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Abstract: Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to
engage in a secondary task, there may become a time when it does. Monitoring the behaviour of
drivers engaging in various non-driving activities (NDAs) is crucial to decide how well the driver
will be able to take over control of the vehicle. One limitation of the commonly used face-based head
tracking system, using cameras, is that sufficient features of the face must be visible, which limits the
detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used.
This paper proposes a novel orientation sensor based head tracking system that includes twin devices,
one of which measures the movement of the vehicle while the other measures the absolute movement
of the head. Measurement error in the shaking and nodding axes were less than 0.4◦, while error in
the rolling axis was less than 2◦. Comparison with a camera-based system, through in-house tests
and on-road tests, showed that the main advantage of the proposed system is the ability to detect
angles larger than 20◦ in the shaking and nodding axes. Finally, a case study demonstrated that the
measurement of the shaking and nodding angles, produced from the proposed system, can effectively
characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing
on a smartphone.
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1. Introduction

The autonomous vehicle is one of the next generation trends in vehicle development. According to
SAE International Standard J3016 [1], Level 3 vehicle automation, or highly automated driving (HAD),
presents an exciting new development in the field of driving research and technology. The European
roadmap has suggested Level 3 automation will be available at low speed and in less complex driving
scenarios by 2020. Higher level autonomy is expected to be available on motorways by 2025 and
in cities by 2030. Although at present legislation does not allow drivers in a Level 3 autonomous
vehicle to engage in non-driving activities (NDAs), HAD may in the future allow drivers to more
freely engage in NDAs during much of the time while the automated system monitors and reacts
to the driving environment. HAD is not entirely autonomous and at some points during a journey
(for example when approaching a complex or less predictable driving scenario, such as temporary
road works) the driver will be required to disengage from their NDA and return to the driving task.
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This suggests a new form of driver interaction with the vehicle and poses new challenges in the science
of driving, namely how to achieve a pleasurable driving experience that allows for engagement in
NDAs. However, the development of HAD also places a new demand on the driver, which will require
the switch from NDA engagement to driving the vehicle, whenever requested by the system. Therefore,
the task of driver monitoring will change from monitoring the drivers’ inattention level while driving
to monitoring the drivers’ attention level while engaged in a NDA. The measurement of attention level
will play an important role in determining when a driver can be given control of the vehicle. The main
challenges here are that the potential NDAs are diverse and that drivers may engage in more complex
NDAs than during standard driving. According to Sivak and Schoettle [2], the most common NDAs
UK drivers reported wanting to engage in were: reading (7.6%), sleeping (7.2%), texting or talking
with friends/family (5.5%), working (4.9%), watching movies/TV (4.2%), and playing games (1.9%).
Developing a robust monitoring system to fully cover these NDAs is a substantial challenge.

Apart from eye movements [3], the tracking of which is particularly vulnerable to lighting conditions,
head tracking is one of the most commonly used approaches for studying driver attention [4–10].
The connection between visual focus and head pose estimation has been studied to construct a
distribution model [11]. Asteriadis et al. [12] and Mbouna et al. [13] presented their research on
observers’ attention level by analysing both gaze direction and head pose estimation. Interestingly,
recently head motion, along with lane position and vehicle dynamics, has been used to predict a
driver’s intent to turn [14] and change lanes [15]. However, these studies have focused on drivers
who were actively driving, and very little research has been conducted on drivers engaged in NDAs,
based on head movement. Many state-of-the-art vision-based head pose algorithms have taken the
necessary steps to be automatic, fast, and person invariant [16]. The most commonly used approach
to measure the orientation of the head is reliant upon cameras and the associated image analysis
algorithms. The techniques range from classic knowledge based 3D-models which are projected and
fitted on the image, to modern algorithms based on machine learning and artificial neural networks [17].
One limitation of these approaches is that the accuracy dramatically reduces due to changes in light
conditions, or any other disturbances. For example, the driver’s face may be occluded by cosmetic
accessories (e.g., scarfs, hats, glasses, chains). Another disadvantage is that the performance is limited
to within a certain range of angles. The range of head motion for an average adult male encompasses
sagittal flexion and extension (i.e., forward to backward movement of the neck) from −60.4◦ to +69.6◦,
frontal lateral bending (i.e., right to left bending of the neck) from −40.9◦ to +36.3◦, and horizontal
axial rotation (i.e., right to left rotation of the head) from −79.8◦ to +75.3◦ [18]. The present research
shows that a single camera can only cover from −20◦ to +20◦, meaning that current approaches will
fail if there are large head movements in any direction. A natural choice for the design of a more
flexible system is through the use of multiple-cameras [19], but the cost of such a system and the
computational time will also be increased.

