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Abstract: In this paper, we report the design, experimental validation and application of a scalable,
wearable e-textile triboelectric energy harvesting (WearETE) system for scavenging energy from
activities of daily living. The WearETE system features ultra-low-cost material and manufacturing
methods, high accessibility, and high feasibility for powering wearable sensors and electronics.
The foam and e-textile are used as the two active tribomaterials for energy harvester design with
the consideration of flexibility and wearability. A calibration platform is also developed to quantify
the input mechanical power and power efficiency. The performance of the WearETE system for
human motion scavenging is validated and calibrated through experiments. The results show that
the wearable triboelectric energy harvester can generate over 70 V output voltage which is capable
of powering over 52 LEDs simultaneously with a 9 × 9 cm2 area. A larger version is able to lighten
190 LEDs during contact-separation process. The WearETE system can generate a maximum power
of 4.8113 mW from hand clapping movements under the frequency of 4 Hz. The average power
efficiency can be up to 24.94%. The output power harvested by the WearETE system during slow
walking is 7.5248 µW. The results show the possibility of powering wearable electronics during
human motion.

Keywords: triboelectric energy harvesting; wearable electronics; human motion

1. Introduction

Wearable sensors provide a sustainable solution for physical and physiological monitoring and
well-being management. Energy harvesting technologies have been widely considered to prolong
the lifetime of wearable devices by extracting energy from ambient resources. Among them, human
motion is one of the most significant energy resources that can be harvested to power wearable sensors
and electronics, enabling self-sustainability [1]. Generally, three mechanisms are commonly used to
convert mechanical energy to electricity for sensors: piezoelectricity based on piezo materials [2–6],
electromagnetics based on Lenz’s Law [7–9] and electrostatics based on variable capacitance [10].
For example, Aidin et al. [2] developed a flexible piezoelectric generator to harvest energy from ear
canal motion. Pillatsch et al. [11] tested and built a piezoelectric rotational energy harvester, which can
harvest peak power of 7 µW while mounting the device on an upper arm during running.
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Triboelectric energy harvesters are a new type of energy harvesting technique since the first one
developed in 2012 [12], which is based on the mechanism of triboelectricity. Contact and separation
between two materials can generally generate charges, which provides an alternative mechanism
for converting mechanical energy to electricity power. These harvesters are able to generate a high
voltage peak (Vpp > 20 V [13]) at random and low frequency. A few remarkable devices have then been
demonstrated to harvest human motion and power wearable electronics with harvesters embedded on
shoes [14] or attached to the cloth [15]. Bai et al. [16] demonstrated a triboelectric harvester which can
generate an instantaneous maximum power density of 9.8 mW/cm2 and also can drive multiple LEDs
with the similar device. Yang et al. [17] proposed a triboelectric nanogenerator which can produce
power with a peak power density of 30.7 W/m2. They also mounted the harvester to a backpack to
harvest energy, which can light up to 40 LEDs instantaneously, from human walking. Their harvesters,
so-called triboelectric nanogenerator (TENG), are remarkable based on nanotechnology with various
surface structures.

Considering the cost, scalability, and wearability for daily use, we propose a lightweight,
ultra-low-cost wearable triboelectric harvesting system, namely WearETE, based on e-textile and foam
for daily human motion harvesting. We prove the concept that flexible and low-cost manufacturing
methods and common materials can also produce effective triboelectric energy harvesting performance.
Due to its flexible and scalable features, the WearETE system is able to be mounted with cloth or
shoes or carried in the pocket to harvest energy from human motion, which provides the feasibility
for powering wearable sensors and electronics. This paper reports the system design, experimental
calibration and validation, and daily application of the scalable and wearable WearETE system.
A testing platform which is capable of measuring the acceleration and external force is also proposed
and developed to quantify the input mechanical power and power efficiency, which can be used as a
calibration platform for triboelectric energy harvesting calibration.

This paper is organized as follows: Section 2 presents the mechanism and the design of the
WearETE system and the system performance calibration method. The validation and calibration
experiments and the daily application of the WearETE system are presented in Section 3, followed by
the conclusion in Section 4.

