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Abstract: The high-resolution range (HRR) profile is an important target signature in many
applications (e.g., automatic target recognition), and the radar HRR profiling performance is highly
dependent on radar transmitted waveforms. In this paper, we consider the constant-modulus
(CM) waveform optimization problem to improve HRR profiling performance for stationary targets.
Firstly, several fundamental bounds regarding the profiling ambiguity, stability, and accuracy are
derived. Further investigation reveals that the stability and accuracy of HRR profiling are unified
in the white noise case. Aimed at improving the profiling stability and accuracy, we design two
types of CM radar waveforms—the arbitrary-phase and QPSK waveforms—through a customized
Gaussian randomization method. The performance of LFM waveforms is also discussed. Numerical
experiments show that the optimized CM waveforms can dramatically enhance the profiling
performance over the unoptimized ones.

Keywords: high-resolution range profiling; radar waveform optimization; constant-modulus
waveform; stationary target

1. Introduction

Obtaining the high-resolution range (HRR) profile (HRRP) of targets is a significant capacity of
modern radars and the HRRP plays a critical role in synthetic aperture radar [1], automatic target
recognition [2–5] and classification [6,7], and adaptive waveform design [8,9], etc. It has been widely
acknowledged that the HRR profiling performance is associated with the waveform utilized [10], and
improper waveforms can result in large profiling errors [11]. In this paper, we focus on the waveform
optimization problem, aiming to improve the profiling performance for stationary targets via the
optimized waveforms.

In recent decades, radar waveform design has received considerable attention. Generally speaking,
the existing waveform design methods can mainly be classified into three categories. The first is
information theory-based methods [12–16] mainly for target estimation or identification, whose aim
is to acquire the most information out of targets. In this category of study, random target models
are usually used, and mutual information (MI) between the received signal and the target impulse
response (TIR) is maximized [12]. In [13], it was shown that the maximization of the conditional MI
and the minimization of the mean square error (MSE) lead to the same solution. But the two criteria
result in different waveforms when the uncertainty of the target power spectrum is considered [14].
The multiple-target case was discussed in [15]. The second category is ambiguity function (AF) -based
methods [17–20], which optimize the waveforms by shaping the AF. In [17], a phase-modulated
waveform was synthesized to minimize the out-of-bin clutter contribution for improved detection in
heavy sea clutter. In [18], phase-modulated waveforms were designed to minimize the AF over some
specific range-Doppler bins. The transmitted waveform is optimized via maximizing the AF peak
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for a distributed MIMO radar system in [19]. In [20], unimodular waveforms with low correlation
sidelobes in one or more lag intervals are designed. The third category is the signal-to-noise ratio
(SNR) -based methods [8,9,13,21–27], which aim to maximize the output SNR at the receiver end.
Bell [13], for the first time, obtained the eigen-waveform solution under the total energy constraint.
For the clutter-present case, Pillai [22] proposed the eigen-iterative algorithm to determine the optimal
transmitter and receiver. Paper [8] solved the potential non-convergence problem in [22] via the
alternate optimization method; reference [9] further designed the constant-modulus (CM) waveform
with acceptable performance loss compared with the non-CM waveforms obtained in [8]. In the
spectral domain, phase-modulated waveforms are optimized by approaching the optimal energy
spectral density [23,24]. Waveforms are optimized for extend target recognition with polarimetric
radar in [25–27]. In addition, the intrapulse radar-embedded covert communication is discussed in [28].

The existing work regarding waveform optimization for HRR profiling (also called target
estimation in some literature) is mainly based on information theory (i.e., the first category).
The assumptions of this category of work, however, are usually unrealistic (e.g., the target scattering
amplitude is randomly distributed), hampering the practicability of the methods. In this study, we
revisit the problem from another perspective, which is based on the HRR profiling performance
analysis of the waveforms. Furthermore, to fully utilize the transmitter’s power and avoid nonlinear
distortion brought by the radio-frequency amplifier, the CM constraint is imposed on transmitted
waveforms—which is usually ignored in existing works. Note that the CM property is important for
power-efficient radars, e.g., airborne and spaceborne radars.

In this paper, we focus on the optimization of CM phase-modulated waveforms for HRR profiling
without strong assumptions on the target/environment model. Firstly, we derive the profiling
unambiguity criterion, the upper and lower bounds of the profiling error, which are corresponding
to the ambiguity, stability and accuracy of HRR profiling, respectively. By further analyzing these
derived results, we obtain some useful conclusions and design two types of CM phase-modulated
waveforms—the arbitrary-phase waveform and the quadrature phase shift keying (QPSK) waveform.
The proposed waveform design method can be applied to both the white noise and the colored noise.
In addition, the profiling performance of LFM waveforms in the white noise is discussed in theory
and simulation.

The rest of the paper is organized as follows: a discrete baseband radar signal model is formulated
in Section 2. Section 3 provides several fundamental limits of HRR profiling, including the profiling
ambiguity, stability and accuracy. In Section 4, two types of CM phase-modulated waveforms are
designed. Numerical results are provided, and some useful findings are obtained in Section 5. Finally,
the main conclusions are drawn in Section 6.

Notation: Throughout this paper, boldface lowercase and uppercase letters represent vectors
and matrices, respectively. The superscripts (·)T , (·)∗, and (·)H denote the transpose, conjugation
and Hermitian transpose operations, respectively. In is the n× n unity matrix. 0m×n (0n) and 1m×n

(1n), respectively, are the m× n (n× 1) all-zero matrix and all-one matrix. We omit the subscripts
when it does not cause confusion in the matrix/vector size. Amn represents the element located at the
mth row and nth column of A. a(n) or an represents the nth element of a. ‖ · ‖ and ‖ · ‖F denote the
2-norm and the Frobenius norm, respectively. Re(·) and Im(·) are the real and imaginary operators,
respectively. CN (0, A) represents the complex normal distribution with zero mean and covariance
matrix A. Function diag(a) returns a diagonal matrix with the elements of a on the main diagonal.
The notation ∗ represents the convolution operator. tr(·) represents the trace of a matrix. In the paper,
operator ./ denotes the element-wise division, and sin() is an element-wise function.

