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Abstract: The objective of this paper is to propose a novel tubular linear machine with hybrid
permanent magnet arrays and multiple movers, which could be employed for either actuation or
sensing technology. The hybrid magnet array produces flux distribution on both sides of windings,
and thus helps to increase the signal strength in the windings. The multiple movers are important for
airspace technology, because they can improve the system’s redundancy and reliability. The proposed
design concept is presented, and the governing equations are obtained based on source free property
and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically
formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical
simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved
that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the
formulation of signal or force output subsequently, depending on its particular implementation.

Keywords: linear machine; hybrid magnet arrays; multiple movers; magnet flux; magnetic vector
potential; FEM

1. Introduction

Linear machine generates translations directly without rotation-to-transmission conversion
mechanisms, and thus achieves compact structure, high efficiency and good dynamic performance.
It has wide applications in aerospace industries [1,2], transportation [3,4], high-precision manufacture [5,6],
energy harvesting [7,8], robotics [9,10], and medical operations. Linear machine can be used as either
generator or actuator to accomplish different works.

Magnetic flux density is extremely important for the design of linear machines. High flux density
helps to increase force output or signal strength depending on particular tasks. The conventional
method is to increase the magnet size and thus the flux density. However, the large size or mass
of the system is apparently not preferred for most applications, especially in aerospace technology.
Alternatively, various magnet patterns have been proposed by researchers to enhance the magnetic
flux density inside the linear machines without changing the system size significantly. Buren et al. [11]
presents one linear electromagnetic generator with three axially magnetized PM poles. The relative
motion between stator and translator leads to a varying magnetic flux through the armature
windings, and the output power proportional to the rate of flux change is induced. Several axially
magnetized disc-shaped magnets separated by soft-magnetic spacers are mounted on the translator.
The magnetization directions of neighboring magnets are opposite, and the spacers act as flux
concentrators and form the magnet poles. The design may lead to high flux leakage, and decrease
the force output. An improved version of axial magnetization is proposed by Kim et al. [12] in a
tubular linear brushless machine. Cylindrical permanent magnets are placed in an NS-NS-SN-SN
fashion with spacers between pairs. The magnets are fixed within a freely sliding brass tube on the
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mover. Coils are configured in three phases to interact with the magnet and cause translation of
the mover. This structure and magnetization pattern help to increase flux density near the like pole
regions. However, the aluminum tubes used to separate magnets decrease the volume efficiency
of the mover. Huang et al. [13] employed convex pole instead of rectangular pole in the axial
magnetization pattern to reduce the magnetic saturation and flux leakage of tubular machines. High
thrust and less permanent magnet dosage were achieved in the research. However, the magnetization
and assembly are relatively challenging. Wang et al. [14] analyzed a tubular linear machine with
surface-mounted radially magnetized magnets and came to the conclusion that this pattern can reduce
the magnet material and the cost. Special customized fixture may be required for the magnetization.
Nirei et al. [15] developed a moving-coil linear machine with typical radial magnetization. There were
16 pieces of permanent magnets mounted along the inner surface of the outer yoke. Due to the
same polarization, the multiple magnets are essentially equivalent to one magnet ring with radial
magnetization. However, the single-ring pattern unavoidably causes high flux leakage and reduces the
force output. Baloch et al. [16] designed a tubular vernier machine adopting dual stator configurations.
Multiple PM poles are mounted on the mover along the axial direction. The poles are alternatively
magnetized radially, which helps to achieve high force output and large working range compared
with the design in [15]. Wang et al. [17] presented a novel linear electromagnetic machine based on the
concept of magnetic screw-nut. The radially magnetized permanent magnets are helically disposed
on the nut and the screw to produce force and torque simultaneously. However, the two motions
are coupled, and cannot be controlled independently. The Halbach array was firstly proposed a few
decades ago [18], and implemented into design of linear machines recently [19]. It can enhance the
flux density on the one side of PM, and reduce the flux leakage on the other side in a certain degree.
Yan et al. [20] proposed a high dynamic performance linear machine with improved Halbach array.
A combination of two axial magnets and one radial magnet is utilized in the design of magnet topology.
Compared with commonly used quasi-Halbach array, it enhances the self-shielding effect without the
utilization of back irons. Therefore, the mover mass is reduced significantly, and thus the dynamic
response is increased greatly. Izzeldin [21] analyzed the magnet patterns of three moving-magnet
linear machines, including rectangular, trapezoidal and T-shape magnet arrays with quasi-Halbach
magnetization. It is shown that the T-shape and trapezoidal magnet arrays achieve better flux linkage
than the rectangular one. However, the fabrication and magnetization of magnets are relatively
challenging. Yan et al. [22,23] extended conventional magnet array into three-dimensional topology,
and proposed the novel dual Halbach array. It helps to improve the axial force output and depress
the radial vibration. Magnet patterns have also been employed to improve the performance of
flux-switching machines. For example, Zhang et al. [24] proposed a yokeless linear machine topology
with double magnets per mover module to enhance thrust density but efficiency of the new machine is
marginally higher than that of the conventional yokeless machine. The comparison of magnet patterns
is summarized in Table 1.

