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Abstract: We review some advances of the particle filtering (PF) algorithm that have been achieved
in the last decade in the context of target tracking, with regard to either a single target or multiple
targets in the presence of false or missing data. The first part of our review is on remarkable
achievements that have been made for the single-target PF from several aspects including importance
proposal, computing efficiency, particle degeneracy/impoverishment and constrained /multi-modal
systems. The second part of our review is on analyzing the intractable challenges raised within
the general multitarget (multi-sensor) tracking due to random target birth and termination, false
alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream
multitarget PF approaches consist of two main classes, one based on M2T association approaches and
the other not such as the finite set statistics-based PF. In either case, significant challenges remain due
to unknown tracking scenarios and integrated tracking management.
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1. Introduction

Target tracking is a ubiquitous and typical dynamic state estimation problem widespread in both
military and commercial realms, including air traffic control, surveillance, aerospace, oceanography,
autonomous vehicles and robotics, remote sensing, computer vision and biomedical research.
The problem basically concerns inferring the state of the target that is assumed as a random variable,
by observing it or another random variable associated with it, namely observations.

Sequential Bayesian inference (SBI) provides a fundamental and engineering-friendly framework
for solving time series estimation problems. In particular, the particle filter (PF) is one of the most
vital tools for realizing SBI, which uses a set of weighted samples (called particles) to approximate
the Bayesian prior and posterior, also known as sequential Monte Carlo (SMC). The Markov-Bayesian
recursion is achieved by iteratively updating the state and weight of these particles. Different from
parametric filters [1], the PF particularly appeals to nonlinear systems affected by non-Gaussian noises.
However, the PF has its own deficiencies mainly related to the sample degeneracy and computing
inefficiency. Moreover, multi-target tracking (MTT) in the presence of false or missing data raises
significantly new challenges. The new theories, algorithms and technologies developed for MTT have
further promoted the development of advanced filtering and estimation approaches. For example,
with the vitalization of the finite set statistics (FISST) [2] in the context of MTT, the random set based
PF has attracted considerable attention [3].

Accompanying the widespread use and progressive development of the PF is a large body of
excellent research reviews, surveys and monographs; see Table 1 for some representatives appearing
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in the last decade. To minimize overlapping with them, our review is centered on the topic of
target tracking, striving to provide a systematic, yet concise review of the development from the
standard PF for single target tracking (STT) to the cutting edge random set PF for MTT. Nonetheless,
a comprehensive overview is impossible; instead, we present an admittedly subjective impression of
some highlights including what we consider to be the most significant achievements in the last decade
and the discussion of the remaining major challenges for MTT-PF. A preliminary part of our survey
appeared earlier in [4], which is of very limited accessibility due to the language. Many new materials
appearing since then have been added to this paper, while previous materials are revised significantly.

Table 1. Representative surveys and monographs that have appeared since 2007. PF: particle filter.

Topics References
General Review or Monographs [5-8]
Nonlinear Parametric Bayesian Filter [9]
Nonlinear Bayesian Estimation [10]
PF in Finance and Economics [11,12]
PF in Geophysics [13]
PF in Decision Making [14]
PF in Extended/Group Target Tracking [15]
PF in Target Tracking [16,17]
PF in Change Detection and System Identification [18]
Non-standard PF [19]
PF for Parameter Estimation [20-22]
Resampling Methods [23,24]
Distributed PF [25]
PF Convergence [26-28]
PF Stability [29,30]
Particle Number Adjustment [31]
Weight Degeneracy and Impoverishment [32]
Particle Methods [33]
Multitarget Tracking [34,35]
Random Set PF [3]

The remainder of the paper is organized as follows. Section 2 addresses the preliminaries.
Sections 3 and 4 review the major advances of the PF in the context of STT and MTT, respectively.
Remaining challenges for MTT-PF are analyzed in Section 5. Our final remarks are given in Section 6.

2. Bayesian Estimation and Standard PF

2.1. Markov—Bayes Recursion

At the core of tracking is estimating the time series state x1, X2, - - - , Xx € R based on the sequence
of noisy observation y1, y2, - - -, yx € R%, where y; is the observation that is given by a function of
the state x; at time instant k. To solve this problem, we consider the discrete state space model (SSM),
consisting of a hidden Markov model and an observation model as follows:

xp = fi (Xk—1, W)
Yk = i (Xi, Vi)

M

where f; : R x R™ — R% and Iy : R*™ x R™ — R are the state transition equation and the
observation equation, respectively while w; € R and v, € R represents the process noise and the
observation noises, respectively.