2. Signal Model

In this study, we focus on the traditional single-input single-output (SISO) radar model (the MIMO
radar case will be a follow-up study). Assume that the target of interest falls in the range gate [R0, R1].
See Figure 1 for an illustration. Partition [R0, R1] into a series of range slices with each slice being ∆R,
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which is the range resolution of the radar system. ∆R is set as the radar range resolution c/2B, where c
is the speed of light and B is the bandwidth. Then, the HRR profile of the target can be expressed as
a vector h , [h0, h1, · · · hNt−1]

T , where hp represents the complex scattering amplitude of the scatterer
located at R0 + p∆R. For simplicity, we assume that the path loss has been absorbed into hp [29]. In this
paper, we only consider stationary targets, or equivalently, assume that the relative velocity between
the target and the radar has been compensated.
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Figure 1. An illustration of the radar/target signal model. 
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Based on the above target model, the echoes can be expressed as:

xRF(t) =
Nt−1

∑
p=0

hp · exp
(

j2π fc

(
t− 2R0

c
− 2p∆R

c

))
· s
(

t− 2R0

c
− 2p∆R

c

)
+ n(t) (1)

where s(t) is the baseband transmitted waveform, and n(t) is the channel noise. After the down-
conversion, the received baseband signal is:

xBS(t) =
Nt−1

∑
p=0

hp · exp
(

j2π fc

(
−2R0

c
− 2p∆R

c

))
· s
(

t− 2R0

c
− 2p∆R

c

)
+ nBS(t) (2)

where nBS(t) is the baseband noise. The exponential item in Equation (2) is the phase shift induced
by the carrier frequency f and is only related to p, and thus can be absorbed into hp. Therefore,
Equation (2) can be simplified to:

xBS(t) =
Nt−1

∑
p=0

hp · s
(

t− 2R0

c
− 2p∆R

c

)
+ nBS(t) (3)

Equation (3) can be considered as the output of a linear time-invariant system whose impulse
response is h and whose input signal is s(t). Then the discrete version of Equation (3) can be written as:

x = s ∗ h + n (4)

where s ∈ CNs is the discrete baseband transmitted waveform, n ∈ CNn is the sampled version
of nBS(t), which obeys the complex Gaussian distribution. Equation (4) can be rewritten in matrix
form as:

x = Sh + n (5)
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where matrix S has the following form:

S =



s0 0 · · · 0

...
sNs−1

0

s0
...

sNs−1

. . .

. . .

. . .

...
0
s0

...
. . . . . .

...
0 · · · 0 sNs−1


(6)

Matrix S is termed the waveform convolution matrix (WCM), and can be written mathematically as:

S = [ξ0 · · · ξNt−1], where ξ i =
[
0T

i sT 0T
Nt−i−1

]T
, i = 0, · · · , Nt − 1 (7)

Equation (5) gives the relation between the received baseband signal x and the waveform s,
and forms the foundation of further analysis.

3. Performance Analysis of HRR Profiling

The performance of HRR profiling is highly dependent on the transmitted waveform. In this
section, several fundamental limits regarding profiling ambiguity, stability and accuracy are discussed.
The analysis results in this section can be used to assess the profiling performance of the transmitted
waveform, and aid in the waveform optimization in Section 4.

3.1. Unambiguous Criterion

Unambiguity is an essential requirement to make the HRR profiling result unique and
applicable [10]. One can see from Equation (5) that the echo x is a linear combination of the columns
of WCM S. To maintain the unique estimation of h, S must be full-column rank. We then have the
following theorem.

Theorem 1 (Unambiguous Criterion). The necessary and sufficient condition for HRR profiling to be
unambiguous is:

κ(S) , ζmax(S)/ζmin(S) < ∞ (8)

In Equation (8), ζmax(S) and ζmin(S) are the maximum and minimum singular values of S, respectively.
A more strict but unnecessary condition for HRR profiling to be unambiguous is:

^
s (ω) 6= 0, f or ∀ω ∈ [−π, π] (9)

where
^
s (ω) is the discrete-time Fourier transform (DTFT) of s.

The proof of Theorem 1 can be found in Appendix A. κ(S) in Equation (8) is often called the
condition number of S. Equations (8) and (9) give the unambiguous criterion regarding the transmitted
waveform s from the time domain and frequency domain, respectively. It is noteworthy that the
requirements from Equations (8) or (9) are lax. In other words, it is not difficult for a waveform to
satisfy Equations (8) and (9).

3.2. Upper Bound of the Profiling Error

In real radar systems, noise always exists and leads to the profiling error. In this subsection, we
discuss the upper bound of the profiling error, which reflects the profiling stability of the transmitted
waveform. Denote:

Sh = x, S(h + ∆h) = x + n (10)
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where ∆h represents the profiling error arising from the noise n. Theorem 2 gives the relation between
the upper bound of ‖∆h‖ and the transmitted waveform s.