This paper reports the development of a new head movement monitoring system which is based
on twin orientation sensors in order to improve fidelity and the robustness of head tracking. This new
system is then evaluated by studying a driver engaging in selected NDA tasks while traveling in a
simulated Level 3 autonomous vehicle.

2. Materials and Methods

2.1. Orientation-Sensor-Based Head Tracking

Since more and more portable devices (e.g., smartphones) demand orientation data for many of
their features, the availability and accuracy of these sensors has improved dramatically. Orientation
sensors are now an inexpensive and easy-to-use method for 3D tracking. Due to their small size,
they can easily be integrated into portable devices for monitoring head movements within a vehicle.
The potential for orientation sensors to be used in a moving platform, like planes or vehicles, has been
investigated based on static simulators [17]. A limited number of studies have also reported the
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use of small-scale inertia measurement units in a moving platform [20–22]. Solutions which use this
approach to detect head movement, with an accuracy of <1◦ per axis, are commercially available [23],
but they are costly and usually do not work on a moving platform. This paper proposes a solution
which uses two independent sensors, one of which measures head movement and the other measures
vehicle movement. Measuring vehicle movement is important, as it means that the effect of the vehicle
movement on head movement can be removed.

2.1.1. Sensors

The sensor chosen for measuring head orientation was a BNO 055 (Bosch®, Reutlingen, Germany).
This is a relatively new chip that is designed for high fidelity navigation applications in portable
devices. It includes three triaxial sensors for measuring acceleration, rotation speed and magnetic fields,
respectively. The three measures are fused by an internal logic chip that calculates the orientation of the
system relative to a geostatic coordinate system that aligns with the earth’s magnetic and gravitational
field. The logic chip also compensates for the effect of temperature on the sensors and automatically
calibrates them. For the gyroscope, the calibration routine automatically removes any drift through
resting the device in a static position for a few seconds. The accelerometer is calibrated by switching
between 6 static positions, each of which is perpendicular to the other. The magnetometer initially
calibrates itself by drawing the ‘8’ pattern in the air, and then dynamically compensates for the effect
of variations in the magnetic field, while being moved. Such an approach generates reliable tracking
over a long period and minimises the drift that occurs during measurement. The proposed device
benefits from the high sampling resolution (16 bits) and an internal filter that effectively removes
noise from the output. The data can be retrieved by communicating via the I2C protocol, which is a
popular standard that is supported by many microprocessors. Due to the low-pass filtering process,
the maximal sampling rate is 100 Hz. A snapshot of the device is shown in Figure 1.
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Figure 1. Designed head movement tracking device (left) and the BNO 055 on an Adafruit™
breakout board.

2.1.2. Sensor Fusion

On a static platform, a tri-axial accelerometer is sufficient to determine the nodding (X) and
rolling (Y) axes. The earth’s gravitational field provides the necessary reference to determine the
shaking (Z) axis. Since the proposed system will be used on a moving platform, this device uses
a gyroscope which detects the rotation speed to compensate for disturbances, such as vibration or
vehicle acceleration. Rotation speed is integrated to yield a secondary measurement for the rotation
angle and both values are then fused to a single measurement using a Kalman filter. Another problem
is that the system’s Z axis will drift over time due to inaccuracy in the sensor that accumulates over
time. The BNO 055 uses a tri-axial magnetometer to provide another reference.