The objective of this study is to propose one novel linear permanent magnet machine with
three-layer hybrid magnets and two-layer windings. The employment of the proposed structure
offers the following advantages. The combination of conventional Halbach array and alternatively
magnetized radial poles helps to enhance the magnetic flux density in the radial direction, and
thus increase the force output of the linear machine. In addition, the utilization of multiple movers
in the linear machine increases the redundancy and reliability of the system, which is extremely
important for the aerospace technology. Furthermore, the winding mass is reduced, and thus the
dynamic response could be improved significantly for moving coil designs. The design concept is
presented, Laplace’s and Poisson’s equations are obtained from source free property of magnetic
field and Maxwell equations. The general solution of magnetic vector potential is represented with
Bessel functions. The flux distribution inside the machine is then formulated analytically by utilizing
harmonic expansion of magnetization vectors and boundary conditions. Numerical computation is
conducted to validate the analytical model and on the proposed design.



Sensors 2017, 17, 2662 3 of 15

Table 1. Comparison of magnetization patterns of linear machines.

Magnet Patterns Particular Designs Features

Axial magnetization

Three magnets with
axial magnetization

Simple structure, easy control; high flux leakage,
low force output

NS-NS-SN-SN fashion
with spacers

High flux density near the like pole regions,
improve force output; low volume efficiency

Convex magnet pole Low magnetic saturation, low flux leakage;
difficult fabrication and assembly

Radial magnetization

Surface-mounted
radial magnetization

Less magnet material, high dynamics; lower flux
density, special magnetization fixture

Single ring magnet with
multiple sectors

No special requirement of magnetization fixture;
high flux leakage, low force output

Multiple magnets in
axial direction

High force output, large working range;
magnetization and assembly challenge

Magnetic screw-nut Produce force and torque simultaneously;
coupled motions in two directions

Halbach array and its
extension

Conventional Halbach array High flux density on one side of PM; flux leakage
exists although it is relatively reduced.

Improved compounded
Halbach array

Good shielding effect, low mover mass, high
dynamic response; difficult magnet assembly

T-shaped and
trapezoidal magnet

High magnetic flux linkage; Non-regular shape
of magnets, difficult for fabrication

Dual Halbach array
High axial force output, low radial vibration;

Force enhancement is not significant, especially
for large size machine.