Based on the SSM, the Bayesian posterior distribution of the state is given as

_ p(yxlxi) p (il yre—1) 5
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where p(yi|xx) is the likelihood function; the prediction p(xk|yix_1) combines the previous
filtering distribution p(xx_1|y1.x_1) with the state transition p(x|xx_1,y1.x_1), which is given by
the Chapman-Kolmogorov equation, i.e.,

POkl y1k—1) = /P(kal|Y1:k71)P(xk|ka1/Y1:k71)dxk71 3)

Given the posterior in (2), the expectation of the state x; conditioned on all the observations y .,
namely the minimum mean square error (MMSE) estimate, is given by

RMMSE — Bl lyp4] = /XkP(Xk|Y1:k)ka 4)

which also gives the expected a posteriori (EAP) estimation. Alternatively, the maximum a posteriori

(MAP) estimate is
fMAP — arg max p(x¢|y1:¢) (5)

k §MAX P IXk[y1:k

Unfortunately, the optimal Bayesian posterior does not admit closed-form solution except
for linear Gaussian models for which Kalman filter (KF) is the MMSE estimator. For general
nonlinear non-Gaussian models, approximate calculations are a must [1]. The PF is a non-parametric
approximation technique that represents the target distribution by using a set of weighted particles, i.e.,

Ne .
p (slyns) = w80 (%) ©)
i=1

@ @)

where, x;/, w,’, N give the state, weight and total number of the particles at time k, respectively,
and ¢ () denotes the Dirac delta function.

2.2. Sequential Importance Sampling and Resampling

Probably the simplest PF protocol is the sequential importance sampling and resampling (SISR),
also referred to as the sampling importance resampling (SIR), filter, which consists of three basic steps:

Stepl: Importance Sampling. This step is to sample particles from the previous a posteriori
estimation and propagate them according to the state transition equation, yielding a predictive
distribution p (x¢|y1x—1) (also known as the prior distribution). Theoretically, the ideal sampling
should be carried out based on the posterior p (xx|y1.) for minimum weight variance [36]. However,
the posterior distribution is actually unknown (which is exactly what we wanted). Alternatively,
one has to resort to a suboptimal sampling distribution g(xy), called the proposal distribution.

Step 2: Weight updating. To employ the information in the latest observation yy, the particle

weight should be updated by the likelihood function p (yk|xl({i)) :

w;(:) « w;(21 P (yk|x’(‘i)) P (X’(‘(i:)|x’(‘i)1’Y1:k_l)
(%)

where « denotes “proportional to”.
The naive yet common proposal distribution given by the Bootstrap filter [37] is the state transition

@)

PDF g (xl(:)) =p (x,((i) |x,(21, y1:k—1)/ which does not take intoaccount the latest observation y; and
leads to wl((i) e w,((i) 1 p(yk|x,(<i) ). In general, except in the random set PF to be presented later, the weight
needs to be normalized after this step so that the weight sum of the particles is unity.

The likelihood updating will differentiate the weight of particles, which is the key to update the

particle distribution from the prior to the posterior, but may lead to the problem of weight degeneracy.
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That is, a few particles dominate the whole particle set, while the weight of the other particles is
insignificant. To combat this, a procedure called resampling is typically needed.

Step 3: Resampling. Based on the identical distribution principle [24], a new particle set, in which
all particles are uniformly (or approximately) weighted, can be re-sampled from the degenerated
particle set. The resampling unbiasedness [23] reads

E [N,E’) wl, Nk} — New!! ®)
where Ny is the total number of particles to be sampled, w}({i) is the weight of the particle i and N,Ei) is
the expected number of offspring to be generated for particle i.

As shown, unbiased resampling is essentially duplicating each particle in accordance to its weight.
More discussion on the weighting of resampled particles can be found in [38]. Obviously, if the particle
set suffers from severe degeneracy, like when one particle takes almost all of the weight, the majority
of the resampled particles will be the offspring of that significant particle, while all the others will
generate no offspring. This causes the lack of particle diversity [24,32], which is referred to as sample
impoverishment and is the same problem as degeneracy.

Resampling facilitates online adjusting the number of particles, which is particularly important in
the random set PF [3] where the number of targets is time-varying and in the multi-model PF where
the fitness of different models are time-varying [39,40].

3. Single-Target PF

Research focuses for STT consist of importance proposal, sample degeneracy/impoverishment,
computing efficiency and constrained and multimodal systems.

3.1. Importance Sampling Proposal

The sampling proposal (also known as importance sampling function) g(xx) as in (7) is crucial
since an inappropriate choice may result in a large number of particles in a low-likelihood /ignorable
region, while only a small number of particles get a much higher weight after updating, leading to
significant weight degeneracy. The likelihood function is usually steep in cases of high dimensional
state space where the likelihood function is given by multiplication of that of each dimension and/or
of very informative observation (VIO) (i.e., noise is small). In these cases, a proper sampling proposal
that matches the likelihood becomes more important.

Basically, two types of solutions have been proposed. One is to design the proposal to match the
posterior distribution as much as possible in order to avoid degeneracy, while the other is “to move
the particle cloud through this sequence of densities by any available means,” [41] to mitigate weight
degeneracy once it has occurred.

In the first group, a typical idea for improving the proposal is to employ the information delivered
by the latest observation yy, i.e., g (k) = g (x¢ | yx). The representative, perhaps the most known,
work is the so-called auxiliary PF [42], which constructs an auxiliary variable, to increase the weight of
the particles, which are more closely matched with the observations, thereby increasing the number of
particles in the high likelihood region. The proposal that is close to the posterior can also be obtained
by a nonlinear Gauss filter such as unscented PF [43]. A recent attempt is given by automatically
adapting the proposal using an approximation of the Kullback-Leibler divergence (KLD) between
the true posterior and the proposal distribution, based on neural networks [44]. More systematically,
(group/layered/heretical) multiple importance sampling schemes use a set of different proposal
distributions for better robustness [45-48], by ensuring that an appropriate proposal density is obtained
automatically. These, however, come at the expense of a moderate increase in the complexity.