Theorem 2 (Profiling Stability). Assume that the unambiguous condition in Theorem 1 holds, i.e., WCM S is
full-column rank. Then we have:

‖∆h‖
‖h‖ ≤ [κ(S)]2 · ‖n‖‖x‖ (11)

where κ(S) has been defined in Equation (8). More loosely, we have that:

‖∆h‖
‖h‖ ≤

{
γ

ε
+

√(γ

ε

)2
− 1

}
· ‖n‖‖x‖ (12)

where γ and ε are the maximum and minimum of
^
b (ω), respectively;

^
b (ω) is the power spectrum density

(PSD) of the transmitted waveform s and is defined as:

^
b (ω) =

Nt−1

∑
n=−Nt+1

bn exp(jnw), bn =
min(Ns−1,Ns−1+n)

∑
k=max(0,n)

s(k)s∗(k− n) (13)

Note that Equation (12) requires that ε = min
{
^
b (w)

}
> 0, i.e., Equation (9) holds.

The proof of Theorem 2 can be found in Appendix B. Note that Theorem 2 is based on the
unambiguity of HRR profiling. Equations (11) and (12) give two types of upper bounds of the profiling
error, from the time domain and frequency domain, respectively. Equation (11) indicates that the
upper bound is positively associated with κ(S); whereas Equation (12) implies that the upper bound
is positively associated with the flatness of the PSD of the transmitted waveform. Also note that
Equation (11) is a tighter upper bound than Equation (12) (see Appendix B for the reason). In addition,
the upper bounds in Theorem 2 is irrespective of the probability distribution of noise. In other words,
they apply to any form of noise distribution.

3.3. Lower Bound of the Profiling Error

In this subsection, we discuss the Cramer-Rao lower bound (CRB) of the profiling error, which
reflects the profiling accuracy of the transmitted waveform. The discussion is based on the assumption
that the noise is Gaussian distributed.

Theorem 3 (Profiling Accuracy). Assume that the noise n obeys the complex Gaussian distribution with
mean value being 0 and covariance matrix Rn, i.e., n ∼ CN (0, Rn). Then, for the parameter vector θ =[
ReT(h) ImT(h)

]T
∈2Nt to be estimated, the CRB matrix is:

Cθ =
1
2
·
{

Re
[
FHRn

−1F
]}−1

(14)

where F = [S jS]. Therefore, the mean square error (MSE) values of an unbiased estimation θ̂ satisfies:

E
{
‖θ̂− θ‖2

F

}
≥ tr(Cθ) , Ch (15)

Theorem 3 is the direct derivation of the Slepian-Bang’s Theorem [30]. One can refer to [30] for
the proof details. Equation (15) shows that the best achievable profiling accuracy with the waveform s
is Ch, the trace of matrix Cθ . However, the expression of Cθ in Equation (14) is somewhat complicated.
We will analyze it in the next section.
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4. Constant-Modulus Waveform Design

Based on the profiling performance analysis about the transmitted waveform in Section 3, we focus
on the CM waveform optimization problem in this section. First, we investigate the relations of the
profiling ambiguity, stability, and accuracy in both white and colored noise. It is shown that their
requirement on the waveforms are unified in the white noise. Then, two types of phase-modulated
waveforms are designed in the sense of improving the profiling stability and accuracy. Besides,
the potential of LFM waveforms for HRR profiling is also discussed.

4.1. Problem Analysis

First, we consider the white noise case. Let Rn = σ2
nI, where σ2

n is the noise power. A good
waveform should make the HRR profiling unambiguous and, at the same time, exhibit good profiling
stability and accuracy. Technically, (i) from the perspective of the profiling unambiguity and stability,
the condition number of WCM S κ(S) should be small (see Equations (8) and (11) for the reason);
(ii) from the perspective of the profiling accuracy, the CRB in Equation (14) should be as small
as possible.

As for the profiling stability, it is not difficult to check that, the sufficient and necessary condition
for κ(S) to achieve the minimum is that:

B , SHS =
(

sHs
)
· I (16)

In what follows, the discussion of the profiling accuracy is mainly focused on. For notational
simplicity, we let sHs = Ns. In the white noise case, the CRB matrix in Equation (14) is simplified to:

Cθ =
σ2

n
2
·
{

Re
[
FHF

]}−1
(17)

Because F = [S jS], we have that:

Ω , Re
[
FHF

]
= Re

[
SHS j · SHS
−j · SHS SHS

]
=

 Re
(

SHS
)
−Im

(
SHS

)
Im
(

SHS
)

Re
(

SHS
)  (18)

Because SHS is a positive definite Hermite matrix (S is assumed to be full column rank), matrix Ω

is a real symmetric positive-definite matrix. Therefore, the eigenvalues of SHS and Ω are positive and
real. Denote the eigenvalues of SHS by λ1 ≥ λ2 ≥ · · · ≥ λNt > 0. Then, {λi, λi}, i = 1, · · · , Nt are the
eigenvalues of matrix Ω, and {1/λi, 1/λi}, i = 1, · · · , Nt are the eigenvalues of Ω−1. Considering
that the trace of a matrix is equal to the summation of all its eigenvalues, Ch can be written as:

Ch = tr(Cθ) = σ2
n

Nt

∑
i=1

(1/λi) (19)

For positive numbers, their arithmetic mean is not less than their harmonic mean [31]. Therefore,
we have: (

Nt

∑
i=1

λi

)
/Nt ≥ Nt/

(
Nt

∑
i=1

1/λi

)
(20)

hence:

Ch = tr(Cθ) = σ2
n

Nt

∑
i=1

(1/λi) ≥
(

σ2
n N2

t

)
/

(
Nt

∑
i=1

λi

)
(21)

The equality in Equation (21) holds if and only if:

λ1 = · · · = λNt (22)
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in which case, matrix B is a scaled identity matrix, i.e.,

B = SHS =
(

sHs
)
· I (23)

Comparing Equations (16) and (23), we can find that in the white noise case, κ(S) and CRB achieve
the minima under the same condition. It means that the requirements of the profiling unambiguity,
stability, and accuracy regarding the transmitted waveform is unified. In other words, the improvement
of the profiling accuracy will be accompanied by the improvement of the profiling stability. A remark
is given in the following paragraph regarding the upper bound of Ch.

