
sensors

Article

Robust Vehicle Detection in Aerial Images Based on
Cascaded Convolutional Neural Networks

Jiandan Zhong 1,2,3,*, Tao Lei 1 and Guangle Yao 1,2,3

1 Institute of Optics and Electronics, Chinese Academy of Sciences, No. 1, Guangdian Avenue,
Chengdu 610209, China; taoleiyan@ioe.ac.cn (T.L.); guangle.yao@std.uestc.edu.cn (G.Y.)

2 School of Optoelectronic Information, University of Electronic Science and Technology of China, No. 4,
Section 2, North Jianshe Road, Chengdu 610054, China

3 University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100039, China
* Correspondence: jdzhong@std.uestc.edu.cn; Tel.: +86-138-8049-5638

Received: 13 October 2017; Accepted: 22 November 2017; Published: 24 November 2017

Abstract: Vehicle detection in aerial images is an important and challenging task. Traditionally,
many target detection models based on sliding-window fashion were developed and achieved
acceptable performance, but these models are time-consuming in the detection phase. Recently, with
the great success of convolutional neural networks (CNNs) in computer vision, many state-of-the-art
detectors have been designed based on deep CNNs. However, these CNN-based detectors are
inefficient when applied in aerial image data due to the fact that the existing CNN-based models
struggle with small-size object detection and precise localization. To improve the detection accuracy
without decreasing speed, we propose a CNN-based detection model combining two independent
convolutional neural networks, where the first network is applied to generate a set of vehicle-like
regions from multi-feature maps of different hierarchies and scales. Because the multi-feature maps
combine the advantage of the deep and shallow convolutional layer, the first network performs well
on locating the small targets in aerial image data. Then, the generated candidate regions are fed into
the second network for feature extraction and decision making. Comprehensive experiments are
conducted on the Vehicle Detection in Aerial Imagery (VEDAI) dataset and Munich vehicle dataset.
The proposed cascaded detection model yields high performance, not only in detection accuracy but
also in detection speed.

Keywords: vehicle detection; convolutional neural network; aerial image; deep learning

1. Introduction

Vehicle detection in aerial images is an important task in various fields, such as: remote sensing,
intelligent transportation and military reconnaissance. With the great development of Unmanned
Aerial Vehicle (UAV) technologies, aerial images are captured conveniently and flexibly in this way.
For the growing aerial imagery data, vehicle detection has become a challenge, attracting extensive
attention recently. As a fundamental task in computer vision, vehicle detection is widely studied in
some practical applications, such as traffic monitoring [1,2] and safety assistant driving [3,4], but for
aerial images, it is still a tough problem due to the obscurity, relatively small size of the targets and
cluttered backgrounds. Additionally, other objects such as big containers and road marks always show
a similar appearance to vehicles, which will cause false detection or accuracy loss. Furthermore, in a
detection model, not only detection accuracy is demanded, but also good detection speed.

In last decade, target detection technology has developed greatly, and can be roughly divided
into three stages. In the first stage, the combination of hand-crafted features and discriminative
classifiers were utilized to detect targets. On the one hand, some classical method like Histogram
of Oriented Gradient (HOG) [5] and Scale-Invariant Feature Transform (SIFT) [6] were designed for

Sensors 2017, 17, 2720; doi:10.3390/s17122720 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17122720
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 2720 2 of 18

feature extraction. On the other hand, the discriminative classifiers like Support Vector Machine
(SVM) [7] and Ada-Boost [8] were adopted for classification. Felzenszwalb et al. [9] proposed a
deformable parts model (DPM), which employs various trained components to detect targets from an
image pyramid in sliding-window fashion. Although DPM is an excellent detector, the sliding-window
strategy is time consuming in the detection phase. In the second stage, the sliding-window method
was replaced with a region proposal way [10–12]. It means that the detectors don’t need to detect the
targets from the image pyramid, but from thousands of candidate target-like regions. This is a very
efficient way to reduce the detection time. For example, the candidate regions of an image (of size
400 × 500) is about 103, which is much less than the search space (about 104~105) of the image pyramid
with a sliding-window way. The third stage started in 2012, when Krizhevsky et al. [13] applied the
convolutional neural networks (CNNs) method in an image classification challenge (ILSVRC2012)
and obtained striking results [14], which turned CNN-based methods into the mainstream in the
field of computer vision. Recently, Girshick et al. [15] and Sermanet et al. [16] proposed efficient
detection models based on CNNs. Especially, the method described in [15], called Regions with CNN
(R-CNN), has become the baseline for the detection framework. The workflow of R-CNN is mainly
divided into two steps: (a) it employs the region proposal method discussed in [10] to generate a
set of candidate regions, and then (b) these regions are warped into a fixed size and fed into a CNN
to extract the deep features. From the extensive experimental results, the CNN features show more
discriminative capability than the traditional hand-crafted features. It is noteworthy that the region
proposal method [10] always takes several seconds on an image of medium size (e.g., 500 × 300 pixels),
and the CNN features in the different regions would be extracted repeatedly. Then, improved methods
named SPP-Net [17] and Fast R-CNN [18] were proposed to accelerate the detection speed. In Fast
R-CNN, a region of interesting (ROI) strategy was used to deal with the problem of repeated CNN
feature extraction, which speeds up the CNN feature extraction procedure significantly. Another main
bottleneck of R-CNN is the computational costs in the region proposal procedure. Ren et al. [19]
proposed a CNN-based architecture called Region Proposal Network (RPN) to replace the method
described in [10]. They combined RPN with Fast R-CNN and trained a unified detection model,
which achieves state-of-the-art performance on PASCAL 2007/2012 and MS COCO datasets [20].
The detection speed reached 5 fps with a VGG-16 network [21].

Although the works [17–19] show promising results in target detection, they are not suitable
for aerial images. The first reason is that the vehicles in the aerial image are relatively small in size
(the average size of a vehicle is 40 × 20 pixels), and due to the coarseness of the feature map (output
of the deep convolutional layer of the CNN), RPN has the poor localization performance for small
targets. Moreover, the detection models [17–19] are designed for multi-category detection, but for
the specific category “vehicle”, they perform poorly due to the false positives. The second reason
is that the vehicles always appear as vehicle roofs in aerial images, which has similarity with other
background targets. This would cause accuracy loss without specific training. Furthermore, unlike the
large scale public datasets (such as: ImageNet [14] and MS COCO [20]) comprising millions of images,
the training data of available annotated aerial image datasets (for vehicles) is insufficient.

In this paper, we propose a cascaded CNN model to detect vehicles in aerial imagery data, which
maintains high detection accuracy and fast speed. The framework of our model, shown in Figure 1,
comprises two CNN-based networks. The first network is called the vehicle-regions proposal network
(VPN) which aims to generate the vehicle-like regions. The second part is the vehicle detection network
(VDN) which performs decision making for the regions generated by the first network. The workflow
of the detection phase is divided into three steps: (1) an input image is put into the VPN to generate
candidate regions, (2) the generated regions incorporating the input image are fed into VDN to extract
each region’s feature and predict the confidence score, (3) the regions with high score (greater than
a threshold) are output as detections. Compared with the work [19], our model has three main
differences: (1) unlike the work [19] that trains a unified network, we train two independent networks.
It means that we do not share the convolutional layers of two networks, which avoids re-training

Sensors 2017, 17, 2720 3 of 18

the unshared layers of two networks; (2) the feature maps output from the deep convolutional layers
(of CNN) can detect the target with high recall but poor localization performance, while the feature
map from the shallow layers have better localization performance but obtain a reduced recall [22].
To take advantage of both, we combine the feature maps of the shallow layers and deep layers together
to generate the vehicle-like regions in various scales and hierarchies. In this way, our method obtains
finer and more accurate vehicle-like regions than RPN; (3) the VDN is trained as a specific category
detector which is applied to detecting multi-type vehicles.

Sensors 2017, 17, 2720 3 of 17

layers of two networks, which avoids re-training the unshared layers of two networks; (2) the
feature maps output from the deep convolutional layers (of CNN) can detect the target with high
recall but poor localization performance, while the feature map from the shallow layers have better
localization performance but obtain a reduced recall [22]. To take advantage of both, we combine
the feature maps of the shallow layers and deep layers together to generate the vehicle-like regions
in various scales and hierarchies. In this way, our method obtains finer and more accurate
vehicle-like regions than RPN; (3) the VDN is trained as a specific category detector which is
applied to detecting multi-type vehicles.

Additionally, the original annotations of aerial image data are not suitable for VDN due to the
fact that the bounding boxes of targets are annotated with various orientations. In this paper, the
target bounding box is transformed into a vertical or horizontal format. To avoid overfitting in such
a deep network, the training data are augmented by flipping and rotating operations.

Figure 1. Framework of the proposed model.