In the second group, representative efforts include progressive correction-based PF [49], particle
flow filter [50] (and relevantly, Gaussian flow [51]) and feedback PF [52]. A recent attempt is a
likelihood-free PF [53] in which, instead of re-weighting the particles by the likelihood function and
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then resampling them for selection (those that are closer to the measurement), the particles are selected
based on their closeness to the real measurement (in the sense of an appropriate distance, in place
of precise likelihood); in a hard-gating manner. In recent years, there has been a burgeoning passion
for and interest in applying similar data-driven techniques to Bayesian filtering including parametric
filters [1], especially for VIO systems.

However, it is important to note that the idea of using the latest observation to optimize the
proposal distribution (which is equivalent to weakening the impact of the state transition model to the
posterior) is primarily preferable when the observation is fairly accurate, but not when the observed
noise is more significant [54]. For example, the superiority of ASIR to SIR is case dependent [55]. So far,
a theoretically solid guideline for when and how much should the latest observation data be used
seems still missing. Furthermore, it is necessary to note that sophisticated proposal design usually
leads to higher computational cost, which may not pay off in practice (Section 7 in [1]).

3.2. Particle Degeneracy and Impoverishment

Sample impoverishment and weight degeneracy are similar inherent defects of only-weight-based
sampling [56]. They both lead to effects that can be loosely referred to as premature convergence.
The only difference between them is that the computing resource converges prematurely by weights
(that is, degeneracy) in the former case and by samples (that is, impoverishment) in the latter case.

3.2.1. Improve Resampling Methods

Weight degeneracy is apparently the result of particles being distributed too widely, while
sample impoverishment can be viewed as particles being over concentrated. The degeneracy converts
to impoverishment as a direct result of resampling. If the resampling is unbiased, then the more
serious the degeneracy, the more serious the impoverishment. One of the most straightforward
and effective strategies to combat impoverishment is to add zero-mean noise, a random variable,
to the state of each resampled particle [23,57], making them slightly different from each other
for better diversity. This simple approach is referred to as roughening, also known as artificial
dynamics approach [58], which was firstly proposed as early as with the bootstrap filter [59]. While
this approach improves the particle diversity and turns out to be very useful in reality, adding
artificial dynamics to the parameters, often results in over-dispersed posteriors, which is also
commonly referred to as the variance inflation problem [58]. Advanced and similar solutions include
applying MCMC transition/“resample-move” [6,18] after (or in place of) resampling.

Often, the resampling step is carried out only at selective steps when the particle diversity is
lower than a predetermined threshold. To this end, a measure of the particle diversity is required,
such as the popular effective sample size (ESS) [60], which is given by:

N ) -1
NEssx = (Z(w;((l)) ) )

i=1

It is obvious that 1 < Ngggx < Ni. The smaller the threshold, the more frequently the resampling
will be applied. Convergence of the filter when the resampling is performed based on ESS is studied
in [61]. Several new ESS functions have been derived in [62]. Moreover, the PF with random resampling
times is studied in [63].

3.2.2. Extend the Particle Property

The particles may carry more information rather than only the state and weight. For example,
the box PF [64] defines each particle as a “box” (a controllable rectangular region of non-zero volume,
e.g., a uniform distribution) in the state space, which includes the uncertainty about the state error,
in addition to the state and weight. The box PF is arguably a combination of interval-based techniques
and the Bayesian framework. In fact, one can set each particle as a separate KF (containing variance
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information), and then, the PF becomes equivalent to running a large number of KFs in parallel.
This approach is also known as mixture KF [65].

3.3. Computational Efficiency

Computational efficiency and estimation accuracy are key to filter design. On the one hand, the
strong limit theorem shows that more particles promise a better approximation accuracy [26,27,66,67].
On the other hand, a large number of particles suffers from computational inefficiency and high
memory request. For a trade-off between the two aspects, existing approaches can be classified into
three categories as follows.

3.3.1. Reduce the State Space Dimension

The number of particles required to sufficiently sample the high-dimensional state space needs to
be very large; in some special situations, it was shown that the required number of particles scales
exponentially with the state dimensionality [68]. To combat this “curse of dimensionality” problem,
an efficient and prevalent solution is to make the state space Rao-Blackwellised [69] or hierarchical [70].
For example, given that the state is divided into two sub-states: x; = [x1 t, lek]T, then:

p (Xely1k) = p (v elxoe yiu) P (x2k|y1:6) (10)