2. Materials and Methods

Triboelectricity is a well-known phenomenon and often considered as harmful because it may
cause damages to industrial electronics and non-comfort to human. Triboelectric energy harvesters use
this harmful phenomenon to generate electrical power. Contact and separation, rubbing and friction
between two different or even seemingly chemically identical materials, often result in electrical charge
generation and distribution with opposite signs on either surface. This ubiquitous phenomenon is
often referred to as triboelectricity when the contact materials are both solids. Electron transfer theory
is generally believed as the mechanism for triboelectric charge generation [18,19]. Contacting and
materials have been proved to be major factors that cause charge generation [20,21]. The relative
movement of the two tribomaterials can be longitudinal or transverse corresponding to pressing and
sliding as shown in Figure 1. In this section, Section 2.1 describes the motion conversion mechanism.
Sections 2.2 and 2.3 present the tribomaterial selection and the design and fabrication, respectively.
Section 2.4 provides an overview of the WearETE system. Section 2.5 introduces the newly proposed
platform to measure and calibrate input power and power efficiency.
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Figure 1. Mechanism of triboelectric energy harvester (pressing and sliding models). For pressing 
model, (a) original position; (b) pressing; (c) releasing. For sliding model, (d) original position; (e) 
contacting; (f) sliding. 
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Figure 1. Mechanism of triboelectric energy harvester (pressing and sliding models). For pressing
model, (a) original position; (b) pressing; (c) releasing. For sliding model, (d) original position;
(e) contacting; (f) sliding.

2.1. Mechanism of Triboelectric Energy Conversion

The energy conversion of the proposed energy harvester is based on triboelectric charge generation
and redistribution caused by contact and relative motion of the two tribomaterials. The generated
charges can then be collected for power generation. The relative motion of the two tribomaterials can
be longitudinal or transverse corresponding to pressing and sliding during human motion.

With regard to real system design for mechanical energy conversion, the principle of inertia is
generally used that a frame with a movable mass is attached to a mechanically moving source and
the relative motion is then controlled by the law of inertia [22,23]. The system is made resonant to
generate the contact-separation motion of the two tribomaterials by suspending the movable part to a
spring. The system forms a unified mass-spring-damper system. A portion of the kinetic energy of the
moving mass is converted into electrical energy; whereas some is damped by parasitic effects of the
system. A basic model of the mass-spring-damper system with the consideration of mechanical energy
conversion is shown in Equation (1).

m
..
x + (celec + cmec)

.
x + kx = −m

..
y (1)

where x represents the motion of the mass; celec and cmec are the damping coefficients caused by the
mechanical-to-electricity conversion and the mechanical damping effects, respectively; y is the frame
movement; k is the spring constant. In this case, we assume that the frame of the mass-spring-damper
system moves simultaneously with the external force. In the triboelectric energy harvester experiment,
there are two possible conditions. One can be modeled by Equation (1) that the bottom part, which
serves as the reference, is fixed in the experiment, the analytic solution for free vibration causing
contact-separation of the two tribomaterials is described as Equation (2),

x(t) = X0e−ζωnt cos
(√

1− ζ2ωnt− φ1

)
(2)

where x(t) is the displacement of the mass relative to its equilibrium position; ζ and ωn are the
damping ratio and the natural frequency of the object, respectively, where ζ = (celec + cmec)/2

√
mk

refers to the entire damping; t is the time; and φ1 is the phase shift. The other condition is to
generate contact-separation with measurable motion without using mass-spring-damper system.
In this condition, x(t) is controlled by the hand clapping movements in the experiment.
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In the WearETE device, the area of layers is considered as infinite comparing to the small
separation distance. Thus, the generated potential on the electrode can be presented as Equation (3),

Utribo =
N

∑
i=1

M

∑
j=1

EijXj (3)

where Eij is the electrical field generated by the surface charges due to contact-separation, Xj is
the thickness or distance of layer j. Therefore, the generated potential can be further calculated by
Equation (4),

Utribo(t) =
σ

ε0
x(t) (4)

where σ is the surface charge density generated by contact which is also related to the material
property;ε0 is the vacuum permittivity.

The mechanism of charge generation in our proposed WearETE is shown in Figure 1. The e-textile
and foam layers are flexible and can generate charges by both contact-separation and sliding.
The contact-separate-contact process is shown in Figure 1a–c. The mechanism of sliding is similar to
contact-separation as illustrated in Figure 1d–f.