The contributions of this paper are:

 A fast and accurate detection model is designed for vehicle detection in aerial images, which is
different from the traditional sliding-window-based model and the recent CNN-based model.
Our model is a cascaded architecture which incorporates two independent CNNs: the first is
employed to generate vehicle-like regions, and the second is a specific-category detector which
makes a final decision.

 The VPN is proposed to extract vehicle-like regions. Unlike the RPN that uses only one feature
map, the proposed VPN combines multi-feature maps of different size and hierarchy for
generating better vehicle-like regions. Actually, the proposed VPN takes effect on other
categories as well, especially for the small targets in aerial image.

 A category-specific detector named VDN is developed, which can detect the various types of
vehicles in aerial images. Additionally, unlike the Faster R-CNN which employs two-stage
alternative training to share some convolutional layers, our VDN and VPN are trained
independently once to increase training efficiency. This also avoids re-training the unshared
layers that exist in the two networks. The VDN can be easily transferred to other target
detection tasks.

Figure 1. Framework of the proposed model.

Additionally, the original annotations of aerial image data are not suitable for VDN due to the fact
that the bounding boxes of targets are annotated with various orientations. In this paper, the target
bounding box is transformed into a vertical or horizontal format. To avoid overfitting in such a deep
network, the training data are augmented by flipping and rotating operations.

The contributions of this paper are:

• A fast and accurate detection model is designed for vehicle detection in aerial images, which is
different from the traditional sliding-window-based model and the recent CNN-based model.
Our model is a cascaded architecture which incorporates two independent CNNs: the first is
employed to generate vehicle-like regions, and the second is a specific-category detector which
makes a final decision.

• The VPN is proposed to extract vehicle-like regions. Unlike the RPN that uses only one
feature map, the proposed VPN combines multi-feature maps of different size and hierarchy for
generating better vehicle-like regions. Actually, the proposed VPN takes effect on other categories
as well, especially for the small targets in aerial image.

• A category-specific detector named VDN is developed, which can detect the various types of
vehicles in aerial images. Additionally, unlike the Faster R-CNN which employs two-stage
alternative training to share some convolutional layers, our VDN and VPN are trained
independently once to increase training efficiency. This also avoids re-training the unshared layers
that exist in the two networks. The VDN can be easily transferred to other target detection tasks.

Sensors 2017, 17, 2720 4 of 18

• An augmented dataset is built for vehicle detection in aerial images. To make the training data fit
for our CNN-based model, we re-annotated the available public dataset. To avoid the overfitting,
we performed data augmentation in two operations.

The rest of this paper is organized as follows: in Section 2, we describe the related work about the
region proposal method, CNN-based detectors and the related detectors designed for aerial image
data. The preliminary theories and analysis of data augmentation, VPN and VDN are introduced in
Section 3. In Section 4, we show the evaluation results on the VEADI and Munich vehicle datasets.
We conclude this paper and propose some future work in Section 5.

2. Related Work

In this section we review the recent methodologies related to target detection. Moreover, some
recent vehicle detection methods are introduced as well.

2.1. Region Proposal Method

In many target detection approaches a small number of candidate regions which cover all the
objects in an image is proposed, and extensive studies on region proposal methods can be found
in [10–12,19,23–28]. Carreira et al. [23] proposed a rough segmentation method to generate candidate
regions, which has been shown to be effective. Promising results were obtained by the method of
estimating the objectness score on an image [11,12,24]. Uijlings et al. [10] proposed the Selective Search
(SS) way, which generates regions with better objectness based on its hierarchical segmentation and
grouping strategies. Additionally, the works [29–32] adopted the method of super-pixels segmentation
to generate image regions. In particular, Achanta et al. [29] proposed a simple and efficient method
called simple linear iterative clustering (SLIC), which performs well in image segmentation. However,
the candidate regions generated by a segmentation method cannot be directly fed into CNN for feature
extraction because the segmented regions are polygonal regions which should be converted into
rectangles first. Recently, the use of CNN-based methods to generate the candidate regions has become
a trend. Deepbox [28] trained a slight CNN model and learned to re-rank candidate regions generated
by [24]. Ren et al. employed RPN [19] and Fast R-CNN [18] to train a unified detection model. Through
this two-stage alternative training, this model yields state-of-the-art performance.

2.2. Target Detection with the CNN-Based Models

By virtue of its powerful feature extraction capability, CNN has been widely used in target
detection. References [15,16,33] are the pioneering works of employing CNN to deal with target
detection tasks. Although these works perform well in detection accuracy, they are time consuming
in feature extraction. Then, shared convolution computation has attracted more attention, and the
methods in references [17,18,34] were proposed to deal with this problem. The SPP-Net [17] and Fast
R-CNN [18] proposed further improvements on [15], which showed compelling accuracy and speed.
To obtain more efficient and accurate localization of targets, more and more works have employed
CNN-based models to generate proposal regions. RPN [19] and MultiBox [35] are two representative
works. Moreover, Redmon et al. [36] presented a proposal-free framework named You Only Look
Once (YOLO), which directly predicts bounding boxes and evaluate probabilities without proposing
candidate regions. In practice, the region-based models like [19] outperform YOLO with respect to the
detection accuracy.

2.3. Vehicle Detection in Aerial Imagery

Detecting vehicles in aerial imagery data is an interesting topic nowadays. Xu et al. [37]
proposed a hybrid method which adopted the traditional hand-crafted features (HOG) and linear
SVM. For vehicles on a highway, this method yields high performance, however, this method uses
a lot of road-line information as auxiliary. Nassim et al. [38] proposed a deep learning method to

Sensors 2017, 17, 2720 5 of 18

detect vehicles in the aerial images captured by UAVs, where they first segment the regions of interest
in the image and then feed them into a CNN model for feature extraction. The final decision was
made by a SVM. Qu et al. [39] combined the region proposal method in [11] with SPP-Net [17] to
build a vehicle detection model. The works [38,39] both employed the CNN as a feature extractor.
Tang et al. [40] proposed the Hyper Region Proposal Network (HRPN) to localize the vehicle-like
regions, and utilized hard negative examples to improve the detection accuracy. Deng et al. [41]
modified RPN and Fast R-CNN to build a unified CNN-based model for vehicle detection. In fact,
the works [40,41] concatenated multiple convolution layers into one hyper-feature map, but the
multi-hierarchy and scale information concepts were not adopted.

3. Overview of the Proposed Model

The proposed vehicle detection model (shown in Figure 1) consists of two cascaded CNNs: a
vehicle-regions proposal network (VPN) and a vehicle detection network (VDN), which are trained
independently during the training phase. The VPN aims to generate candidate vehicle-like regions
accurately at first. Afterwards, these vehicle-like regions are fed into the VDN to make inference.
Moreover, to avoid overfitting, we augment the original dataset artificially.

3.1. Training Data Augmentation

The VEDAI [42] and Munich vehicle datasets [43] are adopt to evaluate the performance of
detection model. The VEDAI dataset includes about 1240 images with two kinds of resolutions:
1024 × 1024 and 512 × 512 pixels. The training data is relatively small, which is just applicable for
many situations (such as vehicle detection in urban, country road, crop and residential areas) and may
not be able to meet the needs of a larger range practical application (e.g., to detect the vehicles are
partially covered by vehicle-like regions with trees or artificial structures). Therefore, the experimental
design of this study makes it difficult to comment on the feasibility of large-scale implementation.
Additionally, it is very inefficient to directly use CNN-based models for target detection in the image
with such a large scale of resolution (5616 × 3744 pixels). For this reason an input image will be
resized by the designed CNN model (the shorter side of the image will be resized to 600 pixels for
convenience). For large size images, this will cause an accuracy loss. Hence, the images in Munich
vehicle dataset are cropped to a size of 702 × 468 pixels for training and testing.

Sensors 2017, 17, 2720 5 of 17

interest in the image and then feed them into a CNN model for feature extraction. The final decision
was made by a SVM. Qu et al. [39] combined the region proposal method in [11] with SPP-Net [17]
to build a vehicle detection model. The works [38,39] both employed the CNN as a feature extractor.
Tang et al. [40] proposed the Hyper Region Proposal Network (HRPN) to localize the vehicle-like
regions, and utilized hard negative examples to improve the detection accuracy.
Deng et al., [41] modified RPN and Fast R-CNN to build a unified CNN-based model for vehicle
detection. In fact, the works [40,41] concatenated multiple convolution layers into one hyper-feature
map, but the multi-hierarchy and scale information concepts were not adopted.

3. Overview of the Proposed Model

The proposed vehicle detection model (shown in Figure 1) consists of two cascaded CNNs: a
vehicle-regions proposal network (VPN) and a vehicle detection network (VDN), which are trained
independently during the training phase. The VPN aims to generate candidate vehicle-like regions
accurately at first. Afterwards, these vehicle-like regions are fed into the VDN to make inference.
Moreover, to avoid overfitting, we augment the original dataset artificially.