2. Concept Design

The schematic structure of the proposed tubular linear machine is illustrated in Figure 1a.
It consists of two layers of windings and three layers of magnet poles. The windings are mounted on
the mover, and the magnet poles are on the stator. The relative motion between the stator and mover
generates voltages on the windings proportional to the motion speed. It is worth pointing out that
the two layers of windings could be connected together to enhance the voltage signal, or separated
to detect motions of individual rigid bodies. The redundancy property improves the reliability of
the linear machines. The multiple-winding structure also benefits the heat dissipation. The same
structure can be utilized for design of actuators in aircrafts. Magnetization pattern of the hybrid
magnet arrays is illustrated in Figure 1b. One layer of radially magnetized PM poles are placed
in between the two layers of Halbach arrays. All radially magnetized PM poles in the three layers
have the same polarization while the axial PMs of two Halbach layers are magnetized with opposite
directions. The proposed hybrid arrangement can increase the flux density in the radial direction
greatly. Therefore, the axial force generation is improved due to the cross product of flux density and
current input.
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3. Governing Equations

In this section, the flux field in the proposed linear machine is formulated analytically.
The obtained mathematical model could be employed for subsequent design optimization, modeling
of thrust or output current, and high precision motion control.

3.1. Assumptions

(a) The machine has a periodic magnetic structure along axial direction z.
(b) The axial length is infinite, and thus the end effects can be ignored.
(c) The distribution of magnetic field is axially symmetric.
(d) The magnetic permeability of back iron is infinite.

3.2. Characterization of Materials and Governing Equations

To formulate the magnetic field mathematically, the space in linear machine under study is
divided into two regions based on their magnetic characteristics. The air space is denoted as Region I.
The PM pole filled with rare-earth magnetic material is denoted as Region II (Figure 2). According to
different material properties, it is easy to obtain equations relating magnetic field intensity H(A/m) to
flux density B(T) for these two regions

B = µ0H, B = µ0µrH + µ0M, (1)

where µ0 is the permeability of vacuum with a value of 4π× 10−7
(

N/A2
)

, dimensionless quantity µr is
the relative permeability of permanent magnets, and M = Brem/µ0 (A/m) is the residual magnetization
vector. B is equal to the curl of magnetic vector potential, i.e.,

∇×A = B. (2)

The Coulomb gauge is used as a constraint to uniquely determine the divergence of a vector.
As a result, we have Laplace’s Equation, or governing equation for region I

∇2A = 0 (3)

and Poisson’s Equation, for region II

∇2A = −µ0∇×M. (4)

4. Formulation of Magnetic Field

4.1. General Solution to Magnetic Potential in Region I

Based on the symmetric distribution of flux density in tubular linear machines, the Laplace’s
equation, i.e., Equation (3) in cylindrical coordinates can be expanded and simplified as

∂

∂r

(
1
r

∂(rAθ)

∂r

)
+

∂2 Aθ

∂z2 = 0. (5)

Since Aθ is only a function of independent variables, r and z, it can be represented with separation
principle of variables as

Aθ = R(r)Z(z). (6)

Substituting Equation (6) into (5) gives

1
R(r)

∂2R(r)
∂r2 +

1
R(r)r

∂R(r)
∂r
− 1

r2 +
1

Z(z)
∂2Z(z)

∂z2 = 0. (7)
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Aθ is determined uniquely based on the structure of tubular linear machines. The magnetic field in
tubular linear machines is periodically and symmetrically distributed along z axial, thus, the solution
to magnetic potential in Region I is

Aθ = ∑ ∞
n=1[an I1(mnr) + bnK1(mnr)] sin(mnz), (8)

where I1 and K1 are the modified Bessel functions of the first and second kind [25], mn = (2n−1)π
τp

, n is
a positive integer.

4.2. General Solution to Magnetic Potential in Region II

For the specific structure of tubular linear machine under study in this paper, Poisson’s Equation
in cylindrical coordinates can be expanded as

∂

∂r

(
1
r

∂(rAθ)

∂r

)
+

∂2 Aθ

∂z2 = −µ0

(
∂Mr

∂z
− ∂Mz

∂r

)
, (9)

where Mr and Mz are the radial and axial components of magnetization vector M, respectively.
The homogeneous solution to Poisson’s Equation is exactly the same as the general solution to
Laplace’s equation. Therefore, deriving the particular solution of Equation (9) will determine the
general solution of Poisson’s equation. To formulate the particular solution, we need to substitute the
right side of Equation (9) with its harmonic expansion. As shown in Figure 1, the two layers of Halbach
arrays in the proposed novel linear machine are composed of axial and radial magnets whereas the
middle layer only has radially magnetized magnets.
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As illustrated in Figure 2a, Mr is a non-continuous periodic even function with a period of 2τp.
Its harmonic expansion is

