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Abstract: Power management is crucial in the monitoring of a remote environment, especially when
long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested
to sustain a monitoring system. However, without proper power management, equipment within the
monitoring system may become nonfunctional and, as a consequence, the data or events captured
during the monitoring process will become inaccurate as well. This paper develops and applies a
novel adaptive sampling algorithm for power management in the automated monitoring of the quality
of water in an extensive and remote aquatic environment. Based on the data collected on line using
sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the
power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated
using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by
dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while
maintaining a required level of sampling accuracy. According to the simulation results, compared to
a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of
continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive
sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA
is superior in saving 5.31% more battery energy.
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1. Introduction

The present project of water quality monitoring has been primarily motivated by the fact
that people in rural or undeveloped areas are at high risk of exposure to water-related diseases.
However, the problem is not limited to such regions. Urban areas in industrialized countries are
equally vulnerable. For example, recently, there were two major water-related crises that seriously
affected Flint City, Michigan, USA, and White Rock, British Columbia, Canada. These problems could
have been avoided and corrective actions could have been taken in a timely manner if a reliable,
accurate, and distributed water monitoring system was available in the affected areas that could
rapidly provide sufficient information about the water contamination.

Research on the subject of remote environmental monitoring has been prominent in recent
years. One cannot overstate the importance of remote environmental monitoring, since it can
result in convenience and flexibility of observing environmental conditions from a distance,
thereby reducing the risks, cost, and the required time, while improving the accuracy and efficiency.
Generally, in an automated water monitoring system, a wireless sensor network (WSN) is used [1,2],
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consisting of many sensor nodes that are capable of sensing data such as pH value, dissolved
oxygen (DO), conductivity, oxidation-reduction potential (ORP), turbidity, temperature, and so on.
The deployed sensors are typically able to sense, transmit and receive data in the wireless network [3].
Power management is of great significance not only in water quality monitoring but also in other types
of remote environmental monitoring because of the importance of wisely managing the system power
in order to sustain and extend proper operation of the system [4,5].

Ideally, the data sampling rate that is used for a sensor signal should depend on the rate at which
the signal changes. The energy consumption for signal acquisition, processing, and transmission
all depend on the sampling frequency, either directly or indirectly. Hence, for the sake of energy
conservation, it is desirable to reduce the quantity of sampled data when the water quality remains
relatively stable. Meanwhile, if certain parameters in the water are changing abruptly, the sampling
frequency should be increased in order to acquire sufficient information about the condition of water.
It should be noted that not only will the sampling frequency have a significant impact on the energy
usage, the processing and transmitting of the sampled data will also consume extra energy. With this
in mind, the proposed data-driven adaptive sampling algorithm (DDASA) has been developed,
which dynamically changes the sampling frequency based on the nature of the sampled signal.
This algorithm should be universally applicable with respect to conserving energy and prolonging the
lifetime of the WSN. This approach is not limited to water quality monitoring but is applicable in other
types of monitoring applications using WSN, such as indoor environmental monitoring [6], structural
health monitoring [7], climate conditions monitoring [8], and healthcare monitoring [9].

The developed algorithm is implemented using MATLAB R2015a in the PC with a 3.20 GHz
Intel Core i5-4460 CPU, 8 GB RAM and compared with a traditional adaptive sampling algorithm
(ASA) [10]. The main contributions of this paper are as follows:

• A DDASA for energy conservation in a sensor network for automated water quality monitoring
is presented.

• The universal applicability of the algorithm is validated with respect to various parameters with
distinct characteristics, making it applicable in other types of practical monitoring situations.

• The proposed method is evaluated with respect to two key water-related parameters.
• The performance of DDASA is compared with the scheme of sampling at a fixed frequency in

terms of data accuracy and energy conservation.
• The performance of DDASA is compared to a traditional ASA.