Typically, there exists an analytical solution for one sub-space, to say p (x1 x|X2 x, ¥1.c), while the
remaining part p (x,x|y1.x) that has no analytical solution still uses Monte Carlo approximation.
As such, we have: N

k . .
P (Xely1x) = leélip (xl,k|xél,1)(f)’1:k) 5)(;:’})( (x2,) (11)
1= /

Correspondingly, Ny KF iterations are required at each step for an implementation using Nj
particles. To further reduce the computational complexity, a modified Rao-Blackwellised PF was
provided in [71], which requires a single KF iteration per input sample. Furthermore, there is possibility
that both subspaces have no analytical solution accommodating the KF. Then, two nonlinear filters
such as two PFs can be applied in both subspaces [72] or, more generally, multiple PFs in multiple
sub-state space [73-75]. Furthermore, given that both subspaces are conditionally independent,
the problem can be decomposed as two sequential ones p (xk|y1.k) = p (¥11|y1x) P (X24|y1:£), Which
can be computationally more efficient. In fact, a more common and popular strategy applied with the
PF is marginalization [76], which does not consider the history data either in the prediction or in the

updating step. That is, p(x¢|y1:x—1) = p(xk|yx—1) and p(xk|y1x) = p(xk|yx)-

3.3.2. Sped-Up Likelihood Computation

Fast computing approaches [77,78] have been developed for accelerating the likelihood calculation,
which is especially useful for visual observation in which the likelihood calculation is nontrivial and
computational costly. For example, to speed up the particle weight updating, the likelihood of a
larger number of particles can be inferred by that of a small number of the so-called fulcrums which
cover the same support area as the particles [77], alleviating the linear proportional dependence of
the computational demand of the PF on the number of particles. The aforementioned likelihood-free
PF [53] can also be categorized into this class.

3.3.3. Adjusting the Number of Particles

Many approaches have been developed to control the number of particles to a minimum yet
sufficient level to meet the accuracy requirement; see the reviews given by [31,79-81]. In particular,
a theoretically-sound criterion is the statistical bound on the sample-based approximation quality.
For example, the KLD sampling [82,83] determines the required number Nj of particles so that,
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with probability 1 — §, the KLD between the sample-based maximum likelihood estimate (MLE) and
the distribution of interest is less than a pre-specified error bound threshold e. Thus, the minimum
number of particles that satisfy the condition is deduced:

F~1(1-94)

N, >
k= 2¢e

(12)
where F~! is the x? distribution with n — 1 degrees of freedom, and  is given by the number of bins
with support.

The KLD-sampling adaptation approach chooses a small number of samples if the density
concentrates on a small part of the state space, and chooses a large number of samples if the state
uncertainty is high. The disadvantage of the KLD measure is that the particles need to be divided
into bins in their state space, which can be highly inefficient when the state dimensionality is high.
Inspired by this idea, the posterior can be represented as mixtures of sample sets [84], where each
mixture component integrates one observation arriving during a filter update and the weights
of the mixture components are set so as to minimize the approximation error introduced by the
mixture representation.

In fact, the KLD-sampling assumes that samples are coming from the true posterior distribution
and ignores any mismatch between the true and the proposal distribution. It is more theoretically
rigorous and practically flexible to measure the fit of the distributions represented by weighted
particles based on KLD before and after resampling than sampling, namely the KLD-resampling [85].
This complies greatly with the identical distribution principle for resampling [1].

3.3.4. Parallel and Distributed Computing

Recent advances in computers, such as the CUDA-enabled graphics processing unit (GPU),
facilitate highly-efficient parallel or distributed implementation of the PFs; see, e.g., [86,87]. While
the sampling and weight updating are suitable for parallel computing, the resampling step forms
a bottleneck for parallel implementation, as its requires weight normalization that is naturally a
sequential computation. There are two main implementation methods for resampling parallelization:
one is to revise the conventional resampling method; the other is to develop a new resampling method
that is free of weight normalization. The interested reader is kindly referred to a review offered in [23].

In recent years, distributed PF based on wireless sensor networks has received considerable
interest, in which each node iteratively shares information with its intermediate neighbors, namely
peer-to-peer (P2P) communication, and consequently, the entire network tends to reach a global
alignment/consensus (to a certain degree). Compared to the centralized networking solutions based
on a fusion center, distributed networking offers several advantages regarding scalability to adding or
removing nodes, immunity to node failure and dynamic adaptability to network topology changes.
For this purpose, a variety of distributed P2P communication protocols has been proposed, which can
be primarily classified into three main groups:

1. Flooding: The flooding protocol provides the converging-fastest, albeit communicational costly
way to spread information over the network [88]. To note, its fastest convergence to consensus
does not matter the network topology, and is therefore immune to the network change.

2. Averaging consensus: There is a large body of work concerning averaging consensus-based
distributed filtering. The data transmitted between neighboring nodes can be posterior statistics
in the form of a Gaussian component/GM [89,90], likelihood [25,91,92], particle set [93] or raw
observations [88,94]; see also the surveys such as a taxonomy of distributed PFs [25] and a
comparison of several belief consensus algorithms [95].

3.  Diffusion: The diffusion scheme performs only one iteration of peer-to-peer communication
(i.e., the sensing and consensus time scales are the same) [96,97].
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Comparably, the average consensus performs average fusion at each P2P communication iteration,
which takes the lowest communicating bandwidth, but more iterations to reach a degree of consensus.
To save communication, one alternative is to apply gossip to randomly choose fewer neighbors
at each time (rather than all neighbors) for averaging. It turns out that under mild conditions,
this process converges over time asymptotically. Gossip-based distributed PF has been reported in,
e.g., [98]. As another communication inexpensive alternative, the diffusion severely limits the number
of iterations (to one only), which may insufficiently use the communication capability (i.e., more
iterations are actually allowed in real-time communication). In contrast, the flooding protocol [88]
aims to get the best possible consensus in a real-time-allowed number of iterations, which is therefore
particularly well suited to small and moderate networks for which the nodes have sufficient storage
and communicating power. It is of interest to design a hybrid protocol that iterates between flooding
and averaging consensus, to gain a balance between benefiting from high communication efficiency
and suffering from information overuse and slower convergence.