2.2. Material Property and Selection

Various materials can have triboelectric effects. The polarization ability of the two contact
materials influences the performance, which forms the well-known triboelectric series [24,25]. When
two tribomaterials contact or slide with each other, there will be charges on the surfaces with opposite
sign. The material on the higher end of the triboelectric series is easier to lose electrons during
contacting or sliding. The two materials far from each other in the series often result in higher voltage.
Charge affinity is used by some studies to characterize this polarization property [26]. Thus, the
triboelectric series can be used as the reference for material selection.

Two different materials far from each other in the triboelectric series are selected to develop
the WearETE. One principle for choosing these two materials is their different polarization abilities.
The two tribomaterial layers need to be relatively easy to lose and obtain electrons, respectively.
In addition—due to the goal of wearability—flexibility and stretchability are also considered.
Therefore, we first tested the performance of the common textile materials in the triboelectric series.
An experiment was conducted in the study to investigate the triboelectric property of flexible textile
materials, including cotton, polyester, paper, and foam. The experiment and results have been
presented in Section 3.1. In the results, foam shows high charge generation capability when sliding
with the conductive copper substrate. For developing a wearable system, e-textile is often used as the
wearable conductive material. Surprisingly, it shows high charge generation when contacting with
foam. E-textiles, also known as electronic textiles, are fabrics with embedded conductive threads or
electronic components to enable electric performance and have been used in wearable sensing and
smart clothing instead of traditional conductors. In e-textile, stainless steel fibers are generally woven
or knitted into cloth to enable conductivity. In our system design, the e-textile layer is used as both a
tribomaterial layer and an electrode. Due to the high effectiveness and low cost, e-textile and foam are
chosen as the two materials of WearETE in the system design.

2.3. Design and Fabrication of Energy Harvester

The triboelectric energy harvester consists of three major components: substrates for motion
conversion, two tribomaterial layers for charge generation and two electrodes for charge collection.
The substrates acting as supporting materials for motion conversion can be selected based on
application scenarios. The substrates are selected to be solid for system calibration (e.g., 3D printed
ABS boards) and flexible in real application (e.g., latex rubber). In addition to the two tribomaterial
layers, electrodes are also needed to form a changeable capacitance. The e-textile layer, because of
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its conductivity, is used as both a tribomaterial layer and an electrode. A copper layer is adopted
as another electrode. The two electrodes are then attached to the substrates which support and
harvest mechanical motion. The fabrication of the entire system is flexible, scalable, and very low-cost.
The design is illustrated in Figure 2.Sensors 2017, 17, 2649 5 of 14 
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Figure 2. System architecture.

2.4. WearETE System

The WearETE system is composed of three major components including the triboelectric energy
harvester, the power management circuit, and an energy storage component. The conductive
stainless-steel thread is used to connect different parts for wearability. The entire system architecture
and demonstration is shown in Figure 2. The power management circuit is a simple bridge
rectifier to demonstrate the feasibility. The AC power generated by the motion via the triboelectric
energy harvester is converted into DC to power electric devices, such as LEDs, capacitors and cell
batteries. In order to store harvested energy, capacitors or small li-ion batteries can be used as energy
storage components.

2.5. Power Efficiency Estimation

Due to the randomness and irregularity of human motion, the measurement of input mechanical
energy and power efficiency of human motion energy harvesters calls for a standard method for
system performance calibration and evaluation. In this study, we propose a new measurement
platform which can be used for calibrating random human motion energy conversion. In order to
quantitatively estimate the power efficiency generated from low-frequency motion, a testing platform
and the associated calculation methods are established. The power efficiency refers to the ratio of the
generated electrical power to input mechanical power. Usually, for piezoelectric energy harvesting, the
maximum power can be harvested at the resonant frequency. However, because of the low frequency
and irregular nature of human motion [27,28], the triboelectric energy harvester may not be able to
achieve the resonant frequency. In this study, we focus on the performance of the proposed system
in low frequency range (<5 Hz). The experimental setup is shown in Figure 3. A capacitor is used to
estimate the generated power, which can be calculated by Equation (5) [29]

