuit Design

The proposed FPW readout system, as shown in Figure 3, is mainly divided into two parts:
the sensor and the measurement circuit. The measurement circuit was composed of a scanning signal
generator, and control circuit (FPGA), AVC, gain stage, and peak detector (power detector). Note that
the scanning signal generator and control circuit were implemented by FPGA to ensure reliability.
The scanning signal generator generated sinusoidal waves with various frequency, which was used as
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the testing resonance frequency. Featured with that of the input signal and with the resonance frequency,
the FPW sensor generated a corresponding output with the highest amplitude. The amplitude
to voltage converter (AVC) then transformed AC signals into DC voltages, Vp and Vn. The DC
voltages were enlarged in gain stage, and a peak detector [21–25] monitored the output DC voltage
Vg, where Vflag was generated to control circuit when the maximum was detected. Note that all
the mentioned procedures were calibrated in test cycles. When the FPW sensor detected different
concentrations of marijuana, the corresponding Vin(t) with different frequencies was also detected
in the following test cycles. Finally, the control circuit calculated the different resonant frequencies
through two test cycles.

The schematic of AVC, as shown in Figure 4a, has a large capacitor C101 filtering out the DC
component of Vin(t). Vbias is used to bias M101 and M102 into saturation region, since Vin(t) is a relatively
small signal. L101 is an inductor to isolate AC signal ripples coupled from the upper circuit. Note that
the combination of R1 and C102, and R2 and C103 act as a low pass filter for DC voltages, Vn and Vp,
respectively, where Vp is a constant voltage level and Vn is a voltage level corresponding to input
signal amplitude by contrast. Gain stage comprises two circuits, namely, OPA-based subtractor and
OPA-based amplifier. The subtractor generates the difference, Vg, between Vn and Vp, while the
amplifier enlarges Vg which is then coupled to the peak detector.

Figure 4b presents the schematic of the peak detector composed of an OPA, a high skew inverter,
a capacitor, and two transistors. When Vg is larger than Vpos, Vopaout turns on M305 to charge C306.
However, charging C306 raises the voltage level of Vpos and leads to a negative feedback mechanism.
Once if Vg is smaller than Vpos, Vopaout is pulled up toward VDD to pull down Vflag. Therefore, a new
peak voltage is detected. Note that M306 is used to reset the voltage level of C306 at the beginning of
any detection.
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Figure 3. Block diagram of the FPW readout system. Figure 3. Block diagram of the FPW readout system.
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Figure 4. Schematic of (a) amplitude-to-voltage converter (AVC) and (b) peak detector. 

2.3. Preparation of the THC Urine Specimens 

This study uses THC urine specimen which was prepared by the following procedures. First, 
we put 100 μL of THC stock solution (at 100 ng/mL concentration) into a 1.7 mL microcentrifuge tube, 
and then added 100 μL of negative urine solution into the tube. Finally, we mixed the urine and the 
THC solution well to prepare 50 ng/mL THC urine specimens for experiment. We also used the serial 
dilution to prepare THC urine specimens of 25, 12.5, 7.25, 3.125, and 1.5625 ng/mL concentrations. 

3. Experimental Results and Analysis 

3.1. Characterization of the Proposed FPW-Based THC Biosensor 

A commercial Cascade RHM-06/V probe station and Agilent E5074 (Beaverton, OR, USA) 
network analyzer were used to measure the center frequency of the developed FPW device at room 
temperature. Two Cascade coplanar 150 ground–signal–ground (GSG) input probes were connected 
to the input and output IDTs of the FPW devices. As shown in Figure 5, the circular-type FPW devices 
have low insertion loss (−38.758 dB), low center frequency (25.06 MHz), and their signal-to-noise 
ratios are higher than those of conventional FPW devices. 
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2.3. Preparation of the THC Urine Specimens

This study uses THC urine specimen which was prepared by the following procedures. First, we put
100 µL of THC stock solution (at 100 ng/mL concentration) into a 1.7 mL microcentrifuge tube, and then
added 100 µL of negative urine solution into the tube. Finally, we mixed the urine and the THC solution
well to prepare 50 ng/mL THC urine specimens for experiment. We also used the serial dilution to
prepare THC urine specimens of 25, 12.5, 7.25, 3.125, and 1.5625 ng/mL concentrations.