3.1. Training Data Augmentation

The VEDAI [42] and Munich vehicle datasets [43] are adopt to evaluate the performance of
detection model. The VEDAI dataset includes about 1240 images with two kinds of resolutions:
1024 × 1024 and 512 × 512 pixels. The training data is relatively small, which is just applicable for
many situations (such as vehicle detection in urban, country road, crop and residential areas) and
may not be able to meet the needs of a larger range practical application (e.g., to detect the vehicles
are partially covered by vehicle-like regions with trees or artificial structures). Therefore, the
experimental design of this study makes it difficult to comment on the feasibility of large-scale
implementation. Additionally, it is very inefficient to directly use CNN-based models for target
detection in the image with such a large scale of resolution (5616 × 3744 pixels). For this reason an
input image will be resized by the designed CNN model (the shorter side of the image will be
resized to 600 pixels for convenience). For large size images, this will cause an accuracy loss. Hence,
the images in Munich vehicle dataset are cropped to a size of 702 × 468 pixels for training and
testing.

(a)

(b)

Figure 2. (a) Training images are rotated with four angles in clockwise; (b) The flip operation of the
training images.

Figure 2. (a) Training images are rotated with four angles in clockwise; (b) The flip operation of the
training images.

Sensors 2017, 17, 2720 6 of 18

Additionally, due to the lack of training data, we augment the training data by two operations:
rotation and flip (described in Figure 2). For each training image, we rotate it with four angles
(0◦, 90◦, 180◦ and 270◦) in a clockwise direction. Further, we flip the rotated images as well (shown
in Figure 2b). Another problem is that the original annotation information of these datasets is not
suitable for CNN-based models, because the bounding boxes of targets are rotated with various angles.
We adjust the coordinates of bounding box according to the steps below:

(1) Obtaining the original four coordinates of bounding box: [xlt, ylt], [xrt, yrt], [xrb, yrb] and [xlb, ylb];
(2) Calculating the height: h = max(ylt, yrt, yrb, ylb) − min(ylt, yrt, yrb, ylb);
(3) Calculating the width: w = max(xlt, xrt, xrb, xlb) − min(xlt, xrt, xrb, xlb);
(4) Updating the left-top coordinate as [min(xlt, xrt, xrb, xlb), min(ylt, yrt, yrb, ylb)];
(5) Using the height, width and left-top coordinate to update other coordinates.

Figure 3 gives examples of the original annotation and the updated annotation.

Sensors 2017, 17, 2720 6 of 17

Additionally, due to the lack of training data, we augment the training data by two operations:
rotation and flip (described in Figure 2). For each training image, we rotate it with four angles (0°,
90°, 180°and 270°) in a clockwise direction. Further, we flip the rotated images as well (shown in
Figure 2b). Another problem is that the original annotation information of these datasets is not
suitable for CNN-based models, because the bounding boxes of targets are rotated with various
angles. We adjust the coordinates of bounding box according to the steps below:

(1) Obtaining the original four coordinates of bounding box: [xlt, ylt], [xrt, yrt], [xrb, yrb] and [xlb, ylb];
(2) Calculating the height: h = max(ylt, yrt, yrb, ylb) − min(ylt, yrt, yrb, ylb);
(3) Calculating the width: w = max(xlt, xrt, xrb, xlb) − min(xlt, xrt, xrb, xlb);
(4) Updating the left-top coordinate as [min(xlt, xrt, xrb, xlb), min(ylt, yrt, yrb, ylb)];
(5) Using the height, width and left-top coordinate to update other coordinates.

Figure 3 gives examples of the original annotation and the updated annotation.

Figure 3. Examples of the original and updated annotations.

3.2. Vehicle-Regions Proposal Network

The proposed VPN takes an image as input and outputs a set of vehicle-like regions with the
corresponding objectness scores. RPN [19] adopts the feature map of the deep convolutional layer
to generate candidate regions. To improve this framework, references [41,44] concatenated multiple
convolutional layers and built a hyper-feature map. Enlightened by these works [19,41,44], we
combine deep and shallow convolutional layers to construct a hierarchical structure which
comprises coarse and fine feature maps with various sizes and scales. In our VPN, the region
proposals are generated from each feature map. As a result, more accurate regions are proposed
than by using the methods of [19,41,44], which adopt only one feature map. The detailed
description of VPN is provided below.

3.2.1. Overview of the Architecture

The architecture of VPN is based on the VGG-16 model [21], which is a deep CNN including 13
convolutional layers and three fully connected layers (shown in Figure 4a). The original VGG-16 is
an excellent model that is usually applied in image classification. Firstly, it generates a deep feature
map by 13 convolutional layers. Then, the deep feature map is fed into the three fully connected
layers to form a 4096-d (dimension) feature vector. Lastly, the feature vector is input into a soft-max
for classification. However, VPN is used to deal with region-proposal task, which aims to not only
predict the position of candidate regions, but also evaluate their objectness scores. Therefore, we
reserve the 13 convolutional layers to generate multi feature maps, and make further modifications.
Specifically, we modify this model by two strategies: (1) deleting the last three fully connected
layers (from fc_6 to fc_8) and Soft-Max layer; (2) adding two small networks behind conv4_3 and
conv5_3 respectively to generate candidate regions. The outputs of each small network are fed into
two sibling fully connected layers for predicting bounding box and evaluating objectness score.
Figure 4b illustrates the modifications and process of VPN.

Figure 3. Examples of the original and updated annotations.

3.2. Vehicle-Regions Proposal Network

The proposed VPN takes an image as input and outputs a set of vehicle-like regions with the
corresponding objectness scores. RPN [19] adopts the feature map of the deep convolutional layer
to generate candidate regions. To improve this framework, references [41,44] concatenated multiple
convolutional layers and built a hyper-feature map. Enlightened by these works [19,41,44], we combine
deep and shallow convolutional layers to construct a hierarchical structure which comprises coarse
and fine feature maps with various sizes and scales. In our VPN, the region proposals are generated
from each feature map. As a result, more accurate regions are proposed than by using the methods
of [19,41,44], which adopt only one feature map. The detailed description of VPN is provided below.

3.2.1. Overview of the Architecture

The architecture of VPN is based on the VGG-16 model [21], which is a deep CNN including
13 convolutional layers and three fully connected layers (shown in Figure 4a). The original VGG-16 is
an excellent model that is usually applied in image classification. Firstly, it generates a deep feature
map by 13 convolutional layers. Then, the deep feature map is fed into the three fully connected layers
to form a 4096-d (dimension) feature vector. Lastly, the feature vector is input into a soft-max for
classification. However, VPN is used to deal with region-proposal task, which aims to not only predict
the position of candidate regions, but also evaluate their objectness scores. Therefore, we reserve the
13 convolutional layers to generate multi feature maps, and make further modifications. Specifically,
we modify this model by two strategies: (1) deleting the last three fully connected layers (from fc_6 to
fc_8) and Soft-Max layer; (2) adding two small networks behind conv4_3 and conv5_3 respectively
to generate candidate regions. The outputs of each small network are fed into two sibling fully

Sensors 2017, 17, 2720 7 of 18

connected layers for predicting bounding box and evaluating objectness score. Figure 4b illustrates the
modifications and process of VPN.

Sensors 2017, 17, 2720 7 of 17

(a)

(b)

Figure 4. (a) The architecture of VGG-16 model; (b) The architecture of VPN.

Detailed descriptions of each layer are presented below:

Input data: this model requires RGB images (of any size) as the input.
Conv1 layers: Conv1 layers include two convolution layers (conv1_1 and conv1_2), and the

rectified linear units are configured after each convolutional layer. 64 kernels of sizes 3 × 3 are
adopted for each layer.

Conv2 layers: configurations of Conv2 layers are almost as same as Conv1 layers’. The only
difference is that Conv2 layers adopt 128 kernels of sizes 3 × 3.

Conv3, Conv4 and Conv5 layers include three convolutional layers, and the rectified linear
units are configured after each convolutional layer. 256, 512 and 512 kernels (of size 3 × 3) are
adopted respectively.

Pooling layers: this model adopts four pooling layers which are placed between the
aforementioned Conv layers. The pooling layers are configured as max pooling with kernel of size 2 × 2.

Reg_Conv_1 layer and Reg_Conv_2 take conv4_3 and conv5_3 as the input respectively. Then,
512 kernels (of size 3 × 3) are adopted to generate two feature maps with different size.