Mr = ∑ ∞
n=1

4Brem

(2n− 1)πµ0
sin
(
(2n− 1)πτr

2τp

)
cos(mnz), (10)

where τp is the pole pitch, τr is the width of radial magnets, and Brem is the remanence. As shown in
Figure 2b, Mz is a non-continuous periodic odd function with a period of 2τp. Its harmonic expansion is

Mz = −∑ ∞
n=1

4Brem

(2n− 1)πµ0
cos
(
(2n− 1)πτr

2τp

)
sin(mnz), (11)

where τz is the width of axial magnets.
The magnetization pattern of the middle PM layer is exactly the same as the radial magnets of

Halbach layers (Figure 3). Therefore, the radial component of magnetization vector can be expressed
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with Equation (10). Substituting Equations (10) and (11) into (9) yields the following form of Poisson’s
equation for Halbach arrays and radial PM array, i.e.,

∂

∂r

(
1
r

∂(rAθ)

∂r

)
+

∂2 Aθ

∂z2 = ∑ ∞
n=1

4Brem

τp
sin
(
(2n− 1)πτr

2τp

)
sin(mnz). (12)

Thus, the general solution to Poisson’s equation is

Aθ = ∑ ∞
n=1{[an I1(mnr) + bnK1(mnr)] sin(mnz) + s(r, z)}. (13)

The homogeneous part of Equation (13) is the same as Equation (8) and the particular part s(r, z)
can be derived by using separation of variables as

s(r, z) = L1(mnr)
πPn

2mn2 sin(mnz), (14)

where L1(mnr) are the modified Struve functions [26]. Therefore, the general solution to Poisson’s
equation is

Aθ = ∑ ∞
n=1

{
[an I1(mnr) + bnK1(mnr)] sin(mnz) + L1(mnr)

πPn

2mn2 sin(mnz)
}

. (15)
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2
] sin(𝑚𝑛𝑧))}

∞

𝑛=1
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= 𝐻𝑧1
2 |𝑟=𝑅4
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2 |𝑟=𝑅4

=
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      𝐻𝑧2
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= 𝐻𝑧1
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= 𝐵𝑟1
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Figure 3. Component of magnetization vector of middle layer.

4.3. Analytical Model of Flux Density

From Equations (1), (8) and (15), the general solution of flux density is obtained

Bi
r1 = −∂Aθ

∂z
= −∑ ∞

n=1mn

[
ai

1n I1(mnr) + bi
1nK1(mnr)

]
cos(mnz) (16)

Bi
z1 = Aθ

r + ∂Aθ
∂r =

∞
∑

n=1
mn
[
ai

1n I0(mnr)− bi
1nK0(mnr)

]
sin(mnz)

i = 1, 2;
(17)

Bj
r2 = −

∞

∑
n=1

mn

{[
aj

2n I1(mnr) + bj
2nK1(mnr) + L1(mnr)

πPn

2mn2

]
cos(mnz))

}
(18)

Bj
z2 =

∞
∑

n=1
mn

{[
aj

2n I0(mnr)− bj
2nK0(mnr) + L0(mnr) πPn

2mn2

]
sin(mnz))

}
j = 1, 2, 3.

(19)

Bi
r1 and Bi

z1 represent the radial and axial magnetic field in the air region, respectively, while Bj
r2 and

Bj
z2 are in magnet regions. The upper script, i = 1, 2, represents two sections of air region, while j = 1, 2,

3 represents internal, middle and external PMs respectively.
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4.4. Boundary Conditions

There are 10 unknown coefficients in the analytical model of flux density, i.e., a1
1n, a2