Pout(t) =
dW
dt

= C ·V(t) · dV(t)
dt

(5)

where V(t) is the voltage of the capacitor, C, during energy harvesting and can be measured by an
oscilloscope; Pout(t) is the generated power that stored in the capacitor at time t. The maximum power,
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Pmax, can be found by Equation (5) as well [29]. Then the generated average power Pavg(t) during the
time period ti to tj can be calculated as

Pavg =
1

ti − tj

∫ tj

ti

Pout(t)·dt (6)
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Human motion has its nature of randomness and irregularity and therefore is challenging to
calibrate as a standard mechanical input. Thus, we are using an average value in a time duration
to represent the generated average electrical energy. The equation used to calculate average power
(or effective power) in Reference [30–32] is I2R, which is normally adopted for calculating power
based on the measured current I and the known resistance R. In our case, we use a load capacitor to
calibrate the output energy, which is an alternative method and widely used to calibrate output energy
of energy harvesters such as [33–35]. As the goal of our study is to harvest the energy from human
motion (e.g., the hand clapping movements) and then store, the capacitors are suitable for storing the
harvested energy as well.

To estimate the power efficiency for kinetic energy harvesting, a known vibration input is generally
adopted. However, there is no standard method to evaluate energy harvesting from human motion.
In this study, we propose a measurement platform to quantitatively estimate the input power of human
motion. Three signals are needed to calibrate the input human motion, including acceleration, velocity,
and external force. The acceleration signal is obtained via a 3-axis accelerometer. The velocity can be
then obtained via integration of acceleration. The external force signal is measured by a force sensitive
resistor sensor (FlexiForce A201, Tekscan, Inc., Boston, MA, USA). There is a linear relationship between
the external force applied to the sensor and the sensor resistance. This linearity can be obtained from
the calibration data. A simple voltage divider is also applied to measure the voltage of the force sensor
and then calculate the external force. For the measurement of acceleration, we used an accelerometer
from PCB Piezoelectronics, Inc. (Depew, NY, USA) (model 333B50) to measure in the input human
motion. It has a sensitivity of (±10%) 102 mV/(m/s2) with ultrahigh linearity, which is highly suitable
for the human hand clapping movements. The voltage outputs of the accelerometer and the force
sensor have been measured using an oscilloscope (PicoScope 4424, Pico Technology, Cambridgeshire,
UK). The probes we used in the measurements are high impedance passive probes. The transferred
data are analyzed offline. The typical synchronized signals are shown in Figure 4, which corresponds
to the motion process. In Figure 4, it is shown that the force signal during the intervals became a
very small value, which means the two substrates of the triboelectric energy harvester were nearly
separated at that moment. Comparing with the output voltage of the WearETE system, it shows that
the second peak of the output voltage comes from the separation motion. Small output voltage of
WearETE at that moment may result from moment of inertia.
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3. Experiment and Results 

3.1. Energy Harvester Validation 
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circuit current to calibrate the energy harvester performance and then measure the output on a 
regular oscilloscope without rectifier to compare with the cases with load capacitors for calibration. 

Figure 4. Typical synchronized measured signals during tapping including voltage output of energy
harvester, force sensor and accelerometer.

In the detected signals, multiple typical points are shown in the acceleration signal to divide the
entire motion process into three sessions, which aligns with the real motion. The schematic of the three
sessions has been shown in Figure 5. In the first session (t0 to t1), the two substrates of WearETE move
from their original points (i.e., maximum separation distance) to the point where they contact each
other. In the second session (t1 to t2), the two tribomaterial layers keep contacting. Due to moment of
inertia, these two substrates keep moving for a short distance (less than their thickness) in the first
half and then move in the opposite direction till the moment of separation in the second half. In the
last one (t2 to t3), they move back to the maximum separation distance. Finally, the two substrates are
back to the original places as one period. Thus, the input power in the first and third sessions can be
calculated from the acceleration signal as shown in Figure 4 using Equation (7); whereas that in the
second session can be calculated from both the force sensor signal and the acceleration signal using
Equation (8).
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Pin1(t) = m1 · v(t) · a(t) (7)

Pin2(t) = m2(t) · g · v(t) (8)

where m1 is the mass of one half of the triboelectric energy harvester layer; m2(t) is the measured
external force during contacting; v(t) and a(t) are the velocity and acceleration during motion; g is the
gravity constant. Then the input power can be calculated by a piecewise function as Equation (9),
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Pin(t) =

{
m1 · v(t) · a(t), for t0 ≤ t ≤ t1 or t2 ≤ t ≤ t3

m2(t) · g · v(t), for t1 < t < t2
(9)

The power efficiency for WearETE can be calculated by Equation (10) within synchronized time
duration for input power, Pin and output power, Pout.