Feature map: the hierarchical feature map architecture combines the output of the shallow
convolutional layer and the deep convolutional layer. Because the shallower layers are better for
localization and deeper layers are better for classification, the hierarchical feature map architecture
integrates the advantages of both. Especially for small vehicles in aerial images, it shows better
performance. In the hierarchical feature map architecture, a window of size 3 × 3 × 512 is slid to
generate the vehicle-like regions. At each position, a 512-d (dimension) feature is extracted and fed
into two sibling fully connected layers. The pred_bbox layer is used to predict the bounding box and
the pred_score layer outputs a discrete probability distribution over two categories (vehicle-like
region or background).

Following the anchor scheme in [19], this network predicts multiple regions associated with
the different aspect ratios and scales at each sliding-window position. According to the average size
of a vehicle (which is about 20 × 40 pixels), three aspect ratios (1:2, 1:1, 2:1) and four scales (162, 322,
482, 642) are set for vehicle-like regions. Hence, each sliding-window position generates 12 types of
regions. We assign a positive label to the regions which have higher intersection-over-union (IoU)

Figure 4. (a) The architecture of VGG-16 model; (b) The architecture of VPN.

Detailed descriptions of each layer are presented below:
Input data: this model requires RGB images (of any size) as the input.
Conv1 layers: Conv1 layers include two convolution layers (conv1_1 and conv1_2), and the

rectified linear units are configured after each convolutional layer. 64 kernels of sizes 3 × 3 are adopted
for each layer.

Conv2 layers: configurations of Conv2 layers are almost as same as Conv1 layers’. The only
difference is that Conv2 layers adopt 128 kernels of sizes 3 × 3.

Conv3, Conv4 and Conv5 layers include three convolutional layers, and the rectified linear
units are configured after each convolutional layer. 256, 512 and 512 kernels (of size 3 × 3) are
adopted respectively.

Pooling layers: this model adopts four pooling layers which are placed between the
aforementioned Conv layers. The pooling layers are configured as max pooling with kernel of size
2 × 2.

Reg_Conv_1 layer and Reg_Conv_2 take conv4_3 and conv5_3 as the input respectively. Then,
512 kernels (of size 3 × 3) are adopted to generate two feature maps with different size.

Feature map: the hierarchical feature map architecture combines the output of the shallow
convolutional layer and the deep convolutional layer. Because the shallower layers are better for
localization and deeper layers are better for classification, the hierarchical feature map architecture
integrates the advantages of both. Especially for small vehicles in aerial images, it shows better
performance. In the hierarchical feature map architecture, a window of size 3 × 3 × 512 is slid to
generate the vehicle-like regions. At each position, a 512-d (dimension) feature is extracted and fed
into two sibling fully connected layers. The pred_bbox layer is used to predict the bounding box and
the pred_score layer outputs a discrete probability distribution over two categories (vehicle-like region
or background).

Sensors 2017, 17, 2720 8 of 18

Following the anchor scheme in [19], this network predicts multiple regions associated with the
different aspect ratios and scales at each sliding-window position. According to the average size of a
vehicle (which is about 20 × 40 pixels), three aspect ratios (1:2, 1:1, 2:1) and four scales (162, 322, 482,
642) are set for vehicle-like regions. Hence, each sliding-window position generates 12 types of regions.
We assign a positive label to the regions which have higher intersection-over-union (IoU) overlap ratio
(which is greater than 0.7) with a ground-truth bounding box. Inversely, we assign a negative label to
the regions which have lower IoU ratio (between 0.1 and 0.3) with ground-truth. The definition of IoU
is seen as below (Equation (1)):

IoUratio =
Areg ∩ Agt

Areg ∪ Agt
(1)

where, Areg and Agt represent the bounding-box area of candidate regions and ground
truth respectively.

3.2.2. Loss Function

A multi-task loss function L (shown in Equation (2)) is employed to jointly train for classification
and bounding-box regression:

L(pt, lt) = Lcls(pt, pg) + λ ∗ pg ∗ Lbr(lt, lg) (2)

For the pred_score layer, pt is the predicted probability of region being an object. The ground-truth
label pg is 1 if the region is positive, and is 0 if the region is negative. Lcls is log loss over two categories
(vehicle-like region and background).

The pred_bbox layer outputs a vector representing the four parameterized coordinates (x, y w, h)
of the predicted bounding box. x, y, w, and h denote the box’s center coordinates and its width and
height. lg and lt represent the ground-truth bounding box and predicted bounding box respectively.
And Lbr adopts smooth L1 loss function [18] defined in Equations (3) and (4). The parameter λ is the
balancing parameter, and it is set to 10:

Lbr(lt, lg) = SL1(lt − lg) (3)

SL1(x) =

{
0.5x2 if|x| < 1
|x| − 0.5 otherwise

}
(4)

3.2.3. Training

The VPN is trained by the method of stochastic gradient descent (SGD) [45]. In the experiments,
we initialize our model by a pre-trained VGG-16 weights which is previously trained on ILSVRC [14].
Because that the weights of new added convolutional layers should be initialized firstly, we
initialize them by zero-mean Gaussian distribution with a 0.01 standard deviation, which is a widely
used initialization way for CNN model in Caffe—deep learning framework [46]. Specifically, the
initializations are configured in the model file (a ‘prototext’ file to describe the structure of the model).
During training, a mini-batch is generated from one image, and it is set to 256. We keep the ratio of
positive and negative examples to 1:1. If there are fewer than 128 positive examples in an image, we
pad the mini-batch with negative ones. After the training process, VPN can generate a set of candidate
regions; actually, there is no need to feed all of the regions to VDN. The works [10–12] have proven
that top 2000 candidate regions almost cover all objects in the images. The RPN performs better than
the traditional works [10] by adopting the top 300 candidate regions. As an improved version of RPN,
the VPN also adopts top 300 highly overlapped candidate regions and feeds them into VDN for the
further inference.

Sensors 2017, 17, 2720 9 of 18

3.3. Vehicle Detection Network

Vehicle detection network takes the generated vehicle-like regions and image as the input and
outputs a set of detections. The details of VDN are described as below.

3.3.1. Overview of the Architecture

The architecture of VDN is also based on the VGG-16 model. Because the sizes and scales of the
candidate regions are different, in order to extract the fixed-length feature vector from each region,
the ROI polling layer [18] and two fully connected layers (fc_6 and fc_7) are adopted. Additionally,
as a detection model, VDN is required to output the vehicle’s bounding box of and evaluate its
confidence score. Two sibling fully connected layers are added behind fc_7 layer. Figure 5 illustrates
the architecture of VDN.

Sensors 2017, 17, 2720 9 of 17

3.3.1. Overview of the Architecture

The architecture of VDN is also based on the VGG-16 model. Because the sizes and scales of
the candidate regions are different, in order to extract the fixed-length feature vector from each
region, the ROI polling layer [18] and two fully connected layers (fc_6 and fc_7) are adopted.
Additionally, as a detection model, VDN is required to output the vehicle’s bounding box of and
evaluate its confidence score. Two sibling fully connected layers are added behind fc_7 layer.
Figure 5 illustrates the architecture of VDN.

Input data: this model requires two kinds of input data. One input is the same RBG image as
the input of VPN. Another input is a set of candidate regions generated by VPN, which are directly
mapped into ROI pooling layer.

Convolutional layers: the convolutional layers from Conv1 to Conv5 take identical settings as VPN.
ROI pooling layer: because the generated vehicle-like regions have various sizes, this layer

extracts a fixed-length feature vector for each vehicle-like region. Specifically, this layer works by
dividing the ROI (region of interest) window into a 6 × 6 grid of sub-windows and then
max-pooling the values in each sub-window into the corresponding output grid cell [18]. Pooling is
applied independently to each feature map channel, as in standard max pooling. The generated
feature is the input of fc_6.

Fc_6 is a fully connected layer that outputs a 4096-d feature vector. Fc_7 takes the same
settings as fc_6 and it is branched into two sibling fully connected layers, named pred_bbox and
pred_score respectively. The pred_bbox layer predicts the bounding box of vehicle, and the output of
pred_score layer is the corresponding confidence score.

Figure 5. The architecture of VDN.

3.3.2. Loss Function and Training

The output of VDN and VPN is similar; therefore, the multi-task loss function L as given by
Equation (2) is adopted to jointly train this network for vehicle classification and bounding-box
regression. Moreover, the pre-trained VGG-16 weights are adopted as well. The training parameters
and settings are similar to VPN.

4. Experiment and Results

We report the experimental results on two benchmark datasets: the VEDAI dataset [42] and the
Munich vehicle dataset [43]. The performance of our detection model is compared with other
methods on two aspects: detection accuracy and detection speed. Detailed evaluation metrics are
described in Section 4.1. All methods in the experiments were programmed based on Matlab 2014a
and Caffe deep learning framework [46]. All experiments were run on a desktop computer
equipped with an Intel Core i7 5930k CPU (6 Core, 3.5 GHz), 64 GB memory, a NVIDIA Titan X
GPU (with 12 GB video memory) and Ubuntu 14.04 OS.