Remark 1. Appendix C gives an upper bound of Ch (see (A19) in Appendix C ), which is positively associated
with the condition number of S. The upper bound of the CRB gives the worst case of the profiling accuracy.
The smaller the value of κ(S), the better the worst case of the profiling accuracy. This phenomenon, once again,
demonstrates that the stability and accuracy of the HRR profiling is unified in the white noise case.

Based on the preceding analysis, the quality of the transmitted waveform can be assessed by the
value of κ(S), which can also be assessed by the approximation of B = SHS and Ns · I. Next, we use the
autocorrelation sequence to quantify the approximation. The structure of matrix B, which is a Toeplitz
and Hermite matrix, is used. More specifically, B can be written as:

B =


b0 b1 · · · bNt−1

b−1
. . . . . .

...
...

. . . . . . b1

b−Nt+1 · · · b−1 b0

 (24)

where:

bn =
min(Ns−1,Ns−1+n)

∑
k=max(0,n)

s(k)s∗(k− n), n = −Nt + 1, · · · , Nt − 1 (25)

Let the first column and the first row of B form vector b:

b = [b−Nt+1, · · · , b0, · · · , bNt−1]
T (26)

One can find that b is the autocorrelation sequence of s.
For the best case in the white noise scenario, the ideal matrix B is the scaled identity matrix,

meaning that the ideal vector b is:

bt = [0, · · · , 0, Ns, 0 · · · , 0]T (27)

We refer to the ideal bt as the autocorrelation template (AT) in our study. Therefore, the MSE
between the practical autocorrelation sequence and the AT can be used to assess the transmitted
waveform. We define the MSE as:

‖
(
b− bt)/Ns‖

2
(28)

Generally speaking, the smaller the MSE, the better the transmitted waveform.
In what follows, we derive the autocorrelation template bt in the colored noise case, which

is more complicated than the white noise case. Since bt is obtained via the matrix SHS, we need to
determine the optimum SHS firstly. By using a similar analysis procedure, we can get that the optimum
waveform satisfies:

SHR−1
n S = a · I (29)
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which can be regarded as a weighted version of Equation (23). In Equation (29), a = ξH
0 R−1

n ξ0 is
a constant value. Decompose Rn via the Cholesky decomposition (or via eigenvalue decomposition),
and obtain Rn = ΓΓH , where Γ is an invertible matrix. Then, Equation (29) turns into:(

Γ−1S
)H(

Γ−1S
)
= a · I (30)

Therefore, Γ−1S =
√

a · U, where U can be an arbitrary Nn × Nt column-orthogonal matrix.
Hence, S =

√
aΓU, and:

SHS = a ·UHΓHΓU (31)

The form of U is not unique, so the form of SHS is not unique as well. Most simply, let U be the
matrix whose diagonal elements are 1 and the others are 0. Then Equation (31) becomes:

SHS = a ·
[
ΓHΓ

]
(1:Nt):(1:Nt)

(32)

where the subscript (1 : Nt) : (1 : Nt) denotes selecting the first Nt rows and the first Nt columns of
ΓHΓ. Similar with the white noise case, the autocorrelation template bt in the colored noise is the
vector consisting of the first column and row of the new SHS. Note that bt is not unique since SHS is
not unique.

4.2. CM Waveform Design

In this subsection, we use the above analysis conclusions to design CM transmitted waveform.
However, obtaining the optimal CM waveform under the restrictions imposed by Equation (23) or
Equation (27) is a NP-Hard problem, and the global optimum is hardly possible. Heuristic search
algorithms can be used to search for a fair solution, but the computational burden is extensive and the
(near) real-time processing requirement in practice can hardly be met. Next we customize the Gaussian
randomization method to solve the problem, which largely decreases the computational load.

First of all, we consider the waveform s as a zero-mean stationary stochastic process Equation [9].
Namely, the correlation between elements in s is only dependent on their time difference (in discrete
case, the time difference is the index difference). We then need to determine the covariance matrix of s,
which is denoted as X. X is a Hermite Toeplitz matrix:

Xmn = E(s(m) · s∗(n)) , Rs(n−m)

For analytic convenience, in what follows we assume Nt = Ns. The Nt 6= Ns case can be extended
accordingly. In combination with Equation (25), we have:

bn = E(bn) =
min(Ns−1,Ns−1+n)

∑
k=max(0,n)

E[s(k)s∗(k− n)] = (Ns − |n|) · Rs(n) (33)

showing that the elements in SHS are the integer multiples of those in X. Therefore:

X = SHS./C, C =


Ns Ns − 1 · · · 1

Ns − 1
. . . . . .

...
...

. . . . . . Ns − 1
1 . . . Ns − 1 Ns

 (34)

where C is a constant matrix.
According to Equations (23) and (34), the covariance matrix X for the white noise case is the

identity matrix I. Now we can use the procedures in Table 1 to design the CM arbitrary-phase waveform.
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The main idea is that, (i) generate a series of non-CM candidate vectors (denote the number as K)
whose covariance matrix is X, (ii) forcibly normalize the modulus of the candidates, and (iii) among
them choose the one with the minimum MSE in Equation (28). One thing worth mentioning is that,
if Step 2 in Table 1 is skipped, Step 1 and 3 can be used to optimize non-CM waveforms.

Table 1. Gaussian randomization method for CM arbitrary-phase waveform design.