Distributed/decentralized filtering is different from the parallelization of a single PF using
multiple processors. The former typically realizes multiple independent filters (typically no center
nodes) based on a set of physical nodes that are spatially distributed while the latter is to speed up the
parallelization of the computational tasks of a single filter (typically requiring a center node) [99,100].

3.4. Constraint and Multimodality

In this category, we consider two types of SSM complexities for filtering, namely constraint and
multimodality. First of all, we note that research in these two topics is very prosperous in parametric
filters [1], and many technologies/algorithms developed there can be applied within the PF, as has
been done in the literature.

3.4.1. Constrained PF

Constraints arise from two perspectives [1], either linear or nonlinear, either on the state or on the
observation: physical constraints reflecting limits to the state variables, such as the limitation of speed
or angle; and design constraints, which represent desired operating limits. Constraint is expected to
help the filter achieve better estimation, if properly used. A typical example is map-based vehicle
tracking, for which road constraint information is critical.

A straightforward strategy to take into account the constraint in the PF is to accept the particles
satisfying the constraint and reject the others [101,102]. This may significantly reduce the number of
particles when there is a significant mismatch between the particle set and the constraint, leading to
poor posterior approximation. To circumvent this, the constraint can be taken into account at earlier
stages of the filtering, such as in the proposal distribution design and the likelihood weight update
calculation [103]. For the case that the state variables are defined on a compact, bounded or saturated
state space, the so-called saturated PF (SPF) has been developed [9], which exploits the structure of the
saturated system using a specific importance sampling distribution. More generally, [104] considers
the constraints on the prior particle set, the posterior particle set and the state estimation (akin to the
acceptance-rejection approach), respectively. In the proposed constrained prior design [104], a Gibbs
sampler is used, which is computationally cumbersome. As an alternative, advanced constrained
optimization is proposed in [105]. More recently, the performance limits and error bounds of the
constrained particle filter were derived in [106], which showed that the estimation error is bounded by
the area of the state posterior density that does not include the constraining interval, and small error is
observed if the target density is well localized in the constraining interval.

In fact, within all the works given so far, there is implicit constraint information on the number
of targets, which is assumed to be one exactly. In real cases, the target can disappear or appear at a
random time. For example, the target appearing/born process can be modeled as a Poisson [107] or
Bernoulli [108] distribution, and correspondingly, different random set PFs can be realized.
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3.4.2. Multimodal PF for Maneuver Target Tracking

There is often uncertainty on the state model, e.g., there are different possibilities of the real target
motion model, namely maneuvering of the target. A simple solution is given by handling maneuvers
and random process noises jointly by a white, colored or heavy-tailed noise process [59]. This will allow
converting the multimodal problem into that of state estimation with process noise with unknown
statistics. This primarily applies to insignificant maneuvers. The more general approach is to describe
the maneuvering dynamics as a jump Markov system (JMS). Simply put, there are two primary types
of JMS methods: the decision-based single-model (SM) method [109] and the multiple-model (MM)
method [110]. In the former, the filter is adaptive and operated on the basis of the model selected
by the model decision process (also known as change point detection [111]). In this regard, timely
detection of the target maneuver is key.

In contrast, the MM method employs a bank of maneuver models to describe the time-varying
motion and runs a bank of elemental filters based on these models, each being associated with a
probability. The final estimate is given by the weighted result of these sub-filters. The MM was first
applied to the bootstrap filter in [112], and further, the number of particles for each model can be
selected a priori [113] or be adjusted online [114]. Further on, advanced PFs such as regularized PF
can be used for each model in [115] to obtain a mixed Gaussian posterior distribution. The most
representative MM method is the interacting multi-model (IMM) algorithm [110]. An IMM-based
PF is proposed in [116], which incorporates a filter step that is of the same form as the interaction
step of the IMM algorithm. Similar ideas to IMM has also been developed in PFs for joint tracking
and model selection, e.g., [39,40,117]. The number of particles for different models is dynamically
adjusted in the context of parallel SMC based on the likelihood of the model [40] or based on the
predictive performance of each model [39]. However, operating multiple models in parallel can be
computationally very costly, but still, it can be insufficient when the real model parameters vary in a
continuous space [118], or oppositely, too many models become as bad as too few models.

Either way, model decision/adaption delay is inevitable [119], and it behaves as the delay of
maneuver detection in the SM method and as the time for converging to the true model in the
MM method. A more parsimonious representation of a target trajectory may be obtained by direct
modeling of maneuver times in the state process, independently from the observation times [120].
Critically, many JMS approaches show superiority when the target is indeed maneuvering, but perform
disappointingly when actually no maneuver occurs. To combat these, a novel solution [121] is to
characterize the target motion by a continuous-time trajectory function and thereby formulate the
maneuvering target tracking problem as an optimization problem with the goal of finding a trajectory
function best fitting the sensor data. The fitting approach needs neither ad hoc maneuver detection,
nor MM design and, therefore, is computationally reliable and fast. It is particularly applicable to a
class of smoothly maneuvering targets such as passenger aircraft, ships and trains, in which no abrupt
and significant change should occur for the passengers” safety, and most often, the carrier moves on a
predefined smooth route.