1n, b1
1n, b2

1n,
a1

2n, b1
2n, a2

2n, b2
2n, a3

2n and b3
2n. As shown in Figure 4, based on the continuity of flux density and

Ampere circuital theorem, the perpendicular component of flux density is continuous in two adjacent
media and the tangential component of field intensity is continuous at the boundary of two media
when the surface current is zero [27,28]. Ten boundary conditions are employed to determine all the
unknowns, i.e.,

H1
z2

∣∣
r=R1

= 0; H3
z2

∣∣
r=R6

= 0; H1
z2

∣∣
r=R2

= H1
z1

∣∣
r=R2

; B1
r2

∣∣
r=R2

= B1
r1

∣∣
r=R2

;

H2
z2

∣∣
r=R3

= H1
z1

∣∣
r=R3

; B2
r2

∣∣
r=R3

= B1
r1

∣∣
r=R3

; H2
z2

∣∣
r=R4

= H2
z1

∣∣
r=R4

; B2
r2

∣∣
r=R4

= B2
r1

∣∣
r=R4

;

H3
z2

∣∣
r=R5

= H2
z1

∣∣
r=R5

; B3
r2

∣∣
r=R5

= B2
r1

∣∣
r=R5

,

(20)

where
Hi

z1 =
Bi

z1
µ0

=
∑∞

n=1 mn[ai
1n I0(mnr)−bi

1nK0(mnr)] sin(mnz)
µ0

H j
z2 =

∑∞
n=1 mn

{[
aj

2n I0(mnr)−bj
2nK0(mnr)+L0(mnr) πPn

2mn2

]
sin(mnz))

}
µ0µr

− Mj
z2

µr

M1
z2 = −M3

z2 = −
∞
∑

n=1

4Brem
(2n−1)πµ0

cos
(
(2n−1)πτr

2τp

)
sin(mnz)

M2
z2 = 0

(21)
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Substituting Equations (16)–(18), (19) and (21) into Equation (20) will derive ten expanded
equations describing ten boundary conditions respectively. They are shown as follows:

a1
2n I0(mnR1)− b1

2nK0(mnR1) = −L0(mnR1)
πPn

2mn2 −
4Brem

(2n− 1)πmn
cos
(
(2n− 1)πτr

2τp

)
, (22a)

a3
2n I0(mnR6)− b3

2nK0(mnR6) = −L0(mnR6)
πPn

2mn2 +
4Brem

(2n− 1)πmn
cos
(
(2n− 1)πτr

2τp

)
, (22b)

µra1
1n I0(mnR2)− µrb1

1nK0(mnR2)− a1
2n I0(mnR2) + b1

2nK0(mnR2)

= L0(mnR2)
πPn

2mn2 +
4Brem

(2n−1)πmn
cos
(
(2n−1)πτr

2τp

)
,

(22c)

a1
2n I1(mnR2) + b1

2nK1(mnR2)− a1
1n I1(mnR2)− b1

1nK1(mnR2) = −L1(mnR2)
πPn

2mn2 , (22d)

µra1
1n I0(mnR3)− µrb1

1nK0(mnR3)− a2
2n I0(mnR3) + b2

2nK0(mnR3) = L0(mnR3)
πPn

2mn2 , (22e)

a2
2n I1(mnR3) + b2

2nK1(mnR3)− a1
1n I1(mnR3)− b1

1nK1(mnR3) = −L1(mnR3)
πPn

2mn2 , (22f)

µra2
1n I0(mnR4)− µrb2

1nK0(mnR4)− a2
2n I0(mnR4) + b2

2nK0(mnR4) = L0(mnR4)
πPn

2mn2 , (22g)

a2
2n I1(mnR4) + b2

2nK1(mnR4)− a2
1n I1(mnR4)− b2

1nK1(mnR4) = −L1(mnR4)
πPn

2mn2 , (22h)

µra2
1n I0(mnR5)− µrb2

1nK0(mnR5)− a3
2n I0(mnR5) + b3

2nK0(mnR5) =

L0(mnR5)
πPn

2mn2 − 4Brem
(2n−1)πmn

cos
(
(2n−1)πτr

2τp

)
,

(22i)

a3
2n I1(mnR5) + b3

2nK1(mnR5)− a2
1n I1(mnR5)− b2

1nK1(mnR5) = −L1(mnR5)
πPn

2mn2 , (22j)