η =
Pout

Pin
(10)

3. Experiment and Results

3.1. Energy Harvester Validation

In the energy harvester validation experiment, we first test the open-circuit voltage and
short-circuit current to calibrate the energy harvester performance and then measure the output on a
regular oscilloscope without rectifier to compare with the cases with load capacitors for calibration.
The oscilloscope used for testing the open-circuit voltage and short-circuit current in this study
is an Electrochemistry Workstation (model: CHI660B, CHI Instruments, Inc., Austin, TX, USA).
The typical input impedance of reference electrode is 1012 Ω. The probes for measurements are high
performance passive probes with high impedance. The oscilloscope for system calibration with load
capacitors is a regular digital oscilloscope (PicoScope 4424, Pico Technology, Cambridgeshire, UK).
Triboelectric energy harvester can have two modes for harvesting human motion as shown in Figure 1,
the contact-separation mode and the sliding mode. The voltage outputs without the rectifier are
shown in Figure 6. For contact-separation motion, the voltage output is more stable and has a larger
magnitude than that during sliding motion. For sliding motion, due to its irregular nature, the voltage
output is unstable but it still generates considerable power. These results indicate that triboelectric
energy harvester can harvest energy from both types of motions. An experiment has been conducted to
test the open-circuit voltage and short-circuit current of the contact-separation mode. With the distance
of the two layers, i.e., e-textile and foam, increasing until the maximum separation, the open-circuit
voltage rises towards a maximum value following Equation (4). The pressing process is opposite. In
a short-circuit condition, the resultant current appears as negative and positive pulses during each
pressing and releasing cycle. The experimental results of the open-circuit voltage and short-circuit
current as shown in Figure 7a–c align with the theoretical analysis.
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Figure 6. Performance of the harvester during (a) contact-separation motion and (b) sliding motion.
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Figure 7. Open-circuit voltage and short-circuit current of the triboelectric energy harvester (PTFE
and copper, pressing model). (a) The open-circuit voltage; (b) the enlarged figure of one period in (a);
(c) short-circuit current.

To select the two contact textile materials as discussed in Section 2.2, an experiment was first
conducted in the study to investigate the triboelectric property of flexible textile materials including
cotton, polyester, paper and foam. In the experiment, we prepared the samples of each material and
slid them on the same copper substrate. A surface charge measurement device (USSVM2, AlphaLab
Inc., Salt Lake City, UT, USA) was used to detect the surface voltage after each sliding. The charge
accumulation can be clearly observed from the experiment that the surface voltage significantly
increased with the sliding times. In the first experiment, we slid the four samples with copper substrate
for five times and measured the surface voltage before and after sliding for all the four samples.
For each sample, we tested at least five times. The average surface voltage caused by the generated
triboelectric charges before and after sliding five times are listed in Table 1. Foam shows the highest
charge generation capability when sliding with the conductive copper substrate, which is much higher
than other materials. Then, we selected foam and measured the change generation of foam with sliding
times. The surface voltage is almost linear with sliding times as shown in Figure 8. Although the exact
value of the detected surface voltage varies, this result is repeatable in a certain range.

Table 1. Surface voltage caused by triboelectric charge before and after sliding five times.