4. Multitarget PF

4.1. New Challenges

What have been addressed so far are primarily regarding the simple STT conditioned on the
following assumptions: (1) the number of target is one, (2) except for a few works, there is no false and
missing observation, and (3) state estimation can be easily produced in the manner of MMSE or MAP.

However, for general MTT in the presence of either false and missing observations (namely clutter
and misdetection, respectively), the standard PF cannot be used directly. However, instead, there is a
need for new modeling techniques to describe complicated scenes and for the MTT-PF algorithm to
deal with the following challenges:
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C1 The number of targets in the field of view is unknown and time-varying. The filter needs
to model target appearance and disappearance, among some other reformations, such as target
split/spawning and merging.

C2 False, missing or multiple detection and unresolved targets: False alarms and missing
reports are the inevitable deficiencies of any actual sensor, which may take place with unknown
and time-variant rates. In addition, a target may produce multiple measurements in a single scan,
due to extended targets [122] or multipath echoes of radar [123], etc. On the other hand, multiple
targets may generate a single measurement, namely unresolved targets [124].

C3 The association between the time-variant measurements and the targets/tracks, namely
measurement-to-track (M2T), is unknown.

4.2. M2T Association-Based MTT-PF

Traditional “divide and conquer” approaches “decompose” the MTT problem into multiple STT
problems based on M2T association, each of which is resolved using a conventional single-target filter,
with their filtering results integrated to form the final verdict. The key is on M2T association. Interested
readers are referred to the cutting edge, comprehensive survey [35].

Although many M2T-based MTT methods have been successfully developed for a variety of real
applications such as air traffic control, the M2T association is computationally cumbersome and often
needs significant and even ad hoc approximation [125]. For instance, a tracking scenario is illustrated
in Figure 1 where one will enjoy high confidence in associating that highlighted black measurement to
the track ¢, but will be confused in identifying the tracks a and b for which there are multiple highly
likely M2T association possibilities. In cases of a low signal-to-noise ratio, intensive targets and a high
misdetection rate, M2T association quality is severely limited, so for the M2T-based trackers. However,
once M2T association is properly solved, the corresponding filter typically does not need much change
from the standard STT implementation. Therefore, we omit research in this regard as our focus is on
the PF algorithm.

Ne
7 @
\y .&

Figure 1. Measurement-to-track association: a confusing case and a simple case. Dots represent
measurements (gray indicating the clutter), while the curves tracks; the same color between a curve
and a dot represents the real association between the corresponding track and measurement.

4.3. MTT-PF Free of M2T Association

Different from the data association-based “divide and conquer” solution, one may consider
estimating the multitarget state as a whole by extending the PF within the standard Bayesian framework
or based on FISST.

4.3.1. Extension of Conventional PF

The pioneering attempts to deal with MTT using the PF are [126,127]. A theoretical framework
for applying the Bayesian filtering to MTT is proposed in [128], of which the implementation is given
in [129,130]. Based on the joint multitarget probability density (JMPD) [131,132], the property of each
particle is extended to contain the information of the total number of targets, as well as the multitarget
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state. Obviously, both the complexity of the algorithm and the number of required particles increase
with that of the number of targets, which suffers from the curse of dimensionality. When the targets
are far from each other, their motion and observation processes have little correction of each other.
In this case, JMPD can be approximated as the production of the posterior PDFs of multiple individual
targets, which are assumed independent of each other, namely multitarget posterior independence, for
simplifying the calculation and even improving the accuracy [130,133].

Furthermore, based on the posterior independence assumption, a separate PF is used to detect
the new target based on likelihood ratio tests (LRTs) [134]. Similarly, a hybrid PF approach is proposed
in [135], where the two filters are connected by a clustering process, one for target detection and the
other for target tracking. However, the posterior independence assumption holds only when targets
are very distant, but not when multiple tracks are approaching. Therefore, [136] presented a concept of
“symbiosis particle”, i.e., when the targets are far away from each other, filtering is performed using
multiple independent PFs, respectively (based on the principle of posterior independence), while when
the targets are approaching, the corresponding PF is fused into a single PF for joint posterior estimation.
This allows the individual PFs, when necessary, to combine their random measures, forming a new
random measure represented by particles of higher dimensions or a single PF to be split into multiple
PFs with particles of smaller dimensions.

The above methods extend the properties of conventional particles so that it is no longer limited
to a single-target state, but these extensions are still restrictive in handling clutter, misdetection and
a closely-distributed /random-number-of targets. For the general MTT scenes, the FISST developed
by Mahler [2] appears as a powerful tool to develop different algorithms. Correspondingly, there is
a large body of extensions of the PF based on FISST, for which the reader is kindly referred to [3].
In particular, the probability hypothesis density (PHD), which is the intensity associated with the first
order moment of the multitarget random finite set (RFS), has been developed as a powerful alternative
to the full multitarget posterior for time series recursion [137,138]. The filters are superposition filters
that were derived using RFSs [139], which involves a non-trivial phenomenological shift from filters
that estimate “object probability per unit state space” (namely the probability density) to filters that
estimate “expected number of objects per unit state space” (namely the PHD).