The matrix form of Equations (22a) until (22j) is

AX = F

0 0 0 0 A15 A16 0 0 0 0
0 0 0 0 0 0 0 0 A29 A210

A31 A32 0 0 A35 A36 0 0 0 0
A41 A42 0 0 A45 A46 0 0 0 0
A51 A52 0 0 0 0 A57 A58 0 0
A61 A62 0 0 0 0 A67 A68 0 0
0 0 A73 A74 0 0 A77 A78 0 0
0 0 A83 A84 0 0 A87 A88 0 0
0 0 A93 A94 0 0 0 0 A99 A910

0 0 A103 A104 0 0 0 0 A109 A1010





X1

X2

X3

X4

X5

X6

X7

X8

X9

X10


=



F1

F2

F3

F4

F5

F6

F7

F8

F9

F10


,

(23)

where
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A15 = I0(mnR1); A16 = −K0(mnR1); F1 = −L0(mnR1)
πPn

2mn2 − 4Brem
(2n−1)πmn

cos
(
(2n−1)πτr

2τp

)
;

A29 = I0(mnR6); A210 = −K0(mnR6); F2 = −L0(mnR6)
πPn

2mn2 +
4Brem

(2n−1)πmn
cos
(
(2n−1)πτr

2τp

)
;

A31 = µr I0(mnR2); A32 = −µrK0(mnR2); A35 = −I0(mnR2); A36 = K0(mnR2);

F3 = L0(mnR2)
πPn

2mn2 +
4Brem

(2n−1)πmn
cos
(
(2n−1)πτr

2τp

)
; A45 = I1(mnR2); A46 = K1(mnR2);

A41 = −I1(mnR2); A42 = −K1(mnR2); F4 = −L1(mnR2)
πPn

2mn2 ; A51 = µr I0(mnR3);

A52 = −µrK0(mnR3); A57 = −I0(mnR3); A58 = K0(mnR3); F5 = L0(mnR3)
πPn

2mn2 ;

A67 = I1(mnR3); A68 = K1(mnR3); A61 = −I1(mnR3); A62 = −K1(mnR3);

F6 = −L1(mnR3)
πPn

2mn2 ; A73 = µr I0(mnR4); A74 = −µrK0(mnR4); A77 = −I0(mnR4);

A78 = K0(mnR4); F7 = L0(mnR4)
πPn

2mn2 ; A87 = I1(mnR4); A88 = K1(mnR4); A83 = −I1(mnR4);

A84 = −K1(mnR4); F8 = −L1(mnR4)
πPn

2mn2 ; A93 = µr I0(mnR5); A94 = −µrK0(mnR5);

A99 = −I0(mnR5); A910 = K0(mnR5); F9 = L0(mnR5)
πPn

2mn2 − 4Brem
(2n−1)πmn

cos
(
(2n−1)πτr

2τp

)
;

A109 = I1(mnR5); A1010 = K1(mnR5); A103 = −I1(mnR5); A104 = −K1(mnR5);

F10 = −L1(mnR5)
πPn

2mn2 .

5. Numerical Simulation and Analysis

5.1. Numerical Model

The numerical approach is an effective way to analyze the magnetic flux field distribution of
electromagnetic actuators. The values of major parameters for numerical computation are listed in
Table 2. These parameter values are obtained by maximizing the force output. With the values in
Table 2, the maximum force output is 112 N. The details of design optimization based on force model
and motion control implementation with force feedback will be covered in another paper.

Table 2. Major parameters of the linear machine for numerical analysis.