Material Before Test (V) After Test

A B A B A B

Polyester Copper 98.9 112.2 51.5 125.0
Paper Copper 130.3 113.2 539.5 −13.6
Cotton Copper 124.9 116.3 355.3 169.0
Foam Copper 123.6 137.9 −2725.6 201.6
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In order to visualize the performance of WearETE, a number of LEDs were used to connect to the
energy harvester as shown in Figure 9. In the experiment, two WearETE (9 × 9 cm2 and 14 × 21 cm2)
were adopted to lighten 52 and 190 LEDs successfully, which have been shown in Figure 10.
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3.2. System Performance

The WearETE system including the rectifier can harvest human motion to DC for powering
purpose. Due to the irregular feature of human motion, it is challenging to control the input power
as the same for all performed tests. In the experiment, we calibrate the system performance under
different human motion conditions, which is similar to previous human motion energy harvester
studies [27,28]. The energy harvesting in contact-separation motion mode is first validated. For energy
harvesting, the capacitor and the exciting frequency govern the harvested energy. The capacitance
generally influences the charging time constant and the output voltage. Thus, different capacitors
under different frequencies are tested to calculate the power that the WearETE system can harvest and
validate the system performance. The smaller the capacitance, the smaller the time constant, the faster
it is charged or discharged and vice versa. The frequencies are chosen based on the nature of human
motion which is less than 5 Hz. The power generated by WearETE during contact-separation mode
can be calculated by Equation (5). The input mechanical energy is measured and calculated using the
platform presented in Section 3. Then the power efficiency is calculated by Equation (10).

In the experiment, the accelerometer and the force sensor were precisely aligned to the backside
of the WearETE during calibration, aiming to protect the triboelectric materials (e-texture, foam) from
the impact caused by accelerometer and force sensor thin film. To acquire comparable results under
different frequencies, the two substrates of the triboelectric energy harvester were pressed under
repeated movement, which was validated using the force sensor. Under the stable tapping frequency,
the output voltage of the WearETE system is periodic.

The typically measured output voltage of the WearETE system along with the calibration sensor
data during contact-separation motion is shown in Figure 4. In this case, the motion frequency is 2 Hz.
The results in this case show that the output peak voltage of the WearETE system with an area of
10.16 × 10.16 cm2 through contacting (first peak) and separation (second peak) are approximately 70 V
and 5.5 V, respectively.

In order to estimate the system performance of the WearETE during motion, a number of
capacitors with different values, i.e., 0.22, 2.2, 4.7, 10 and 47 µF, are selected to test for charging
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under different frequencies, i.e., 1, 2, 3 and 4 Hz. The voltage through the capacitors during charging
by WearETE system under 4 Hz are illustrated in Figure 11. The capacitor of 0.22 µF increases to
1 V most fast but it oscillates most dramatically. The capacitor of 47 µF increases slowly but more
stable and discharges slowly as well. The results show that the voltage of the capacitors with larger
capacitance increases slower and more stable and vice versa. The output voltage of the capacitor of
47 µF during charging under different frequencies are shown in Figure 12. The results show that the
voltage of this large capacitor can be charged to 1 V in 100 s, which demonstrates the possibility in
practical application. When the motion frequency is stable, the capacitor can be charged up to a stable
value if the charging time is long enough.
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In addition, the power efficiency for charging different capacitors with different frequencies
was also investigated in order to provide the estimation of the power generation due to frequencies
of human motion and influence of the storage capacitors in the AC-DC process for entire energy
harvesting system design. Figure 13 is to show how the output power changes with different input
frequency due to human motion, which will provide an estimation of the power generation due to
frequencies of human motion. The results show that higher load capacitance and input frequency
generally cause higher output power. The results of charging a 47 µF capacitor under different
motion frequencies are listed in Table 2. The input power is calibrated using the platform described in
Section 2.5. In each experimental setting, i.e., different capacitances and frequencies, more than five sets
of output voltage data were measured. These data show that the input power in different experiments
are dispersed and varied in the range from 0.1 W to 1 W due to the irregular nature of human motion.
Under the same experiment settings with similar level of force measured by the force sensor, the output
power of larger capacitance or frequency during motion are much higher. It indicates that for charging
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a capacitor, higher frequency generates more energy in the same time interval. The conclusion is also
applicable for charging a capacitor with higher capacitance. These trends are illustrated in Figure 13.
The output power increases with the capacitance as well as the input mechanical frequency, which can
provide the guidance in practical applications. Also, in the experiment, the power efficiency increased
within 3 Hz; whereas the efficiency at 3 Hz is higher than that at 4 Hz due to the difference of the input
power in these two cases. For charging a 47 µF capacitor, the power efficiency of average input and
output power can be as high as 24.94%.
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Table 2. Average results of charging a 47 µF capacitor under hand clapping movements with
different frequencies.