We note that there are also some other attempts at extending the conventional PF based on random
set representation of the state and observation, which is different from that of Mahler’s formulation,
such as [140,141]. Connection or re-derivation of traditional M2T association approaches based on a
random finite set can be found in [142,143].

4.3.2. Estimate Extraction for Random Set PF

Extracting state estimates for each target from the multitarget posterior or the PHD, namely
multitarget estimate extraction (MTEE), is an essential requirement for any multitarget filter, whose
key performance assessment is based on accuracy, computational efficiency and reliability. When M2T
association is avoided in the random set PFs, the measurements will be used to update all particles in
the same manner, for estimating the PHD. There is no additional information to distinguish different
targets. In such a case, neither the EAP estimator nor the MAP estimator applies directly. Instead,
pseudo-optimal algorithms such as clustering algorithms may be applied to analyze the structure
of the particle set for MTEE. However, as an iterative computation process, clustering is usually
computationally costly and typically guarantees no convergence. When the number of clusters is
inconsistent with the real number of targets, the clustering results can be very erroneous.

Unlike clustering, one may compare the prior/prediction with the observation to identify the
more likely potentially real observation (the one that matches the prior better) and then based on the
selected real observations for individual single-observation single-target estimate calculation. This idea
has been implemented in several works including [144-147], which shows superiority over clustering
approaches. The reader is kindly referred to [147] for more discussion and comparison, where a
measurement-oriented extended EAP called the multi-EAP estimator is proposed.
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More generally, the label-based multitarget tracker [148,149] integrates the M2T association with
the filtering process for track management, in which the filter does not only estimate the PHD and
its cardinality, but also the labels, however at the price of significantly higher computational cost.
Uncertainty related to the assigned labels has been generally studied in [150], where a mathematical
characterization of the labeling uncertainties with clear physical interpretation is offered. Based on the
labels, the MAP estimation can be carried out as in the traditional multi-hypothesis tracker (MHT)
based on M2T association.

MTEE still confronts two kinds of challenges (cf. C2):

(1) Misdetection: In any way, if a target does not report any observation, the filter can hardly
form an efficient posterior estimation for that target. A potential solution is to construct
pseudo-observations [151] for misdetected targets, thus forming a pseudo-posterior estimate.
However, this, if created wrongly, can easily cause another challenge: false alarm.

(2) False alarm: If the clutter unfortunately falls in the region of high prior density /PHD, raising a
local posterior peak, then the filter will likely form a false estimate.

It is difficult to avoid both misdetection and clutter jointly in practical sensors, which actually
stand in opposite positions: if one is reduced, the other will likely be increased and vice versa. It seems
that the only efficient way to combat both is employing more information for advanced distinguishing
of a signal, such as color of the target [152] or multi-scan track information (e.g., the track-oriented
tracker [153] and online trajectory fitting approaches [154]) for smoothing, to compensate for the
misdetection and/or identify and remove false alarms with better confidence. We will further illustrate
this in the following subsection on track management.

5. Key Tracking Issues beyond State Estimation

5.1. Track Management

Track management lies at the core of target tracking. The tasks for track management include
track initiation, maintenance, termination, splitting and merging, etc., which are all challenging issues.
For example, a track confusion case is shown in Figure 2 for which it is hard to say whether tracks a
and b are merged forming track c or one of them is terminated and the other survives.

A A A 0 ¢ o

Figure 2. Confusion between track termination, merging and birth. The same color and shape indicate
the same track (therefore 4, b, c represent three respective tracks), but only the same color or only the
same shape represents only possibly the same track (therefore, the relationship between a/b and ¢
is uncertain).

For traditional M2T association-based multitarget trackers, the track quality is limited by the
computing resource as only a limited number of M2T hypothesis is allowed. However, it is necessary
to note that, even tracking a single target, track management can still be challenging due to the
unknown target initiation and termination times, false measurements and possibly time-varying
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target trajectory behavior [155]. However, for the random set multitarget filter, the filter output
is the multitarget joint-density /intensity rather than distinguished estimates, for which the track
management is intractable. Basically, two classes of strategies exist. One is operating a separate M2T
association module simultaneously with the filter. For this purpose, the M2T association module
associates and manages the multi-frame state estimates given by the MTEE approach. In this manner,
the M2T association, which has graciously been avoided in the traditional filtering process, has instead
been moved outside the filtering framework. Disadvantages of this method include the increasing
demand for storage space and computation time and the use of heuristic/ad hoc rules/thresholds to
distinguish track birth, splitting/merging and termination, etc. [52,156].

The second method is to add a “label” to each particle, as previously mentioned, indicating the
association between the particles and the tracks. This method integrates track management into the
filtering process, in which the MTEE is carried out on the marginalized particle distribution (unlabeled
state) and the label variables based on the maximum labeling probability criterion or the Bayesian
criterion [157]. An improved labeling approach called “dyeing” is proposed in [158] for associating
the particles with measurements (rather than with tracks) based on the multi-EAP estimator for PHD
filtering, which is a soft decision approach and does not have to label all particles (but instead, some
are classified as belonging to false alarms and labeled as no track), enjoying lower computational
complexity. In [159], the trajectory random set is defined, and on this basis, the Bayesian estimation
paradigm of the whole trajectory of the tracking target is given. The filter state contains not only the
current target state, but also the history target state information over the past time period. The idea of
random sets of trajectories has been implemented on the basis of the PHD filter in [160]. Obviously,
recording and updating the entire trajectory is very costly in computation.