Figure 5. The architecture of VDN.

Input data: this model requires two kinds of input data. One input is the same RBG image as
the input of VPN. Another input is a set of candidate regions generated by VPN, which are directly
mapped into ROI pooling layer.

Convolutional layers: the convolutional layers from Conv1 to Conv5 take identical settings
as VPN.

ROI pooling layer: because the generated vehicle-like regions have various sizes, this layer extracts
a fixed-length feature vector for each vehicle-like region. Specifically, this layer works by dividing the
ROI (region of interest) window into a 6 × 6 grid of sub-windows and then max-pooling the values in
each sub-window into the corresponding output grid cell [18]. Pooling is applied independently to
each feature map channel, as in standard max pooling. The generated feature is the input of fc_6.

Fc_6 is a fully connected layer that outputs a 4096-d feature vector. Fc_7 takes the same settings
as fc_6 and it is branched into two sibling fully connected layers, named pred_bbox and pred_score
respectively. The pred_bbox layer predicts the bounding box of vehicle, and the output of pred_score
layer is the corresponding confidence score.

3.3.2. Loss Function and Training

The output of VDN and VPN is similar; therefore, the multi-task loss function L as given by
Equation (2) is adopted to jointly train this network for vehicle classification and bounding-box
regression. Moreover, the pre-trained VGG-16 weights are adopted as well. The training parameters
and settings are similar to VPN.

4. Experiment and Results

We report the experimental results on two benchmark datasets: the VEDAI dataset [42] and the
Munich vehicle dataset [43]. The performance of our detection model is compared with other methods

Sensors 2017, 17, 2720 10 of 18

on two aspects: detection accuracy and detection speed. Detailed evaluation metrics are described
in Section 4.1. All methods in the experiments were programmed based on Matlab 2014a and Caffe
deep learning framework [46]. All experiments were run on a desktop computer equipped with an
Intel Core i7 5930k CPU (6 Core, 3.5 GHz), 64 GB memory, a NVIDIA Titan X GPU (with 12 GB video
memory) and Ubuntu 14.04 OS.

4.1. Evaluation Metrics

We employ the widely used four metrics including: the precision-recall curve (PRC) [47], average
precision (AP), recall rate and F1-Score [48] to quantitatively evaluate the performance of our model.
The definition of F1-score is shown in Equation (5):

F1_Score =
2 ∗ recall ∗ precision

recall + precision
(5)

where, recall and precision are calculated by Equations (6) and (7):

Recall =
True Positive

True Positive + False Negative
(6)

Precision =
True Positive

True Positive + False Positive
(7)

Recall and precision evaluate the correctly identified positive detections and true positive
detections respectively. The AP is defined as the area under the PRC, which is a comprehensive
indicator of precision and recall rate. To sum up, F1-Score and AP are two key criteria to reveal the
performance of detectors. The higher the F1-Score and AP score, the better the performance. In the
experiments, the detections with IoUratio value greater than 0.5 was defined as true, otherwise, it
was false.

4.2. VEDAI Dataset

VEDAI is a public dataset providing various types of vehicle in the images which were taken
during spring 2012 in Utah, USA. The images comprise different backgrounds such as road, desert,
rural and urban areas (shown in Figure 6). This dataset provides images with two different sizes,
which are referred as VEDAI 512 (512 × 512 pixels) and VEDAI 1024 (1024 × 1024 pixels) respectively.
VEDAI 1024 has a ground sampling distance of 12.5 cm/pixel, and the VEDAI 512 comprises the
downscaled images of VEDAI 1024 and has a ground sampling distance of 25 cm/pixel.

This dataset contains nine different classes of vehicles, there are ‘car’, ‘pick-up’, truck’, ‘plane’,
‘boat’, ‘camping car’, ‘tractor’, ‘van’, and the ‘other’ category. There is an average of 5.5 vehicles per
image, and they occupy about 0.7% of the total pixels of the images. The statistical data of each class is
described in Table 1. Due to the scarcity of samples, we discard some categories (such as ‘boat’, ‘plane’
and ‘tractor’) in the experiments.

In the training stage, we adopted 996 images from VEDAI 1024 and augmented them according
to the descriptions in Section 3.1. Each input image was resized such that its shorter side has 600 pixels.
Moreover, for both networks (VPN and VDN), the training parameters were equivalent. We applied a
weight decay of 0.0005 and a momentum of 0.9. There were 40,000 iterations in total during the whole
training process, and the learning rate was set as 0.001 for the first 30,000 iterations, and 0.0001 for the
next 10,000 iterations.

Sensors 2017, 17, 2720 11 of 18

Sensors 2017, 17, 2720 10 of 17

4.1. Evaluation Metrics

We employ the widely used four metrics including: the precision-recall curve (PRC) [47],
average precision (AP), recall rate and F1-Score [48] to quantitatively evaluate the performance of
our model. The definition of F1-score is shown in Equation (5):

2 * *1 _ recall precisionF Score
recall precision




 (5)

where, recall and precision are calculated by Equations (6) and (7):

T ru e P os itiveR eca ll
T ru e P o sitive F a lse N ega tive




 (6)

True PositivePrecision
True Positive False Positive




 (7)

Recall and precision evaluate the correctly identified positive detections and true positive
detections respectively. The AP is defined as the area under the PRC, which is a comprehensive
indicator of precision and recall rate. To sum up, F1-Score and AP are two key criteria to reveal the
performance of detectors. The higher the F1-Score and AP score, the better the performance. In the
experiments, the detections with IoUratio value greater than 0.5 was defined as true, otherwise, it was
false.

4.2. VEDAI Dataset

VEDAI is a public dataset providing various types of vehicle in the images which were taken
during spring 2012 in Utah, USA. The images comprise different backgrounds such as road, desert,
rural and urban areas (shown in Figure 6). This dataset provides images with two different sizes,
which are referred as VEDAI 512 (512 × 512 pixels) and VEDAI 1024 (1024 × 1024 pixels)
respectively. VEDAI 1024 has a ground sampling distance of 12.5 cm/pixel, and the VEDAI 512
comprises the downscaled images of VEDAI 1024 and has a ground sampling distance of 25
cm/pixel.

This dataset contains nine different classes of vehicles, there are ‘car’, ‘pick-up’, truck’, ‘plane’,
‘boat’, ‘camping car’, ‘tractor’, ‘van’, and the ‘other’ category. There is an average of 5.5 vehicles per
image, and they occupy about 0.7% of the total pixels of the images. The statistical data of each class
is described in Table 1. Due to the scarcity of samples, we discard some categories (such as ‘boat’,
‘plane’ and ‘tractor’) in the experiments.

Figure 6. Examples from the VEDAI dataset.

In the training stage, we adopted 996 images from VEDAI 1024 and augmented them
according to the descriptions in Section 3.1. Each input image was resized such that its shorter side
has 600 pixels. Moreover, for both networks (VPN and VDN), the training parameters were
equivalent. We applied a weight decay of 0.0005 and a momentum of 0.9. There were 40,000
iterations in total during the whole training process, and the learning rate was set as 0.001 for the
first 30,000 iterations, and 0.0001 for the next 10,000 iterations.

Figure 6. Examples from the VEDAI dataset.

Table 1. The statistical data of VEDAI.

Classes Tag Number

Car car 1340
Pick-up pic 950
Truck tru 300
Plane pla 47
Boat boa 170

Camping car cam 390
Tractor tra 190
Vans van 100
Other oth 200

In the test stage, about 240 images (rest images of the dataset) with different size were selected to
evaluate the performance. Our model was compared with super-pixels segmentation based methods
(such as SLIC [29]) and recent CNN-based detectors, including: Faster R-CNN with Z&F model [49],
Faster R-CNN with VGG-16 model and Fast R-CNN with VGG-16model. For the SLIC based methods,
we first segmented the image into 768 regions by SLIC, and then converted the generated polygonal
regions into approximate rectangular regions. The converted regions were fed into VGG-16 and Z&F
model respectively. These two models were referred as: SLIC with VGG-16 and SLIC with Z&F.
As the comparison results in Table 2 illustrate, for VEDAI 1024, our detection model outperforms the
super-pixels segmentation based methods and recent CNN-based detectors, which obtains the best AP
(54.6%) and F1-score (0.305). Especially, the AP outperforms the second best detector by 12.5 percentage
points. And the recall rate also reaches a comparable level with Faster R-CNN (VGG 16). For VEDAI
512, our model obtains the best AP and F1-Score as well. Figure 7a,b show the PRC of the various
models on VEDAI 1024 and VEDAI 512, respectively. Compared with other models, our model shows
significant improvement.