Frequency (Hz) Input Power (mW) Output Power (mW) Efficiency (%)

1.0 3.6460 0.0802 2.1996
2.0 1.5351 0.1611 10.4918
3.0 1.3790 0.3439 24.9374
4.0 2.5519 0.4182 16.3891

In addition to the average results, Table 3 summarizes the maximum power generated in these
experimental settings with the capacitance of 0.22, 2.2, 4.7, 10, 47 µF under the frequency 1–4 Hz.
From the experiment results, charging a 47 µF capacitor can harvest the highest maximum power,
which is approximately 4.8113 mW, from the 4 Hz motion. The WearETE used in experiments has an
area of 10.16 × 10.16 cm2, which equals to 103.226 cm2. The maximum power density thus can be
46.6 µW/cm2.

Table 3. Maximum output power of charging different capacitors under hand clapping movements
under different frequencies.

Maximum Power (mW) 1 Hz 2 Hz 3 Hz 4 Hz

0.22 µF 0.0222 0.0220 0.0265 0.0542
2.2 µF 0.0725 0.1182 0.1093 0.1700
4.7 µF 0.1656 0.1974 0.2402 0.4299
10 µF 0.1883 0.5115 0.5608 0.8986
47 µF 0.8288 1.6001 2.5916 4.8113
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In the experiment, we found that the power loss caused by the bridge rectifier was high. In this
study, since we focus on proposing and validating the proof-of-concept using low-cost materials and
manufacturing method for power generation for wearable electronics, we will consider the power
conditioning circuit design in the future work.

3.3. Harvesting Energy from Walking

During walking, people generally swing their hands to keep balance. Since the proposed WearETE
system can generate power from sliding motion, a validation experiment was developed to harvest
energy from people swinging their hands during walking. In the experiment, the two substrates of the
WearETE were attached to the cloth on the side of body and front arm individually. Then the energy
harvester was assembled with the power management circuit. The output voltage of the WearETE
system is measured and recorded during walking. The power harvested during human walking
is generated by sliding the two tribomaterials of the energy harvester. Finally, the output power is
calculated based on the output voltage.

The output of the WearETE system for harvesting energy from walking is shown in Figure 14.
The output power harvested by WearETE during walking is 7.5248 µW. The results show the possibility
for harvesting energy during human walking. Compared to other similar systems with energy
harvester attached to the cloth [11], the WearETE system provides a reasonable performance for human
motion energy harvesting. In this study, we demonstrate the feasibility of using very low-cost materials
and fabrication methods for human motion harvesting.
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In addition to the average results, Table 3 summarizes the maximum power generated in these 
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47 µF 0.8288 1.6001 2.5916 4.8113 

In the experiment, we found that the power loss caused by the bridge rectifier was high. In this 
study, since we focus on proposing and validating the proof-of-concept using low-cost materials and 
manufacturing method for power generation for wearable electronics, we will consider the power 
conditioning circuit design in the future work. 
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Then the energy harvester was assembled with the power management circuit. The output voltage 
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Figure 14. Output voltage of WearETE during harvesting energy from human walking.

4. Conclusions

In this study, we developed a novel scalable wearable e-textile triboelectric energy harvesting
system for scavenging energy from daily human motion. The proposed energy harvester is scalable,
stretchable, and wearable. The proposed WearETE system is based on triboelectric energy harvesting
which is an emerging technique for kinetic energy conversion. The system adopts foam and e-textile
as the tribomaterials, which demonstrates the feasibility of using low-cost materials and fabrication
techniques for wearable energy harvester design. A platform for measuring and calculating power
efficiency is also established for measuring and calibrating random human motion. The results show
that the wearable triboelectric energy harvester can generate over 70 V output voltage which is capable
of powering over 52 LEDs simultaneously with a 9 × 9 cm2 area. A larger version is able to lighten
190 LEDs during contact-separation process. The WearETE system can generate the maximum power
up to approximately 4.8113 mW from human motion with the frequency of 4 Hz. The maximum area
power density can be approximately 46.6 µW/cm2. The average output power harvested by WearETE
system during slow walking is 7.5248 µW. The proposed WearETE system show the possibility of
powering wearable electronics during human motion using a wearable energy harvester.
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