Parameter Items Value

Thickness of back iron, R1 0.005(m)
Outer radius of inner Halbach layer, R2 0.010(m)
Inner radius of middle PM layer, R3 0.017(m)
Outer radius of middle PM layer, R4 0.020(m)
Inner radius of outer Halbach layer, R5 0.028(m)
Outer radius of outer Halbach layer, R6 0.032(m)
Outer radius of outer back iron, R7 0.035(m)
Width of radial magnets, τr 0.016(m)
Width of axial magnets, τz 0.008(m)
Pole pitch, τp 0.024(m)
Permeability of vacuum, µ0 4π× 10−7

(
N/A2

)
Relative permeability of PMs, µr 1.07

(
N/A2

)
Remenance, Brem 1.23(T)

The structure of the proposed linear machine is axially symmetric, so Magnetostatic 2D solver is
conducted on Maxwell to model and analyze the flux field. In this study, the whole model is divided
into 179,958 mesh elements to derive accurate solution, with the RMS edge length ranging from
0.00012 mm to 0.00051 mm for different parts of solving regions. The relationship between the number
of iterative solving rounds and the energy error percentage is shown in Figure 6. The energy error
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percentage is used to represent the accuracy of numerical solution in Maxwell. It can be found that
after 10 rounds of iterative solving, the energy error is below 5%, and it is acceptable for analysis and
validation of electromagnetic machines.
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Flux distribution corresponding to the initial and maximum working positions of coils without
and with load is shown in Figure 7a–c respectively. It can be found that the magnetic flux is generated
by the permanent magnet, goes across the air gap filled with windings, and returns through the back
irons, forming a close loop. As indicated in Figure 7b,c, flux distribution varies for different coil
positions, but is not affected significantly by power supply of coils.Sensors 2017, 17, 2662  10 of 14 
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Figure 7. Magnetic flux distribution: (a) Initial position without power supply; (b) Initial position with
power supply; (c) Maximum working position with power supply.

Figure 8 illustrated the BH curve to analyze magnetic saturation in the machine. It is found that
there is no significant saturation in the system. Only slight saturation exists at the inner back iron
due to the relatively small volume. Further design optimization might be conducted to reduce the
saturation if necessary.

To precisely observe the variation of magnetic flux field, Figure 9a,b show the flux distribution
with respect to axial and radial positions in outer and inner air gaps, respectively. Only the radial flux
component is presented, because only this component can produce voltage signal or axial thrust in
this machine. Figure 9a shows that the radial flux density does not change significantly in the radial
direction. However, it is slightly larger at positions close to the inner magnet layer. Similarly, Figure 9b
indicates that the flux density close to the outer layer of Halbach array is relatively larger. In the axial
direction, the flux density for both air gaps varies in trigonometric form, which is consistent with the
magnetization pattern of PM poles in this direction.



Sensors 2017, 17, 2662 11 of 15

Sensors 2017, 17, 2662  10 of 14 

 

   

(a) (b) (c) 

Figure 7. Magnetic flux distribution: (a) Initial position without power supply; (b) Initial position with 

power supply; (c) Maximum working position with power supply. 

Figure 8 illustrated the BH curve to analyze magnetic saturation in the machine. It is found that 

there is no significant saturation in the system. Only slight saturation exists at the inner back iron due 

to the relatively small volume. Further design optimization might be conducted to reduce the 

saturation if necessary. 

  

Figure 8. Flux density in the linear machine and BH curve of back iron. 

To precisely observe the variation of magnetic flux field, Figure 9a,b show the flux distribution 

with respect to axial and radial positions in outer and inner air gaps, respectively. Only the radial 

flux component is presented, because only this component can produce voltage signal or axial thrust 

in this machine. Figure 9a shows that the radial flux density does not change significantly in the radial 

direction. However, it is slightly larger at positions close to the inner magnet layer. Similarly, Figure 9b 

indicates that the flux density close to the outer layer of Halbach array is relatively larger. In the axial 

direction, the flux density for both air gaps varies in trigonometric form, which is consistent with the 

magnetization pattern of PM poles in this direction. 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

DT4 B-H Curve

H/(A/m)

B
/(

T
)

Figure 8. Flux density in the linear machine and BH curve of back iron.

Sensors 2017, 17, 2662  11 of 14 

 

  

(a) (b) 

Figure 9. Magnetic flux density with respect to axial and radial directions: (a) Inner winding region; 

(b) Outer winding region. 