2.1.3. Communication

The Uno R3 (Arduino®, Turin, Italy) was chosen as the communication gateway between the
device and PC. This is a popular platform in the low-price segment of the market that has many
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compatible parts. The variety of Input/Output-ports and the fact that the power input can be provided
via a cable or battery make this platform a prototyping-friendly solution. The Uno R3 connects to a
PC via the standard USB port, which enables the system to be used in conjunction with a variety of
operating systems, such as Windows or Linux. A Windows serial port is used as the communication
protocol. The set of commands that can be used to control the device are called by software that runs
on the PC. The maximal sampling rate of this protocol is about 200 Hz, which is acceptable for this
system as it is twice the maximal sampling rate of the sensor. The data flow is illustrated by Figure 2.
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2.1.4. Attachment

It is important to ensure the sensor has a firm connection to the head, so that there is as little
relative movement as possible. A generic head strap that is intended for action cameras was used.
The strap has a support that goes over the head, which minimises movement in the Z direction, and can
be adapted to each individual by changing the length of the straps.

2.1.5. Coordinate System

This study also used a camera-based head tracking system to compare with the system developed
here. Establishing the synchronisation between the two devices is important. Figure 3 illustrates
the typical definition of head movement in 3 axes. The data produced by the head tracking device
are relative to a geostatic reference frame. To ensure that the axes of the device align with the head,
an initial calibration was required. This was accomplished through changing the position of the device
by moving the elastic head strap. The testing person faced towards the camera and the device was
moved until the orientation data of the device reached the origin point. If a different reference frame
was required, an additional calibration routine was performed so that the head orientation data could
be transformed to the reference frame. To do so, the individual being tested faced straight towards the
camera and the Euler angles, which correspond to this position, were saved. This vector of angles was
then subtracted from all future measurement, as expressed below:

−−→ocam = −−−−→omeasure −−−→ocalib (1)

where −−→ocam is the set of Euler angles in the camera reference frame, −−−−→omeasure are the current
measured orientation Euler angles and −−→ocalib are the Euler angles which are saved from the previous
calibration process.
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Since the driver is on a moving platform, one device with a geostatic reference could not separate
vehicle movement and head movement. To solve this problem, a second identical device was used
to monitor the vehicle movement only. The device must be positioned so that its axes align with the
vehicle’s main axes. This can be done using the same manner as for the participant being monitored.
The final set of Euler angles, that describe the head’s orientation, are calculated by:

Z = ZH − ZV (2)

Y = YH − (cos(Z) ∗YV + sin(Z) ∗ XV) (3)

X = XH − (sin(Z) ∗YV + cos(Z) ∗ XV) (4)

where X, Y and Z are the final measured Euler angles of the head and the indices H and V denote the
corresponding devices attached to either the head or the vehicle.

2.1.6. Software

To assist with the calibration process, as well to display and export the data, in-house software
was developed using Python (see Figure 4). Full calibration was carried out on both devices before
the experiment began. The operator received real-time feedback regarding whether the calibration
succeeded (green flag) or did not (red flag), for each axis, from the device’s internal algorithms,
as shown in the right part of Figure 4. This software only used a small proportion of the CPU resources
to ensure that the camera-based head tracking system, where the video has High Definition (HD)
quality, could work in parallel on a single laptop. To achieve this target, the software limited the
sampling rate of both devices to 32 Hz. Although this is three times lower than the capability of the
sensor, this is sufficient to capture all relevant head movements and to facilitate comparison with the
data collected using the camera.
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2.2. Camera-Based Head Tracking

To validate and compare the results from the proposed system, this study also developed a
camera-based head tracking system. The algorithm to analyse the data started with face detection to
locate the face, followed by facial landmark detection and projecting 3D modelling. The overview
of the algorithm is illustrated in Figure 5. For face detection, two state-of-the-art face detection
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methods were used: Dlib [24] and Pixel Intensity Comparisons Organised (PICO) [25]. Dlib defines a
learning rule to score different locations and scales in an image by building feature pyramids. Through
repeated smoothing and subsampling, a feature map is calculated for each pyramid level in each
image. A coarse root filter is then used to roughly define an object and more delicate filters are used
to define smaller parts of the object using a higher resolution. This results in a robust and accurate
output for frontal face detection. PICO is an extension of the Viola-Jones object detection algorithm [26].
A joint of decision trees with pixel intensity comparisons is taken as binary tests for each binary
classifier. A cascade of the classifiers will be slid through the whole image at every location and
with all scales. If a region successfully matches every member of the cascade, it will be classified
as a region of interest (ROI). The learning process consists of a greedy regression tree construction
procedure and a boosting algorithm. This method does not require complex computation of integral
images, image pyramid, Histogram of Oriented Gradients (HOG) pyramid or any other similar data
structure. All binary tests in internal nodes of the trees are based on the same feature type. Having
detected the ROI on the face, a recently developed method called Constrained Local Neural Field
(CLNF) [27] was performed in Openface [28]. CLNF is an extension of Constrained Local Model (CLM),
as proposed by Cristinacce and Cootes [29], that uses a probabilistic patch expert (landmark detector)
to learn non-linear and spatial relationships between the input pixels and the probability of a landmark
being aligned. Moreover, the fitting algorithm is replaced by the advanced non-uniform regularised
landmark mean-shift method for optimising. This allows CLNF to deliver more reliable and efficient
landmark detection. Having analysed the tracked facial landmarks, the variation pose and motion can
easily be calculated [30]. As a result, a 3D model, including yaw, pitch and roll, can be built from these
points of interest using a 3D projection, according to the camera parameters [28]. CLNF works on
tracking by using a well-trained three-layer convolutional neural network (CNN) to predict landmark
detection from previous frames in the video stream. If the CNN tracking fails, due to the observer
leaving the view, the system will then reset to face detection.
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3. Results