Step 1: Obtain a series of non-CM Gaussian-distributed vectors (denoted as s) to realize the covariance
matrix X. The step can be done by means of the Cholesky factorization or eigenvalue decomposition.

Step 2: Get the CM vector s by normalizing the modulus of s, s = exp(−j · ang(s)). s can be seen as the
candidate vector for sopt.

Step 3: Choose the candidate vector that minimizes Equation (28). For the white noise case, bt is Equation (27);
for the colored noise case, bt is generated from SHS in Equation (32).

Interestingly, using the method proposed in Equation [32], we can generate the QPSK waveform
to realize X, which further lower the requirements upon the transmitters in comparison with the
arbitrary-phase waveform. The detailed procedures for the CM QPSK waveform design are listed
in Table 2. Note that Tables 1 and 2 eliminate the heuristic search process, making it efficient to get
an optimized waveform to some extent. Generally speaking, a better waveform will be obtained if the
number of candidate vectors is set larger.

Table 2. Customized Gaussian randomization method for CM QPSK waveform design.

Step 1: Denote the real and imaginary parts of X by XR and X I , respectively.

Step 2: Generate X̃ via

X̃ =

[
A BT

B A

]
, A = sin

(π

2
XR

)
, B = sin

(π

2
X I

)
Step 3: Make a forced positive definite Cholesky decomposition X̃ + D = ΓΓT . D is a diagonal matrix with
nonnegative elements.

Step 4: Let β = Γθ, where θ is a Gaussian distributed vector with zero mean and unit variance. The QPSK
vector can then be generated by

s = sgn(β(1 : Ns)) + j·sgn(β(Ns + 1 : 2Ns))

Step 5: Generate a series of QPSK candidate vectors via the preceding steps, and choose the one that minimizes
Equation (28).

According to Equation (27), the ideal autocorrelation sequence of the waveform in the white
noise is the impulse signal, meaning that the ideal PSD is flat. This fact suggests that LFM waveforms,
which have a relatively flat PSD, should be suitable for HRR profiling. This conclusion coincides with
Theorem 2 in Subsection 3.2, which says the profiling stability is related to the flatness of the PSD of
the transmitted waveform.

For the colored noise, X is not the identity matrix, but is relevant with the noise covariance matrix
Rn. X can be computed via Equations (32) and (34). We can then design the arbitrary-phase or QPSK
waveform via the Table 1 or Table 2. One thing worth noting is that, even though SHS is positive
definite, X computed via Equation (34) may not be positive definite. In this case, we need to add δ · I
to X in order to make it positive definite, where δ is the absolute value of the minimum eigenvalue of
X. Additional procedures are unnecessary for Table 2, because the procedures in Table 2 can already
handle the non-positive definite case.

The computational complexity of the above algorithms are related to the number of candidate
vectors K, and the length of the waveform Ns. The details are listed in Table 3, including the CM and
QPSK waveform design in both white and colored noise . The worst-case computational complexity is



Sensors 2017, 17, 2574 10 of 19

O
(
K · Ns

3). One can see that, if the pulse width of the transmitted waveform is fixed, the computational
complexity is proportional to K. Therefore, K can be determined according to the computational
capability of the radar system. Statistically, a larger K means a heavier computational burden and
a better optimization result.

Table 3. Computational complexity of the proposed algorithms.

Computational Complexity CM Waveform Design QPSK Waveform Design

White noise O(K·Ns) O
(
K·Ns

3)
Colored noise O

(
K·Ns

3) O
(
K·Ns

3)
5. Simulation Results

In this section, numerical experiments are conducted to demonstrate the analyzed results and the
proposed waveform design methods. The white and colored noise cases are discussed, respectively.

5.1. White Noise Case

In this subsection, we compare the HRR profiling performance of several waveforms, including the
monotone waveform s1, two LFM waveforms s2 and s3 with different parameters, the optimized CM
arbitrary-phase and QPSK waveforms s4 and s5, and the optimized non-CM waveform s6 (generated
via Table 1 without Step 2). Set the length of s and t as: Ns = Nt = 60. The number of the candidate
vectors in Tables 1 and 2 is set equal to 5000. The expression of the used LFM waveform is:

s(n) = exp
(

j · kπ(n/Ns)
2
)

, n = 0, · · · , Ns − 1 (35)

where k denotes the time-bandwith product (TBP) of the waveform, and should not be larger than
Ns (because the sampling frequency should be larger than the bandwidth). The TBPs for s2 and s3

are set as 30 and 60, respectively. One can see that the bandwith of s3 is twice that of s2. The HRR
profiling performance is measured by Ch, which is computed by Equations. (17) and (19). The transmit
power of the waveforms s1 ∼ s6 is 1; namely, the total energy in each pulse period is Ns. The SNR is
therefore 1/σ2

n .
From Figure 2, we can see that the optimized waveforms s4 ∼ s6 outperform the monotone

waveform s1 and the LFM waveform s2 by more than 10 dB. It is interesting to notice that the LFM
waveform s3 with k = 60 has the best profiling performance, and is slightly better than the optimized
waveform s4 ∼ s6 by roughly 0.4 dB. The reason why s3 performs better than s2 is that s3 has twice
the bandwidth of s2 and larger bandwidth means better performance. (Waveforms s3 ∼ s6 have the
same bandwidth; see Figure 3 for illustration.) Figure 2 shows that LFM waveforms are naturally
excellent waveforms for HRR profiling in the white noise. This finding can be considered as a newly
discovered advantage of LFM waveforms. However, it should be noted that LFM waveforms could
have a relatively poor performance in the colored noise since the best waveform depends on the
specific noise covariance matrix. In the present example, the performance gap between the non-CM
waveform s6 and the CM waveform s4, s5 is negligible, even if s4 and s5 are generated under the CM
constraint, s5 furtherly under the QPSK constraint. It manifests the effectiveness of the customized
randomization procedures presented in Tables 1 and 2. Besides, the linear change of CRB with SNR in
Figure 2 (the logarithm coordinate) can be explained by Equation (19).
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Figure 3. The PSDs of the waveforms s2 ∼ s5

Figure 3 gives the PSDs of s2 ∼ s5. The PSD of s2 has been shifted to align with the others.
Comparing Figures 2 and 3, one can see that the flatness of the waveforms corresponds to the profiling
performance. s3, with the flattest PSD, has the lowest CRB, while s2, with the most fluctuant PSD,
has the largest CRB. s3 and s4 perform in between s2 and s3, both in the flatness and the CRB.