5.2. Validation of Analytical Models 

The analytical model is a powerful tool for design optimization and control implementation of 

electromagnetic actuators. In contrast, the numerical approach is an efficient and reliable way to 

validate analytical results. To compare the numerical result and analytical model precisely, four 

positions indicated by lines in the air region are utilized for simulation, as shown in Figure 10.  

z

r

Line1

Line2

Line3

Line4

 

Figure 10. Positions for comparison of numerical result and analytical models. 

The comparison result of the analytical model and the numerical computation is presented in 

Figure 11. Figure 11a,b represent the variation of flux component in radial and axial directions, 

respectively, for Line 1. Similarly, the flux variation for Line 2–4 is presented in Figure 11c–h. It is 

found that the analytical model fits with the numerical result well. It could be employed for the study 

on modeling of force or current output, and subsequent design optimization. Figure 11a,c indicate 

that the flux density close to the internal layer of Halbach array is relatively larger than that near the 

middle magnet layer. Similarly, Figure 11e,g indicate that the flux density close to the external layer 

of Halbach array is relatively larger than that near the middle layer. This result is consistent with the 

comparison in Figure 9. Figure 11 also shows that both radial and axial components of magnetic flux 

density change alternatively with positive and negative signs, which is caused by the alternatively 

magnetized PM poles in the axial direction. 

Figure 9. Magnetic flux density with respect to axial and radial directions: (a) Inner winding region;
(b) Outer winding region.

5.2. Validation of Analytical Models

The analytical model is a powerful tool for design optimization and control implementation
of electromagnetic actuators. In contrast, the numerical approach is an efficient and reliable way
to validate analytical results. To compare the numerical result and analytical model precisely,
four positions indicated by lines in the air region are utilized for simulation, as shown in Figure 10.
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The comparison result of the analytical model and the numerical computation is presented in
Figure 11. Figure 11a,b represent the variation of flux component in radial and axial directions,
respectively, for Line 1. Similarly, the flux variation for Line 2–4 is presented in Figure 11c–h. It is
found that the analytical model fits with the numerical result well. It could be employed for the study
on modeling of force or current output, and subsequent design optimization. Figure 11a,c indicate
that the flux density close to the internal layer of Halbach array is relatively larger than that near the
middle magnet layer. Similarly, Figure 11e,g indicate that the flux density close to the external layer of
Halbach array is relatively larger than that near the middle layer. This result is consistent with the
comparison in Figure 9. Figure 11 also shows that both radial and axial components of magnetic flux
density change alternatively with positive and negative signs, which is caused by the alternatively
magnetized PM poles in the axial direction.Sensors 2017, 17, 2662  12 of 14 
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Figure 11. Comparison of analytical model and numerical result: (a) Radial flux density on line 1;
(b) Axial flux density on line 1. (c) Radial flux density on line 2; (d) Axial flux density on line 2.
(e) Radial flux density on line 3; (f) Axial flux density on line 3. (g) Radial flux density on line 4;
(h) Axial flux density on line 4.

6. Discussion

The objective of this study is to propose one novel tubular linear machine with hybrid magnet
arrays and multiple layers of windings. It could be implemented for actuation or motion sensing
depending on particular tasks. The employment of hybrid magnet array with Halbach and alternatively
magnetized radial poles helps to enhance the magnetic flux density in the radial direction, and thus
increase the current signal strength or force output. Furthermore, the utilization of multiple windings
offers the redundancy property, and thus increases the system reliability significantly. Based on the
proposed topological design, the magnetic vector potential is formulated analytically from governing
equations. The flux distribution is then obtained from the curl of the potential. Numerical computation
is conducted to validate the analytical model. It shows that the analytical model agrees with the
numerical result well. In addition, the variation of magnetic flux density in the linear machine is
consistent with the magnet patterns. The proposed structure topology and developed analytical
model could be employed for subsequent study on current signal or force generation, and real-time
motion control.
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