3.1. Accuracy Validation of a Single Device

To validate the accuracy of the device on a static platform, a test using a welding robot (Kuka®,
Birmingham, UK) was carried out. The device developed in this project was firmly attached to the
robot’s arm using adhesive tape, as illustrated in Figure 6. The main reason to employ this approach is
that the robot can rotate precisely in any axis. The alignment of the device was ensured by rotating
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the device, while checking the software, until the orientation data read that the device was at the
origin point.

The robot was programmed to rotate to five different positions, with an offset of 25◦ between
each one. The speed of rotation was chosen to be 30◦/s, which is about four times slower than the
average movement expected in non-driving tasks [31]. This should ensure that any dynamic effects
were minimised during this test. All five positions were taken into consideration and the errors are
averaged and are shown in Table 1. This shows that the average error for both X and Z axes were less
than 0.4◦, while the error for Y was considerably higher (about 1.5◦). This may be due to the design of
the device.

The transient behaviour of the tracking device can be described as over-dampened, meaning that
the value was not overshooting. The measurement of X axis is shown in Figure 7 where no overshoot
was observed, which suggests a good performance on transient behaviour.
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3.2. Calibration Error between Two Devices

When both devices were tested, there was always an error between the Z axes, because the
magnetic sensor of each device were calibrated slightly differently. This means that as soon as the
position, relative to the magnetic north pole, was changed a slight difference between the predicted
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positions of both devices would occur. To evaluate the effect of this behaviour, two fully calibrated
devices were placed close to each other on a rigid mount. The short distance between the two devices
ensured that the influence of local magnetic fields on the devices were as even as possible, so that
the error would be cancelled out. The rigid mounting ensured that their relative positions were not
changed during the test.

The test was carried out by turning the mount slowly more than 360◦ about the vertical axis,
resulting in the collection of data for the shaking axis of both devices. The frame rate was 32 Hz and
the test took about 5.2 s, which meant that each data point corresponds to a roughly 2◦ of change in
the shaking axis. As shown in Figure 8 the biggest error occurred at the position opposite to the start
position, and at that point was about 2.3◦. This figure also shows that the error stayed close to zero for
about 31.3◦, because the sensor fusion algorithm can use gyroscopes to verify the exact movement for a
certain period (in this case, 0.7 s). After this time, the gyroscope’s inaccuracies accumulate enough for
the fusion algorithm to try to estimate the position using the magnetic sensors alone. This is when the
error instantaneously increases to more than 1◦. As shown in the right plot of Figure 8, the maximum
error was smaller than 3◦. It should also be noted that, rather than measuring the overall accuracy
of the sensor, which has been conducted in Section 3.1, this section aimed to evaluate how another
sensor would perform, relative to the tested device, and how they might affect each other in terms of
electro-magnetic interference.
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3.3. Indoor Testing