Figure 4 shows that the profiling errors of s1 ∼ s6 when the least square (LS) method is used
to estimate h in Equation (5). Denote the estimated result as ĥ, and the estimation error can be
expressed as:

MSE =

(
N

∑
n=1
‖ĥ(n) − h‖

2
F

)
/N (36)

where N is the number of independent runs and is set as 5000. Note that Equations (28) and (36)
have different forms, even though they both use the concept of MSE. The results in Figure 4 coincides
with those in Figure 2, with s3 ∼ s6 better and s1 worse. The waveform with a lower CRB has better
profiling performance, demonstrating the correctness of the analysis conclusion in Section 4.1.
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In what follows, we testify the performance of s1 ∼ s6 in a specific example. The actual TIR h is
presented in Figure 5. The target consists of five major scattering points whose scattering amplitudes
are set as 0.5, 1, 0.7, 0.8, 0.8, respectively. Note that the n-axis in Figure 5 corresponds to the range cell,
which is the range resolution of the radar system. Actually, what Figure 5 shows is the radar signature
of the SR-71, which has been used in [16]. Set SNR equal to 10 dB, namely, σ2

n = 0.1. Figure 6 gives the
profiling results ĥ for different waveforms. Figure 6a–f corresponds to s1 ∼ s6, respectively. One can
see that different waveforms lead to a greatly different results. s3 ∼ s6 perform best and s1 worst,
coinciding with Figures 2 and 4.

Sensors. 2017, 17, 2574  12 of 19 

 

those in Figure 2, with 3 6s s  better and 1s  worse. The waveform with a lower CRB has better 
profiling performance, demonstrating the correctness of the analysis conclusion in Section 4.1.  

 
Figure 4. MSE (LS is used) versus SNR for different waveforms in the white noise. 

In what follows, we testify the performance of 1 6s s  in a specific example. The actual TIR h  
is presented in Figure 5. The target consists of five major scattering points whose scattering 
amplitudes are set as 0.5, 1, 0.7, 0.8, 0.8, respectively. Note that the n-axis in Figure 5 corresponds to 
the range cell, which is the range resolution of the radar system. Actually, what Figure 5 shows is the 
radar signature of the SR-71, which has been used in [16]. Set SNR equal to 10 dB, namely, 2 0.1n  . 

Figure 6 gives the profiling results ĥ  for different waveforms. Figure 6a–f corresponds to 1 6s s , 
respectively. One can see that different waveforms lead to a greatly different results. 3 6s s  
perform best and 1s  worst, coinciding with Figures 2 and 4. 

 

Figure 5. The actual target impulse response. 

0 5 10 15 20
-20

-10

0

10

20

SNR, dB

M
SE

, d
B

 

 

s1: Monotone
s2: LFM, k = 30
s3: LFM, k = 60
s4: Arbitrary-Phase
s5: QPSK
s6: Non-CM

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

n

M
ag

ni
tu

de

Figure 5. The actual target impulse response.



Sensors 2017, 17, 2574 13 of 19Sensors. 2017, 17, 2574  13 of 19 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6. The profiling results using different waveforms in the white noise. (a–f) correspond to 
waveforms 1 6~s s , respectively.  

5.2. Colored Noise Case 

In this subsection, we discuss the colored noise case. The noise covariance matrix nR  is set as a 

symmetric Toeplitz matrix whose first row is 11, , , , 0.5nNq q q    . This setting makes nR  positive 

definite. The other parameters stay the same with Subsection 5.1. Four types of CM waveforms are 
used, and the arbitrary-phase waveform 4s  and QPSK waveform 5s  are generated in the 
corresponding colored-noise way. 

Figure 7 gives the profiling performance of the waveforms in the colored noise. Comparing with 
Figure 2, one can see that 1 3~s s  perform worse in the colored noise than in the white noise. The 
CM arbitrary-phase waveform 4s  performs best, taking the place of 3s . The QPSK waveform 5s  
and the LFM waveform 3s  have similar performance. Figure 8, which shows the profiling MSE of 
the waveforms, coincides with Figure 7. 

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

0.5

1

n

m
ag

ni
tu

de

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

Figure 6. The profiling results using different waveforms in the white noise. (a–f) correspond to
waveforms s1 ∼ s6, respectively.

5.2. Colored Noise Case

In this subsection, we discuss the colored noise case. The noise covariance matrix Rn is set
as a symmetric Toeplitz matrix whose first row is

[
1, q, · · · , qNn−1], q = 0.5. This setting makes

Rn positive definite. The other parameters stay the same with Subsection 5.1. Four types of CM
waveforms are used, and the arbitrary-phase waveform s4 and QPSK waveform s5 are generated in
the corresponding colored-noise way.