Table 2. Comparison results of various detection models on VEDAI.

Detection Model Image Size Recall Rate AP F1-Score

Faster R-CNN (Z&F) 1024 × 1024 63.5% 30.8% 0.229
Faster R-CNN (VGG-16) 1024 × 1024 73.9% 42.1% 0.232
Fast R-CNN (VGG-16) 1024 × 1024 72.2% 39.8% 0.216

SLIC with Z&F 1024 × 1024 58.3% 25.4% 0.066
SLIC with VGG-16 1024 × 1024 58.8% 23.2% 0.064

Our Model 1024 × 1024 72.3% 54.6% 0.320
Faster R-CNN (Z&F) 512 × 512 60.9% 32.0% 0.212

Faster R-CNN (VGG-16) 512 × 512 71.4% 40.9% 0.225
Fast R-CNN (VGG-16) 512 × 512 69.4% 37.3% 0.224

Our Model 512 × 512 69.7% 50.2% 0.305

Sensors 2017, 17, 2720 12 of 18

Sensors 2017, 17, 2720 11 of 17

Table 1. The statistical data of VEDAI.

Classes Tag Number
Car car 1340

Pick-up pic 950
Truck tru 300
Plane pla 47
Boat boa 170

Camping car cam 390
Tractor tra 190
Vans van 100
Other oth 200

In the test stage, about 240 images (rest images of the dataset) with different size were selected
to evaluate the performance. Our model was compared with super-pixels segmentation based
methods (such as SLIC [29]) and recent CNN-based detectors, including: Faster R-CNN with Z&F
model [49], Faster R-CNN with VGG-16 model and Fast R-CNN with VGG-16model. For the SLIC
based methods, we first segmented the image into 768 regions by SLIC, and then converted the
generated polygonal regions into approximate rectangular regions. The converted regions were fed
into VGG-16 and Z&F model respectively. These two models were referred as: SLIC with VGG-16
and SLIC with Z&F. As the comparison results in Table 2 illustrate, for VEDAI 1024, our detection
model outperforms the super-pixels segmentation based methods and recent CNN-based detectors,
which obtains the best AP (54.6%) and F1-score (0.305). Especially, the AP outperforms the second
best detector by 12.5 percentage points. And the recall rate also reaches a comparable level with
Faster R-CNN (VGG 16). For VEDAI 512, our model obtains the best AP and F1-Score as well.
Figure 7a,b show the PRC of the various models on VEDAI 1024 and VEDAI 512, respectively.
Compared with other models, our model shows significant improvement.

Table 2. Comparison results of various detection models on VEDAI.

Detection Model Image Size Recall Rate AP F1-Score
Faster R-CNN (Z&F) 1024 × 1024 63.5% 30.8% 0.229

Faster R-CNN (VGG-16) 1024 × 1024 73.9% 42.1% 0.232
Fast R-CNN (VGG-16) 1024 × 1024 72.2% 39.8% 0.216

SLIC with Z&F 1024 × 1024 58.3% 25.4% 0.066
SLIC with VGG-16 1024 × 1024 58.8% 23.2% 0.064

Our Model 1024 × 1024 72.3% 54.6% 0.320
Faster R-CNN (Z&F) 512 × 512 60.9% 32.0% 0.212

Faster R-CNN (VGG-16) 512 × 512 71.4% 40.9% 0.225
Fast R-CNN (VGG-16) 512 × 512 69.4% 37.3% 0.224

Our Model 512 × 512 69.7% 50.2% 0.305

Figure 7. Precision-recall curve of four models: (a) VEDAI 1024 (b) VEDAI 512.
Figure 7. Precision-recall curve of four models: (a) VEDAI 1024 (b) VEDAI 512.

The performance of VPN determines the results of detection model, to evaluate the localization
performance of VPN; we compared it with other RPN-based region proposal methods. Reference [19]
designed the RPN based on Z&F and VGG-16 model respectively. We adopted the recall-IoU curve
(shown in Figure 8) for evaluation.

Sensors 2017, 17, 2720 12 of 17

The performance of VPN determines the results of detection model, to evaluate the localization
performance of VPN; we compared it with other RPN-based region proposal methods.
Reference [19] designed the RPN based on Z&F and VGG-16 model respectively. We adopted the
recall-IoU curve (shown in Figure 8) for evaluation.

Figure 8. Recall vs. IoU curve of three CNN-based models: (a) VEDAI 1024 (b) VEDAI 512.

As the results in Figure 8 show, our model obtains a comparable recall rate to Faster R-CNN
(with VGG-16). When the IoUratio is greater than 0.5, our model achieves the best performance.
Additionally, we evaluated the detection speed of different detection models by fps (frames per
second). Table 3 illustrates the detection time and training time of each detection model. From the
aspect of detection time, our model, SLIC based models and other two Faster R-CNNs achieve
comparable detection speed. The Fast R-CNN that uses the Selective Search [10] scheme for region
proposal performs poorly, and its detection speed is much slower than the speed of the other five.
The Faster R-CNN (with Z&F model) adopts a simple and shallow CNN, so it achieves the fastest
detection speed. However, it obtains the lower detection accuracy (30.8% and 32%). The SLIC based
models perform well on detection speed, which are benefit for the segmentation speed of SLIC
algorithm, but they obtain the lowest detection accuracy (23.2%). This may be caused by the
inaccurate segmentation and the conversion of segmented regions. The detection speed of our
model is a little slower than Faster R-CNN with VGG-16, because the proposed VPN is a hierarchy
architecture, which spends a little more time on generating more but accurate candidate regions.
Actually, this gap is very small in practical application. Hence, we made the trade-off between
detection speed and accuracy. For the training time, Fast RCNN and SLIC based models perform
well, because training CNN is time consuming and they just adopt one CNN for feature extraction,
the rest models employ two CNNs for region proposal and feature extraction respectively. Our
model is better than the Faster RCNNs, because the Faster RCNNs are alternatively trained twice,
but we train each CNN (VPN and VDN) only once. In practical application, detection time is
considered more. Due to the fact that detection systems always adopt the trained model and no
extra training cost during the detection phase.

Table 3. Comparison of detection time (fps: frames per second) and training time (h: hours).

Detection Model Image Size Detection Time Training Time
Faster R-CNN (Z&F) 1024 × 1024 5.8 fps 28.4 h

Faster R-CNN (VGG-16) 1024 × 1024 5.4 fps 28.5 h
Fast R-CNN (VGG-16) 1024 × 1024 0.4 fps 8.2 h

SLIC with Z&F 1024 × 1024 5.6 fps 7.9 h
SLIC with VGG-16 1024 × 1024 4.9 fps 8.2 h

Our Model 1024 × 1024 4.5 fps 10.7 h
Faster R-CNN (Z&F) 512 × 512 6.3 fps 28.3 h

Faster R-CNN (VGG-16) 512 × 512 5.6 fps 28.6 h
Fast R-CNN (VGG-16) 512 × 512 0.4 fps 8.1 h

Our Model 512 × 512 4.6 fps 10.6 h

Figure 8. Recall vs. IoU curve of three CNN-based models: (a) VEDAI 1024 (b) VEDAI 512.

As the results in Figure 8 show, our model obtains a comparable recall rate to Faster R-CNN (with
VGG-16). When the IoUratio is greater than 0.5, our model achieves the best performance. Additionally,
we evaluated the detection speed of different detection models by fps (frames per second). Table 3
illustrates the detection time and training time of each detection model. From the aspect of detection
time, our model, SLIC based models and other two Faster R-CNNs achieve comparable detection speed.
The Fast R-CNN that uses the Selective Search [10] scheme for region proposal performs poorly, and its
detection speed is much slower than the speed of the other five. The Faster R-CNN (with Z&F model)
adopts a simple and shallow CNN, so it achieves the fastest detection speed. However, it obtains the
lower detection accuracy (30.8% and 32%). The SLIC based models perform well on detection speed,
which are benefit for the segmentation speed of SLIC algorithm, but they obtain the lowest detection
accuracy (23.2%). This may be caused by the inaccurate segmentation and the conversion of segmented
regions. The detection speed of our model is a little slower than Faster R-CNN with VGG-16, because
the proposed VPN is a hierarchy architecture, which spends a little more time on generating more
but accurate candidate regions. Actually, this gap is very small in practical application. Hence, we
made the trade-off between detection speed and accuracy. For the training time, Fast RCNN and SLIC
based models perform well, because training CNN is time consuming and they just adopt one CNN

Sensors 2017, 17, 2720 13 of 18

for feature extraction, the rest models employ two CNNs for region proposal and feature extraction
respectively. Our model is better than the Faster RCNNs, because the Faster RCNNs are alternatively
trained twice, but we train each CNN (VPN and VDN) only once. In practical application, detection
time is considered more. Due to the fact that detection systems always adopt the trained model and no
extra training cost during the detection phase.