In essence, track management and state extraction are two modules that significantly affect
each other: If the target estimate is extracted incorrectly or inaccurately, it is difficult to guarantee a
high-quality track. In turn, track information can also be fed back to improve the target-state estimation
as argued, especially to help identify and remove false alarms and misdetections. For example, the
aforementioned multi-EAP estimator [147] and the “dyeing” track management approach [158] are
intrinsically connected. Research into their combination is insufficient, as most efforts are devoted to
either part.

In addition to the track splitting and merging, MTT suffers from even more complicated
challenges such as target crossing, occlusion, missed detections, etc. [161]. These need the design
of optimal/reasonable decision rules based on specific circumstances and practical needs. However,
since these parts are more related to the system modeling than to the filter, we shall omit further
discussion here.

5.2. Parameter Estimation for Unknown Scenes

In general, inference methods can be used as modules in parameter learning systems, so for the PF
for maximum-likelihood parameter learning [162] and in Bayesian approaches such as Particle MCMC
methods [18]. A review of both batch and online parameter estimation methods within the PF is given
in [20] which classifies the existing solutions to either expectation maximization (EM) or maximum
likelihood (ML) approaches. In the realistic scene, many unknown and even time-varying parameters
are involved in target appearance, motion, evolution and termination, clutter, measurement noise,
etc. All of them have a crucial impact on the filtering performance. For example, the clutter density
directly affects the target number estimation, while the new-born target model designed for the filter
highly dominates whether the filter can accurately capture the new target. Sometimes, these unknown
parameters can be obtained by off-line learning/system design, approximately, such as radar target
detection probability, clutter density, etc. However, in many cases, they are time-varying and cannot
be obtained off-line. Then, online estimation is needed for which the problem is extended from the
pure state estimation to the simultaneous state-parameter estimation.
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For simultaneous state-parameter estimation, a classical solution is to extend the state variable to
include the unknown parameters [58], namely augmented approach; see also Sections 5.2 and 5.3 in [1].
By this, unfortunately, the computational complexity increases with the increase in the dimensionality
of the states. Online simultaneous state-parameter estimation approaches can be classified to likelihood
and Bayesian derived methods [21].

In the context of target tracking, it is more common and the computation more efficient to estimate
the parameters first and then the target state, for which there are two main protocols, differing in the
statistical properties of the unknown parameters, e.g.:

(1) In the case that the parameter changes relatively smoothly or is simply time-invariant,
the historical data in the past time window can be utilized to estimate the unknown parameters.
This protocol has been realized in [163,164] for estimating target detection probabilities and
clutter rates.

(2) Inthe case that the parameters are strongly time-variant, only a few of the latest observations can
be used to estimate the parameter. Based on this line of thinking, online estimation methods for
the new-born target function and its intensity magnitude are given in [165] and [166], respectively,
in which only the newest observation data are used.

Finally, we highlight two notable findings with particular regard to unknown noises:

o  SIR-type filters may suffer from sample impoverishment and thereby benefit from a sampling
proposal that has a heavier tail, e.g., the covariance simulated for state transition noise for particle
preparation is larger than that of the noise involved in the real state dynamics, which is explicitly
referred to as the direct-roughening strategy [57]. This is because a comparably big transition noise
used for particle propagation can spread overlapped particles for better diversity to counteract
impoverishment, giving closer-to-the-true approximation of the posterior. As such, the SIR filter
tends to yield a biased (larger-than-the-truth) estimate of the transition noise if it is unknown and
needs to be estimated, at least in the forward-only filtering estimation [167].

e  “Theoretically best achievable second order error performance, in target state estimation is
independent of knowledge (or the lack of it) of the observation noise variance [168].” This is
in accordance with the results in [169], which demonstrates that the noise covariances are
unnecessary in estimation, as they can be integrated out. Somehow surprisingly, it was shown
that the filters that do not use the true value of observation noise variance but instead estimate
it online can achieve the theoretical bound, while the filter, which is using the true value of the
Gaussian observation noise variance, cannot.

6. Conclusions

This paper reviews the advances, as well as remaining challenges in particle filtering
implementations for target tracking. Some important topics such as the convergence and stability of
various PFs and their applications in other fields are not discussed. We also leave the review of the PF
for extended or group targets, for which the interested reader can refer to [15,122].

Multitarget tracking is one class of the most challenging state estimation problems, which on
the one hand, requires reliable and flexible system modeling and parameter estimation techniques,
and on the other hand, needs effective information fusion and decision techniques, for addressing
sensor data fusion, track management, target classification, performance evaluation, etc. Despite the
super success of modern filters in a variety of applications, there remain significant challenges such as
long-range trajectory prediction and tracking under harsh and unknown scenarios [154]. It is still a
promising yet challenging work to develop more advanced PFs to confront the challenge and to fulfill
the requirements of users, given the rapid development of advanced mobile computing technology
and wireless sensor network technology.
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