Figure 7 gives the profiling performance of the waveforms in the colored noise. Comparing
with Figure 2, one can see that s1 ∼ s3 perform worse in the colored noise than in the white noise.
The CM arbitrary-phase waveform s4 performs best, taking the place of s3. The QPSK waveform s5

and the LFM waveform s3 have similar performance. Figure 8, which shows the profiling MSE of the
waveforms, coincides with Figure 7.
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Figure 7. CRB versus SNR for different waveforms in the colored noise.
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Figure 8. MSE (LS is used) versus SNR for different waveforms in the white noise.

In the context of colored noise, the profiling results ĥ (LS method is used) for different waveforms
are shown in Figure 9. Figure 9a is the actual TIR (identical to Figure 5), while Figure 9b–f correspond
to s1 ∼ s5, respectively. The performance ranking is basically the same as that in Figures 7 and 8.
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Sensors 2017, 17, 2574 15 of 19Sensors. 2017, 17, 2574  15 of 19 

 

(c) (d) 

(e) (f) 

Figure 9. The profiling results using different waveforms in the colored noise. (a) is the actual TIR, 
and (b–f) correspond to waveforms 1 6~s s , respectively. 

6. Conclusions 

In this paper, we consider the waveform design problem to improve the HRR profiling 
performance. Firstly, we derive several performance limits of HRR profiling, including the 
unambiguous criterion, the upper and lower bounds of the profiling error. Analysis results show that 
the profiling unambiguity, stability and accuracy provide the same restriction on the waveform in 
the white noise. In the sense of minimizing the CRB, we design two types of CM waveforms—the 
arbitrary-phase waveform and the QPSK waveform—through Gaussian randomization method. 
Numerical results demonstrate the outstanding performance of the designed CM arbitrary-phase and 
QPSK waveforms. LFM waveforms are also shown to have satisfactory profiling performance in the 
white noise, without the optimization process. This can be considered a newly discovered advantage 
regarding LFM waveforms. Future work will center on the extension of our conclusions herein to the 
moving target scenario. 

Acknowledgments: The authors want to express their great gratitude to Prof. Liu Yimin, from Tsinghua 
University, for his constructive advice on the paper.  

Author Contributions: Wenzhen Yue and Lin Li conceived and devised the idea. Yu Xin performed the 
simulated experiments and analyzed the data; Wenzhen Yue wrote the paper. Tao Han proofread it and gave 
some useful suggestions. All authors approved the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Proof of Theorem 1 

That HRR profiling is unambiguous is equivalent to that WCM S  must be full-column rank; 
whereas the latter is equivalent to that the condition number of S ,   S , is finite. Therefore, 

Equation (8) is the sufficient and necessary condition for HRR profiling to be unambiguous. A small 
thing we should note is that matrix S  is not square. In the square matrix case, a matrix is full-column 
rank is equivalent to that it is full-rank [33].  

Because    is a linear and invertible transform, the linear dependency of the columns in S , 

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

1

2

n

m
ag

ni
tu

de

0 20 40 60
0

0.5

1

n

m
ag

ni
tu

de

0 20 40 60
0

0.5

1

n
m

ag
ni

tu
de

Figure 9. The profiling results using different waveforms in the colored noise. (a) is the actual TIR,
and (b–f) correspond to waveforms s1 ∼ s6, respectively.

6. Conclusions

In this paper, we consider the waveform design problem to improve the HRR profiling
performance. Firstly, we derive several performance limits of HRR profiling, including the
unambiguous criterion, the upper and lower bounds of the profiling error. Analysis results show that
the profiling unambiguity, stability and accuracy provide the same restriction on the waveform in the
white noise. In the sense of minimizing the CRB, we design two types of CM waveforms—the
arbitrary-phase waveform and the QPSK waveform—through Gaussian randomization method.
Numerical results demonstrate the outstanding performance of the designed CM arbitrary-phase and
QPSK waveforms. LFM waveforms are also shown to have satisfactory profiling performance in the
white noise, without the optimization process. This can be considered a newly discovered advantage
regarding LFM waveforms. Future work will center on the extension of our conclusions herein to the
moving target scenario.
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Appendix A. Proof of Theorem 1

That HRR profiling is unambiguous is equivalent to that WCM S must be full-column rank;
whereas the latter is equivalent to that the condition number of S, κ(S), is finite. Therefore, Equation (8)
is the sufficient and necessary condition for HRR profiling to be unambiguous. A small thing we
should note is that matrix S is not square. In the square matrix case, a matrix is full-column rank is
equivalent to that it is full-rank [33].
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Because F (·) is a linear and invertible transform, the linear dependency of the columns in S,
{ξk}Nt−1

k=0 , is equivalent to that of {θk}Nt−1
k=0 , where θk = F (ξk). Notice that ξk, k = 1, · · · , Nt − 1 can

be obtained via the circular shift of ξ0. Therefore, we have

θk =

[
exp

(
−j · 2π

Nn
· n · k

)Nn−1

n=0

]
� θ0 = Πθ0, where Π = diag

([
exp

(
−j · 2π

Nn
· n · k

)Nn−1

n=0

])
(A1)

where � is the Hadamard product operator. Denote

A = [Amn]Nn×Nt
, Amn = exp

(
−j · 2π

Nn
·m · n

)
(A2)

and let χ ∈ CNt be any Nt × 1 vector, then we have
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Appendix B. Proof of Theorem 2 
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Moore-Penrose inverse of WCM S . Combining with the properties of matrix norm, we can deduce 
that 
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Because both of the two inequalities in (A5) are positive, the division of them yields that  

†Δ
≤ ⋅ ⋅

h n
S S

h x
 (A6) 

A similar equation has been obtained in [10] (Lemma 4.1 in [10]), whose difference from (A.6) is 
that the matrix therein is square while S  herein is not. Because S  is full column rank, 

( ) 1† H H−
=S S S S . Therefore,  

Obviously, matrix A is full column rank. In fact,
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. Therefore,
Aχ is an all-zero vector if and only if χ is an all-zero vector. Then, we have the following
equivalent expressions.