The rest of the paper is organized as follows: Section 2 outlines existing schemes for power
management and some latest research that is directly related to this paper. In Section 3, the detailed
mechanism of the proposed DDASA is presented, including how an abrupt environmental change is
detected and how the sampling frequency is changed correspondingly. Section 4 demonstrates the
experimental setup, and Section 5 provides some simulation results and a performance evaluation.
Section 6 validates the proposed model. Finally, Section 7 concludes the paper.

2. Related Work

The subject of power management has been investigated by others in view of importance in
various applications. In particular, the power management in WSN is a broad topic and can be
studied based on various aspects. The general methodologies for managing power in a WSN can be
briefly categorized as hardware and software design, network protocols and middleware services.
The major energy-saving schemes designed under these four categories are mainly: radio optimization;
battery repletion; sleep/wakeup schemes; energy-efficient routing, and; data reduction [11]. In terms
of radio optimization, the traditional approaches focus on controlling the power used for signal
transmission [12], in which the nodes in a WSN require knowing the power levels and link qualities
of their neighbor nodes. Hence, the designed schemes have a spatiotemporal impact on the wireless
sensor network, either locally or globally. With regard to battery repletion, in recent years applications
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have been broadly developed for remote environmental monitoring where the monitored environment
is not easily accessible. Considering that it might be time- and manpower-consuming to replace the
batteries, some work that focuses on the techniques of energy harvesting and wireless charging has
been carried out [12]. Among the sleep/wake schemes, a typical one is duty cycling. This scheme is
usually categorized as on-demand, asynchronous, and scheduled rendezvous [13]. In [5], a hybrid
method based on the battery state and the stability of water quality has been proposed. The nodes
can be switched on/off either depending on its remaining battery state or the need of sampled data.
Moreover, in energy-efficient routing techniques, the distance between each regular node and also the
sink node of the WSN plays a key factor. Hence, in order to optimally find a routing path that is energy
efficient, schemes relying on single path and multiple paths have been proposed. A survey paper on
this subject is available [14]. Data reduction exploits the fact that depending on the characteristics of the
sampled data within the environment, some data could be redundant. For example, in water quality
monitoring, if the monitored parameters remain relatively stable within the time period of interest,
it is believed that no significant changes are happening. Thus, a relatively low sampling frequency
may be used for the sake of saving energy. With fewer sampled data, the trend of the water quality
can still be analyzed. This is the main advantage of using adaptive sampling for power management.
Besides data reduction, there are some other similar approaches such as data aggregation and data
compression [15] that also contribute to energy conservation by using fewer but representative data.
Since the core algorithm proposed in this paper concerns adaptive sampling, a detailed review of the
latest work in this topic is given next.

It can be desirable to predefine a standard for the quality of data when applying adaptive
sampling techniques. Drira et al. [16] developed a location-aware scheme for an adaptive data
collection system in vehicular networks, in which they constantly compare the travel time of
a vehicle with a predefined value for deciding whether to transmit messages between a traffic
management centre and a vehicle. It turns out that their developed algorithm is capable of reducing the
communication load and data storage requirement while maintaining a high accuracy for estimating
the fuel consumption and emission. Analogously, to ensure the quality of data, the proposed DDASA
constantly compares the latest sampled data with a set of historical data to determine a new sampling
frequency. However, the energy consumption in their methods is mainly reduced by limiting the
number of transmission, while ours focuses on saving energy on the sensor node level.

Prabha et al. [17], on the other hand, proposed a context aware sensing technique which could be
utilized for landslide monitoring. According to their approach, given a set of data, a discrete wavelet
transformation is performed to find out the lowest sampling rate, which meanwhile should be able
to guarantee the reliability of data. Based on the characteristics of data, three level thresholds are set
to derive the sensor/network level contexts as Safe, Listen and Alert. The system initially starts to
function at the lowest sampling rate until the sensor/network level contexts change (i.e., from Safe to
Listen, or Listen to Alert). Hence, the sampling interval would be dynamically varied depending on
the sensor/network-level contexts. As a result, the energy for sensory tasks could be saved. While their
strategy is in a similar fashion to ours, they only consider three fixed sampling intervals (i.e., sampling
frequencies), which need predefining manually. It should be believed that much more energy could
possibly be saved if the scheme for changing sampling frequency could be data-driven, rather than
three predefined sampling intervals.