One large challenge associated with testing two head tracking systems, at the same time, is the
synchronisation of the data acquisition process. To cope with this issue, an optical indicator, that was
visible to the camera, was integrated into the head tracking system. One of the available output ports
of the Uno R3 was used to power an LED at the front of the head that lit up as soon as recording of the
new system began and switched off when the recording ended. Figure 9 shows two snapshots where
the LED is on and off.
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The experiments were conducted under the following conditions: (a) all movements in three axes
were less than 45◦; (b) no quick movements; (c) movements took place in the centre of the camera,
and (d) no occlusion of the face. The experiments were conducted in a well-lit room in front of a
window to partly simulate the conditions inside a vehicle. A Y50 Laptop (Lenovo®, Beijing, China)
was used and its built-in camera used to record the images at 30 frames per seconds (fps) with a
resolution of 1280 × 720 pixels. The results for the three axes for both head tracking systems are shown
in Figure 10. The length of the data collection was 1 min. These results show that the measurements of
shaking and nodding were highly similar between the two systems, while the measurement deviation
for rolling was significant. This error was mainly caused by the developed sensor, which was more
than four times higher than the error on the other two axes (see Table 1). Furthermore, the rolling
movement in this experiment was very small, which results in the deviation between these two systems
being more visually obvious. It has been observed from this experiment that the range of rolling
([−5◦, 5◦]) was significantly smaller than that for the other two axes ([−40◦, 40◦]). When the degree
of shaking or nodding was larger than 20◦ or smaller than −20◦, the camera-based system cannot
measure movement accurately due to face detection failure. Clearly the camera-based system would
have difficulties monitoring NDAs which included large movements.
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Figure 10. Comparison of head tracking for the proposed head tracking system (blue) and the
camera-based tracking system (red) from the in-house experiments.
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To further analyse the performance, Figure 11 shows the differences between the two systems
by angle in the clustering form (blue scatter), as well as by mean (red curve). This shows that if the
shaking (yawing) angle is within the range of [−10◦, −10◦], the average difference is less than 2◦,
but increasing the angle increases the difference. Moreover, a small constant offset (2◦–5◦) between
the two systems can be observed in the shaking measurement due to an error in the calibration of the
two systems.
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Figure 11. The absolute difference between the two tracking systems against different yawing angles
from the in-house experiments.

3.4. On-Road Testing

The proposed head tracking system and the camera-based tracking system were then trialled
on-road. Figure 12 illustrates the experimental setup, where the person in the passenger seat was used
to simulate the driver in a Level 3 autonomous vehicle. A C920 HD Pro camera (Logitech®, Newark,
CA, USA) working under the resolution of 1280× 720 pixels and the frame rate 30 fps, was fixed directly
facing the face of the person being tested. The reference device for the head tracking system was located
on the floor under the passenger seat and the second device was attached to the back of the person’s
head. It should be noted that the LED indicator was facing the camera for synchronization, but was
moved to the back during the testing phase, in order to avoid interference with the camera-based
tracking system. All data were collected used a Lenovo® Y50 Laptop with 2.2 GHz Intel-core i7
processor running on the Windows 10 operating system. The experiments were conducted under good
illumination conditions to ensure adequate performance of the camera-based tracking system.
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The two head tracking systems were compared across the three axes in an on-road test
(see Figure 13). Similar results to those from the in-house test are seen here, in that the measurements
of shaking and nodding were highly aligned while the measures of rolling were less well aligned.
The rolling movement in this experiment was larger than found during the in-house test. Although
the deviation of roll measurement was large, the observed patterns form the two systems were similar.
When the degree of shaking was larger than 20◦, the camera-based system was not able to accurately
measure movement. In the last few seconds, on the nodding axis, the camera-based system lot track
and jumped back to the origin, due to a large shaking movement (approximately 50◦) where one-half
of the facial features were not visible anymore. The drifts of shaking and rolling were more severe
than those during the in-house test, due to the error from the reference device on the moving platform.
Table 2 shows the averaged difference between the two tracking systems for the in-house and on-road
tests. This shows that the average difference for the on-road tests were 2.45, 2.77 and 2.26 times higher
than those found during the in-house test for shaking, rolling and nodding, respectively. According to
a statistical test, the 95% confidence range was [1.85, 3.13].
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Table 2. Averaged difference of the two tracking systems between the in-house and on-road tests.