(a) S is full-column rank.
(b) χ has to be a zero vector to make [θ0, · · · , θNt−1]χ = 0, i.e., diag(θ0) ·Aχ = 0.
(c) Aχ has to be an all-zero vector to make diag(θ0) ·Aχ = 0.
(d) Matrix diag(θ0) is full-rank.
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More strictly but unnecessarily, if the DTFT of s,
^
s (ω), satisfies

^
s (ω) 6= 0, f or ∀ω ∈ [−π, π] (A4)

i.e., there is no chance for
^
s (ω) to be zero, then there will be no zero element in θ0, either (because θ0

consists of the samples of
^
s (ω)). Therefore, Theorem 1 is proven.

Appendix B. Proof of Theorem 2

According to Equation (10), we have that Sh = x and ∆h = S†n, where matrix S† is the
Moore-Penrose inverse of WCM S. Combining with the properties of matrix norm, we can deduce that

‖h‖ ≥ ‖x‖‖S‖ , ‖∆h‖ ≤ ‖S†‖ · ‖n‖ (A5)

Because both of the two inequalities in (A5) are positive, the division of them yields that

‖∆h‖
‖h‖ ≤ ‖S

†‖ · ‖S‖ · ‖n‖‖x‖ (A6)

A similar equation has been obtained in [10] (Lemma 4.1 in [10]), whose difference from (A.6)
is that the matrix therein is square while S herein is not. Because S is full column rank, S† =(

SHS
)−1

SH . Therefore,

‖S†‖ = ‖
(

SHS
)−1

SH‖ ≤ ‖
(

SHS
)−1
‖ · ‖SH‖ = ζmax(S)

[ζmin(S)]2
(A7)
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where the last equality utilizes the two following equations:

‖
(

SHS
)−1
‖ = 1

[ζmin(S)]2
and ‖SH‖ = ‖S‖ = ζmax(S) (A8)

Based on Equations (A7) and (A8), we can further obtain that

‖S†‖ · ‖S‖ ≤
[

ζmax(S)
ζmin(S)

]2
= [κ(S)]2 (A9)

The combination of (A.6) and (A.9) leads to Equation (11). Next, we prove Equation (12).
For descriptive simplicity, let B = SHS. Then it is easily checked that matrix B is a Toeplitz
matrix (see Equation (24)), and the vector consisting of B’s first column and row, b =

[b−Nt+1, · · · , b0, · · · , bNt−1]
T , is the autocorrelation sequence of s. According to the Brown and

Halmos’ theorem (Theorem 2.2 in [34]), we have

κ
(

SHS
)
≤
(

γ

ε
+

√(γ

ε

)2
− 1

)
(A10)

where γ and ε are the maximum and minimum of
^
b (ω), respectively. Note that Equation (A10) needs

that ε = min
{
^
b (ω)

}
> 0. Considering that

^
b (ω) is the PSD of s, hence

^
b (ω) ≥ 0. Furthermore,

if
^
s (ω) 6= 0,

^
b (ω) > 0 and ε > 0. Because κ

(
SHS

)
= [κ(S)]2, an upper bound of κ(S) can be

written as

κ(S) ≤
(

γ

ε
+

√(γ

ε

)2
− 1

)1/2

(A11)

Substituting Equation (A11) back to Equation (11) yields Equation (12). Therefore, Theorem 2
is proven.

Appendix C. Derivation of an Upper Bound of the CRB

For descriptive simplicity, we use κ to denote the condition number of WCM S. Still denote
λ1 ≥ λ2 ≥ · · · ≥ λNt > 0 as the eigenvalues of SHS. Then these eigenvalues would satisfy

Nt

∑
i=1

λi = NsNt,
λi

λj
≤ κ2, λi > 0 (A12)

where the second constraint condition comes from the definition of the condition number. The upper
bound of Ch = tr(Cθ) can be obtained by solving the following optimization problem

max

{
Nt

∑
i=1

1
λi

}
, s.t.

Nt

∑
i=1

λi = NsNt,
λi

λj
≤ κ2, λi > 0 (A13)

Denote S ,
Nt
∑

i=1
1/λi, yielding

S ·
Nt

∑
i=1

λi =

(
Nt

∑
i=1

1/λi

)
·
(

Nt

∑
i=1

λi

)
= Nt +

Nt

∑
i=1

Nt

∑
j>i

(
λi

λj
+

λj

λi

)
(A14)

According to Equation (A12) and the properties of function f (x) = x + 1/x, x > 0, we have that

1 ≤ λi/λj ≤ κ2, 1 ≤ i < j ≤ Nt (A15)
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and hence

2 ≤ λi

λj
+

λj

λi
≤ κ2 +

1
κ2 (A16)

Therefore,

S ·
(

Nt

∑
i=1

λi

)
≤ Nt +

Nt

∑
i=1

Nt

∑
j>i

(
κ2 +

1
κ2

)
= Nt +

Nt(Nt − 1)
(
1 + κ4)

2κ2 (A17)

By dividing both sides of Equation (A17) by
(

∑Nt
i=1 λi

)
(i.e., NsNt), we obtain

S =
Nt

∑
i=1

1
λi
≤ 1

Ns

(
1 +

(Nt − 1)
(
1 + κ4)

2κ2

)
(A18)

Therefore, the upper bound of Ch can be written as

Ch = σ2
n ·
(

Nt

∑
i=1

1
λi

)
≤ σ2

n
Ns
·
(

1 +
(Nt − 1)

(
1 + κ4)

2κ2

)
(A19)
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