Table 3. Comparison of detection time (fps: frames per second) and training time (h: hours).

Detection Model Image Size Detection Time Training Time

Faster R-CNN (Z&F) 1024 × 1024 5.8 fps 28.4 h
Faster R-CNN (VGG-16) 1024 × 1024 5.4 fps 28.5 h
Fast R-CNN (VGG-16) 1024 × 1024 0.4 fps 8.2 h

SLIC with Z&F 1024 × 1024 5.6 fps 7.9 h
SLIC with VGG-16 1024 × 1024 4.9 fps 8.2 h

Our Model 1024 × 1024 4.5 fps 10.7 h
Faster R-CNN (Z&F) 512 × 512 6.3 fps 28.3 h

Faster R-CNN (VGG-16) 512 × 512 5.6 fps 28.6 h
Fast R-CNN (VGG-16) 512 × 512 0.4 fps 8.1 h

Our Model 512 × 512 4.6 fps 10.6 h

Figure 9 shows some detection examples of VEDAI 1024. Figure 9a,c,e,g,i,k is the input images,
and the ground truths are annotated by yellow boxes. Figure 9b,d,f,h,j,l is the detections annotated by
red boxes.

Sensors 2017, 17, 2720 13 of 17

Figure 9 shows some detection examples of VEDAI 1024. Figure 9a,c,e,g,i,k is the input images,
and the ground truths are annotated by yellow boxes. Figure 9b,d,f,h,j,l is the detections annotated
by red boxes.

Figure 9. (a–l) some detection examples of VEDAI dataset.

4.3. Munich Vehicle Dataset

The Munich vehicle dataset is an aerial imagery dataset captured by the DLR 3 K camera
system [50] over the area of Munich, Germany. It comprises of 20 aerial images which were mainly
taken from urban and residential areas. The original images in this dataset were taken at the height
of 1 km above the ground with the resolution of 5616 × 3744 pixels, and the approximate ground
sampling distance is 13 cm/pixel. Training and testing set include 10 images respectively.

We performed our model on the testing set and compared the performance with other two
RPN-based models (Faster R-CNN with VGG-16 and Faster R-CNN with Z&F). In the training
process, we firstly cropped the original images into the size of 702 × 468; in this way, then collected
640 training images from Munich dataset. Secondly, we combined the training set of VEDAI 1024
and these cropped images to form a joint training set. During training, we used the same
parameters and settings as that were adopted in VEDAI dataset.

In testing phase, each testing image was cropped into 702 × 468 pixels as well. Hence, 640
cropped images were employed as the testing set. As the evaluation results showed in Table 4, our
model obtains the best detection accuracy. Especially, the AP outperforms other two models by
approximate 20 and 10 percentage points. The detection speed also achieves a comparable level
with that of others.

Figure 9. (a–l) some detection examples of VEDAI dataset.

Sensors 2017, 17, 2720 14 of 18

4.3. Munich Vehicle Dataset

The Munich vehicle dataset is an aerial imagery dataset captured by the DLR 3 K camera
system [50] over the area of Munich, Germany. It comprises of 20 aerial images which were mainly
taken from urban and residential areas. The original images in this dataset were taken at the height
of 1 km above the ground with the resolution of 5616 × 3744 pixels, and the approximate ground
sampling distance is 13 cm/pixel. Training and testing set include 10 images respectively.

We performed our model on the testing set and compared the performance with other two
RPN-based models (Faster R-CNN with VGG-16 and Faster R-CNN with Z&F). In the training process,
we firstly cropped the original images into the size of 702 × 468; in this way, then collected 640 training
images from Munich dataset. Secondly, we combined the training set of VEDAI 1024 and these cropped
images to form a joint training set. During training, we used the same parameters and settings as that
were adopted in VEDAI dataset.

In testing phase, each testing image was cropped into 702× 468 pixels as well. Hence, 640 cropped
images were employed as the testing set. As the evaluation results showed in Table 4, our model
obtains the best detection accuracy. Especially, the AP outperforms other two models by approximate
20 and 10 percentage points. The detection speed also achieves a comparable level with that of others.

Table 4. Comparison results of various detection models on Munich Vehicle dataset.

Detection Model Recall Rate AP F1-Score Detection Time (fps)

Faster R-CNN (Z&F) 66.8% 53.9% 0.657 5.2
Faster R-CNN (VGG-16) 78.3% 64.8% 0.779 4.9

Our Model 80.3% 73.7% 0.782 3.2

In addition, the precision-recall curve and recall-IoU curve are showed in Figure 10a,b. Figure 11
gives some examples of the detection on the Munich vehicle dataset. Figure 11a,c,e,g,i,k is the input
images, and the ground truths are annotated by yellow boxes. Figure 11b,d,f,h,j,l is the detect results,
and the detections are annotated by red boxes.

Sensors 2017, 17, 2720 14 of 17

able 4. Comparison results of various detection models on Munich Vehicle dataset.

Detection Model Recall Rate AP F1-Score Detection Time (fps)
Faster R-CNN(Z&F) 66.8% 53.9% 0.657 5.2

Faster R-CNN(VGG-16) 78.3% 64.8% 0.779 4.9
Our Model 80.3% 73.7% 0.782 3.2

In addition, the precision-recall curve and recall-IoU curve are showed in Figure 10a,b. Figure
11 gives some examples of the detection on the Munich vehicle dataset. Figure 11a,c,e,g,i,k is the
input images, and the ground truths are annotated by yellow boxes. Figure 11b,d,f,h,j,l is the detect
results, and the detections are annotated by red boxes.

Figure 10. Comparisons of three detection models (a) precision-recall curve (b) recall vs. IoU curve.

Figure 11. (a–l) some detection examples of VEDAI dataset.

5. Conclusions

In this paper, we propose a fast and accurate vehicle detection model for aerial images. Unlike
the traditional sliding-window-based detection models and recent CNN-based models, our detector
is a cascaded CNNs architecture that combines two CNNs (VPN and VDN) for generating

Figure 10. Comparisons of three detection models (a) precision-recall curve (b) recall vs. IoU curve.

Sensors 2017, 17, 2720 15 of 18

Sensors 2017, 17, 2720 14 of 17

able 4. Comparison results of various detection models on Munich Vehicle dataset.

Detection Model Recall Rate AP F1-Score Detection Time (fps)
Faster R-CNN(Z&F) 66.8% 53.9% 0.657 5.2

Faster R-CNN(VGG-16) 78.3% 64.8% 0.779 4.9
Our Model 80.3% 73.7% 0.782 3.2

In addition, the precision-recall curve and recall-IoU curve are showed in Figure 10a,b. Figure
11 gives some examples of the detection on the Munich vehicle dataset. Figure 11a,c,e,g,i,k is the
input images, and the ground truths are annotated by yellow boxes. Figure 11b,d,f,h,j,l is the detect
results, and the detections are annotated by red boxes.

Figure 10. Comparisons of three detection models (a) precision-recall curve (b) recall vs. IoU curve.

Figure 11. (a–l) some detection examples of VEDAI dataset.

5. Conclusions

In this paper, we propose a fast and accurate vehicle detection model for aerial images. Unlike
the traditional sliding-window-based detection models and recent CNN-based models, our detector
is a cascaded CNNs architecture that combines two CNNs (VPN and VDN) for generating

Figure 11. (a–l) some detection examples of VEDAI dataset.

5. Conclusions

In this paper, we propose a fast and accurate vehicle detection model for aerial images. Unlike
the traditional sliding-window-based detection models and recent CNN-based models, our detector is
a cascaded CNNs architecture that combines two CNNs (VPN and VDN) for generating candidate
regions and making decisions, respectively. The proposed VPN is based on a VGG-16 model; taking
advantage of the shallow and deep feature map, we build hierarchical feature maps. Compared
with other CNN-based region proposal methods (such as RPN with VGG-16, RPN with Z&F), the
VPN generates more accurate candidate regions, especially for the small vehicles in aerial images.
Moreover, we trained a category-specific detection network called VDN, which is combined with VPN
and obtained high performance. From the extensive experimental results presented in Section 4, the
proposed model outperforms the state-of-the-art detection model [18,19] in detection accuracy, and the
detection speed achieves a comparable level.

Although our model has obtained favorable performance on vehicle detection in aerial image
data, it still has some limitations. One limitation is in hard example detection, for example, when some
vehicles in aerial images are partially occluded by other objects or extremely small vehicles. Moreover,
to distinguish some intra-class vehicles is also difficult, such as camping cars and big vans. In the future
work, we focus on the further optimization of VPN. Firstly, a deeper CNN model will be adopted and
built finer architecture of feature maps. Moreover, to reduce the time cost of region proposal stage,
we will try to improve the performance of the efficient super-pixel segmentation method like SLIC,
which shows advantages in speed of generating regions, but the capability of generating accurate
candidate regions should be improved. Multi-GPUs should be adopted collaboratively in the region
proposal stage.