Axis On-Road Tests (◦) In-House Tests (◦)

Shaking 4.9 2.0
Rolling 3.6 1.3

Nodding 4.3 1.9

3.5. A NDA Case Study

This section discusses the potential of the proposed head tracking system to characterise the driver
behaviours using two NDAs. The two NDAs selected were “chatting with a passenger” and “using a
smartphone”, which were tested inside a static vehicle. Three participants, comprised of two males
and one female, were tested and each individual test was recorded for 5 min. The setup of the system
was the same as that for the on-road test.

Figures 14 and 15 show the shaking and nodding angles from the three participants. Figure 14
shows that for all three participants, the shaking angles during chatting regularly moved towards
negative angles of up to 50◦, while the shaking angles of playing with a phone were much more
consistent and very close to zero. The opposite pattern was observed for the nodding angles, where
the values were close to zero while chatting, but were mostly positive (about 20◦) while playing
with a phone. The histograms displaying the measured angles for all participants show that when
they were “using a smartphone”, the shaking value had low variation and an average close to zero.
In contrast, the shaking value for ‘chatting’ had a significant shift to one direction and the variation
was larger. This observation was to be expected, as while chatting the participants regularly turned
in the direction of the passenger. There were two obvious peaks in the shaking angle, one of which
is about 0◦, indicating that the participants were looking directly ahead, and the second which is at
about 15◦, indicating that the participants were facing towards the passenger. Furthermore, the mean
for nodding was close to zero during chatting, while the mean while using a smartphone shifted
significantly as the participants were constantly looking down at the phone.

In the previous section it was found that a single camera-based tracking system can only detect
the shaking and nodding angles within about 20◦. However, a much wider distribution of angles can
be observed in Figure 16, which suggests an advantage for the system developed here.
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Table 3 shows the percentage of time when the angles were larger than 20◦, which suggests that a
single camera-based head tracking system could fail more than 40% of the time for the shaking angle
during chatting and the nodding angle while using a mobile phone.

Table 3. The percentage of time when the angles were larger than 20◦.

Axis Chatting Playing Phone

Shaking 44.61% 0.93%
Nodding 4.74% 42.57%
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4. Discussion and Conclusions

This paper proposed a novel head tracking system to monitor driver behaviour, particularly for
drivers engaged in various non-driving tasks in a Level 3 autonomous vehicle. The whole system includes
two identical integrated devices, attachment device and in-house software for system calibration and
data collection. The main novelty of this system is the introduction of twin devices, one of which
acts as the reference to measure the movement of vehicle, and the other which measures the absolute
movement of the head. A LED indicator was employed to synchronise data capture between the
camera-based tracking system and the system developed in this study. To validate this system,
four experiments have been undertaken and produce the following conclusions:

• Through a test using a robotic arm, the averaged errors for the nodding, rolling and shaking axes
of a single device on a static platform were 0.36◦, 1.57◦ and 0.38◦ respectively.

• The in-house tests showed that the measures of shaking and nodding between the two systems
were very close, with an average difference of less than 2◦. However, when the angles were larger
than 20◦, the camera-based system could not measure the movement accurately, due to a face
detection failure. These observations suggest that the system developed here would be more
suitable, than the camera-based system, to measure head movements during NDAs which include
large movements.

• The on-road test achieved similar results to the static in-car test. The only difference was that
the average difference increased to 4.9◦, 3.6◦ and 4.3◦ for the nodding, rolling and shaking axes
respectively due to the error from the reference device.

• The case study in a static vehicle demonstrates the potential of the proposed system to
characterise different NDAs based on head movement, particularly with regards to the shaking
and nodding axes. The rolling axes was not used in this case study because: (a) the developed
device had relatively low accuracy for rolling measurement, in comparison to shaking and yawing,
and (b) it has been observed that the overall rolling value was much smaller than that for shaking
and yawing, which leads to a reduced sensitivity to changes in NDA.

• The single-camera based head tacking system could misinterpret 40% of time when monitoring
the selected NDAs, while the proposed head tracking system successfully overcame this problem.

It should be noted that this head tracking system was developed for ascertaining drivers’ head
movements under different NDAs during research. The outcomes will be important for determining the
required number and corresponding location of non-contact measures, such as camera and microphone,
which are more suitable for real applications to identify NDAs. The developed tracking system can
be enhanced by improving the accuracy of the rolling measurement and conducting the calibration
process automatically.
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