3. Experimental Results and Analysis

3.1. Characterization of the Proposed FPW-Based THC Biosensor

A commercial Cascade RHM-06/V probe station and Agilent E5074 (Beaverton, OR, USA) network
analyzer were used to measure the center frequency of the developed FPW device at room temperature.
Two Cascade coplanar 150 ground–signal–ground (GSG) input probes were connected to the input
and output IDTs of the FPW devices. As shown in Figure 5, the circular-type FPW devices have low
insertion loss (−38.758 dB), low center frequency (25.06 MHz), and their signal-to-noise ratios are
higher than those of conventional FPW devices.
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The solid-state mass-sensitivity of the FPW devices was also investigated. Five different thicknesses
of Al thin-film (from 1000 to 5000 Å and the thickness of pitch is 1000 Å) were deposited onto the surface
of backside silicon to measure the changes of frequency. As shown in Figure 6, given the five different
Al mass (from 27 to 135 µg/cm2 and each interval is 27 µg/cm2), the frequency shift of the circular
FPW device is 39.33, 75.33, 95.0, 132.0, and 183.68 kHz, respectively. According to the reference [13],
the mass loading of the floating thin plate, which causes change in resonant frequency—where f0

denotes the center frequency of operation, ∆ f denotes the change of the resonant frequency due to
a change in mass per unit area (∆m), and Sm is the mass sensitivity of the FPW device—is given by
the equation

∆ f
f0

= Sm∆m

The mass-sensitivity of the proposed FPW devices of circular IDTs/RGS are 126.67 cm2/g,
and thus have the same high sensing linearity (R-square is 0.9579), which is beneficial to develop its
associate readout circuit.
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Figure 6. The frequency shifts of the FPW device with five different Al mass loadings.

Table 2 is the comparison between the four sensing characteristics (detection time, limit of
detection, linear range, testing equipment size) in the optimum compositions and those in previous
studies [4,7,26]. Although the prior biosensing system has a lower limit of detection, the implemented
FPW-based THC biosensing system presents the fastest response time, the widest linear range and
the smallest testing system size. Therefore, the proposed biosensing system is more reliable, effective,
portable, and suitable for early detection of THC.

Table 2. Comparison of this research with the previous works of THC biosensor.

References This Work [26] [7] [27]

Technology FPW ELISA HPLC GC/MS
Year 2017 2017 2015 2014

Detection time <10 min <2 h >20 min >1 h
Limit of detection 1.5625 ng/mL 0.1 ng/mL 10 ng/mL 0.1 ng/mg

Linear range 1.5625–50 ng/mL 0.05–100 ng/mL 10–104 ng/mL 0.16–2.3 ng/mg
Testing equipment size Portable Non-portable Massive equipment Massive equipment
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3.2. Measurement of FPW Readout System Prototype

The FPW readout system prototype, as shown in Figure 7, is composed of a FPGA (control circuit
and scanning signal generator), FPW sensor, power detector with discrete components (AVC, gain stage,
and peak detector), and ARM board for displaying results. To increase the reliability, decoupling
capacitors were coupled to restrain the noise; Li-ion batteries were also used in the power supply.

The output result of the FPW readout system prototype is shown in Figure 8 and Table 3,
where six different concentration of THC urine specimens—e.g., 0, 1.5625, 3.125, 7.25, 12.5, 25,
and 50 ng/mL—are measured. The y-axis is the measured average frequency shift (without the worst
deviation data) of each concentration when the system is steady. The maximum error is 0.012 MHz and
the linearity R-square is equal to 0.9992. The negative urine (without any protein or other biomolecules)
is used as the negative control. As shown in Figure 9, the frequency shift is zero when the negative
urine is measured. In additional, six different concentration of prostate specific antigen (PSA) urine are
also measured in this paper, there are no frequency shift at 1.5625, 3.125, 25, and 50 ng/mL, and the
frequency shifts are only 20–30 kHz at 7.25 and 12.5 ng/mL (which can be considered measurement
errors). Notably, before every concentration is being tested, the FPW sensor will be rinsed first,
and held until it dries out. Then the sensor is coated with THC antibody on the back-side silicon cavity
again to ensure the precision of measurements.

The comparison between this work and the previous works [16,28] is shown in Table 4, where this
work has the least error. Most important of all, only two OPAs (one in the gain stage and the other in the
peak detector) are used, which effectively reduce the complexity in designing high bandwidth OPAs.
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Table 3. The frequency shifts of the FPW-based THC biosensors are measured under six concentrations.

THC Concentration (ng/mL) Frequency Shift (kHz)

1.5625 28
3.125 55
7.25 105
12.5 183
25 363
50 686

Table 4. Comparison with the previous works.

References [16] [28] This Work

Year 2013 2014 2017
Technology FPGA & chip FPGA & chip FPGA & discrete components

Linearity N/A 0.9772 0.9992
Maximum error N/A 0.12 MHz 0.012 MHz
Number of OPA 4 (at least) 4 (at least) 2
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