Acknowledgments: This work was supported by Youth Innovation Promotion Association, CAS (Grant
No. 2016336). The authors would appreciate the anonymous reviewers for their valuable comments and
suggestions for improving this paper.

Author Contributions: Jiandan Zhong proposed the original idea and wrote this paper; Tao Lei gave many
valuable suggestions and revised the paper; Guangle Yao designed a part of experiments and revised the paper.

Sensors 2017, 17, 2720 16 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tang, Y.; Zhang, C.; Gu, R.; Li, P.; Yang, B. Vehicle detection and recognition for intelligent traffic surveillance
system. Multimedia Tools Appl. 2017, 76, 5817–5832. [CrossRef]

2. Wen, X.; Shao, L.; Fang, W.; Xue, Y. Efficient Feature Selection and Classification for Vehicle Detection.
IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 508–517.

3. Xu, H.; Zhou, Z.; Sheng, B.; Ma, L. Fast vehicle detection based on feature and real-time prediction.
In Proceedings of the IEEE International Symposium on Circuits & Systems, Beijing, China, 19–23 May 2013;
pp. 2860–2863.

4. Gu, Q.; Yang, J.; Zhai, Y.; Kong, L. Vision-based multi-scaled vehicle detection and distance relevant mix
tracking for driver assistance system. Opt. Rev. 2015, 22, 197–209. [CrossRef]

5. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

6. Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

7. Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2,
389–396. [CrossRef]

8. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001;
pp. 511–518.

9. Felzenszwalb, P.; Girshick, R.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained
part based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef] [PubMed]

10. Uijlings, J.; Van de Sande, K.; Gevers, T.; Smeulders, A. Selective search for object recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

11. Cheng, M.; Zhang, Z.; Lin, W.; Torr, P. BING: Binarized Normed Gradients for Objectness Estimation at
300 fps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 3286–3293.

12. Alexe, B.; Deselaers, T.; Ferrari, V. Measuring the objectness of image windows. IEEE Trans. Pattern Anal.
Mach. Intell. 2012, 54, 2189–2202. [CrossRef] [PubMed]

13. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing System, Lake Tahoe,
NV, USA, 3–6 December 2012; pp. 1097–1105.

14. Deng, J.; Berg, A.; Satheesh, S.; Su, H.; Khosla, A.; Li, F. ImageNet Large Scale Visual Recognition Competition
2012 (ILSVRC2012). Available online: http://www.image-net.org/challenges/LSVRC/2012 (accessed on
10 July 2017).

15. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

16. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated Recognition,
Localization and Detection using Convolutional Networks. arXiv 2013, arXiv:1312.6229.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

18. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

20. Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, L. Microsoft COCO:
Common Objects in Context. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

21. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

http://dx.doi.org/10.1007/s11042-015-2520-x
http://dx.doi.org/10.1007/s10043-015-0067-8
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/TPAMI.2012.28
http://www.ncbi.nlm.nih.gov/pubmed/22248633
http://www.image-net.org/challenges/LSVRC/2012
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Sensors 2017, 17, 2720 17 of 18

22. Ghodrati, A.; Pedersoli, M.; Tuytelaars, T.; Diba, A.; Gool, L. Deepproposal: Hunting objects by cascading
deep convolutional layers. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7–13 December 2015; pp. 2578–2586.

23. Carreira, J.; Sminchisescu, C. CPMC: Automatic object segmentation using constrained parametric min-cuts.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1312–1328. [CrossRef] [PubMed]

24. Zitnick, C.; Dollar, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European
Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 391–405.

25. Hosang, J.; Benenson, R.; Dollar, P.; Schiele, B. What makes for effective detection proposals? IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 38, 814–830. [CrossRef] [PubMed]

26. Chavali, N.; Agrawal, H.; Mahendru, A.; Batra, D. Object-Proposal Evaluation Protocol is ‘Gameable’.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 2578–2586.

27. Arbeláez, P.; Pont-Tuset, J.; Barron, J.; Marques, F.; Malik, J. Multiscale combinatorial grouping.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 328–335.

28. Kuo, W.; Hariharan, B.; Malik, J. Deepbox: Learning objectness with convolutional networks. In Proceedings
of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 2479–2487.

29. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

30. Vedaldi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Proceedings of the European
Conference on Computer Vision, Marseille, France, 12–18 October 2008; pp. 705–718.

31. Veksler, O.; Boykov, Y.; Mehrani, P. Superpixels and supervoxels in an energy optimization framework.
In Proceedings of the European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September
2010; pp. 211–224.

32. Bergh, M.; Boix, X.; Roig, G.; Capitani, B.; Gool, L. SEEDS: Superpixels Extracted via Energy-Driven Sampling.
Int. J. Comput. Vis. 2013, 7578, 1–17.

33. Zhang, Y.; Sohn, K.; Villegas, R.; Pan, G.; Lee, H. Improving object detection with deep convolutional
networks via bayesian optimization and structured prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 249–258.

34. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

35. Erhan, D.; Szegedy, C.; Toshev, A.; Anguelov, D. Scalable object detection using deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus,
OH, USA, 23–28 June 2014; pp. 2155–2162.

36. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 779–788.

37. Xu, Y.; Yu, G.; Wang, Y.; Wu, X.; Ma, Y. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG +
SVM from UAV Images. Sensors 2016, 16, 1325. [CrossRef] [PubMed]

38. Ammour, N.; Alhichri, H.; Bazi, Y.; Benjdira, B.; Alajlan, N. Deep Learning Approach for Car Detection in
UAV Imagery. Remote Sens. 2017, 9, 312. [CrossRef]

39. Qu, T.; Zhang, Q.; Sun, S. Vehicle detection from high-resolution aerial images using spatial pyramid
pooling-based deep convolutional neural networks. Multimedia Tools Appl. 2016, 76, 21651–21663. [CrossRef]

40. Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional
Neural Networks and Hard Negative Example Mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]

41. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Zou, H. Toward Fast and Accurate Vehicle Detection in Aerial Images
Using Coupled Region-Based Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2017, 10, 3652–3664. [CrossRef]

42. Razakarivony, S.; Jurie, F. Vehicle detection in aerial imagery: A small target detection benchmark. J. Vis.
Commun. Image Represent. 2016, 34, 187–203. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2011.231
http://www.ncbi.nlm.nih.gov/pubmed/22144523
http://dx.doi.org/10.1109/TPAMI.2015.2465908
http://www.ncbi.nlm.nih.gov/pubmed/26959679
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.3390/s16081325
http://www.ncbi.nlm.nih.gov/pubmed/27548179
http://dx.doi.org/10.3390/rs9040312
http://dx.doi.org/10.1007/s11042-016-4043-5
http://dx.doi.org/10.3390/s17020336
http://www.ncbi.nlm.nih.gov/pubmed/28208587
http://dx.doi.org/10.1109/JSTARS.2017.2694890
http://dx.doi.org/10.1016/j.jvcir.2015.11.002

Sensors 2017, 17, 2720 18 of 18

43. Liu, K.; Mattyus, G. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2015,
12, 1938–1942.

44. Kong, T.; Yao, A.; Chen, Y.; Sun, F. Hypernet: Towards accurate region proposal generation and joint object
detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 845–853.

45. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Backpropagation applied
to handwritten zip code recognition. Neural Comput. 1989, 4, 541–551. [CrossRef]

46. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J. Caffe: Convolutional Architecture for Fast Feature
Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA,
3–7 November 2014; pp. 675–678.

47. Everingham, M.; Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC)
Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

48. Lipton, Z.; Elkan, C.; Naryanaswamy, B. Optimal Thresholding of Classifiers to Maximize F1 Measure.
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases,
Nancy, France, 15–19 September 2014; pp. 225–239.

49. Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

50. Leitloff, J.; Rosenbaum, D.; Kurz, F.; Meynberg, O.; Reinartz, P. An operational system for estimating road
traffic information from aerial images. Remote Sens. 2014, 6, 11315–11341. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.3390/rs61111315
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Region Proposal Method
	Target Detection with the CNN-Based Models
	Vehicle Detection in Aerial Imagery

	Overview of the Proposed Model
	Training Data Augmentation
	Vehicle-Regions Proposal Network
	Overview of the Architecture
	Loss Function
	Training

	Vehicle Detection Network
	Overview of the Architecture
	Loss Function and Training

	Experiment and Results
	Evaluation Metrics
	VEDAI Dataset
	Munich Vehicle Dataset

	Conclusions