In addition, an adaptive sampling approach for snow monitoring applications was developed
in [10]. This method initializes the sampling rate by conducting a fast Fourier transform (FFT)
on a sequence of pre-sensed data to acquire the maximum frequency, and depending on the subsequent
data, a new maximum frequency is obtained. By comparing the variation of the current sampling
rate and the new maximum frequency, a new sampling rate is made. However, this algorithm highly
relies on a large number of pre-sensed data, and it also changes the sampling rate only depending
on the FFT of the newly sampled data to avoid under-sampling. Nonetheless, in real environmental
monitoring cases, under-sampling is acceptable if the frequency of the sensed data hardly fluctuates
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and remains relatively steady within a period of interest. In this manner, in order to dynamically
change the sampling frequency, properly knowing the actual value differences and stability of the
sensed data makes more sense than simply using an FFT on the subsequent data. This is essentially
what makes DDASA different from a traditional ASA.

In [18], an adaptive sampling scheme for acquiring wind data is proposed based on energy
awareness. Rather than being data accuracy oriented, this algorithm is essentially energy awareness
oriented. This means when the remaining energy of the battery drops below a predetermined threshold,
the sampling frequency will be decreased accordingly. The larger the gap between the remaining
battery state and the predetermined threshold, the faster the drop of the sampling frequency as a result
of maximizing the lifetime of the battery. Apparently, much more energy could be saved when the
battery state is relatively low through this proposed scheme. However, since there is always a tradeoff
between the accuracy of the sensed data and the energy conservation, a strategy that is primarily
driven by the battery state will surely compromise the accuracy of the sensed data, and possibly even
under-sampling can occur as a result. Hence, it is believed that the scheme DDASA proposed in this
paper, which is data accuracy driven, would be more reasonable and universally applicable.

Moreover, it has to be pointed out that, despite that transmitting and receiving data wirelessly
also consume an enormous amount of energy, the energy consumption of sensing is not always
insignificant [19]. In particular, some energy hungry sensors, for instance, the gas sensors, also
consume a large amount of energy compared to that used in data transmission [10,20–24]. The work
presented in this paper focuses on saving energy from the sensory task within each single node in the
WSN, which is typically beneficial for using energy-hungry sensors.

3. Data-Driven Adaptive Sampling Algorithm

The core idea behind the DDASA is to design a data accuracy-driven strategy of power utilization
in water quality monitoring using autonomous sensor nodes, depending on the environmental changes.
It is clear that a higher sampling frequency is desired where the water quality is vulnerable to rapid
environmental change or pollution, particularly in a post-industrial city. Particularly, the researchers
and water quality observers of such areas might be more concerned and sensitive to the sudden
changes of certain key parameters in the water. Correspondingly, however, if the monitored parameters
hardly fluctuate, meaning no significant changes are taking place, it is believed a lower sampling
frequency is preferred, and as a result, less energy will be needed for data sampling, data processing
and transmission.

Based on these assumptions, a revised sigmoid function is proposed in the present DDASA.
This function is used to dynamically change the sampling frequency, which is expressed as:

y(D) =
2

1 + e−(D−t)
(1)

D =
|Xi+1 − Xi|

1
N

i
∑

i−N+1
Xi

(2)

Here, t is a pre-determined threshold; and D is the absolute difference between Xi+1 and Xi over
the average value of a number of N sliding-window based most recent data. Since we are interested in
knowing whether there exists a sudden environmental change or not, it is reasonable to compare the
latest sensed data Xi+1 with the former data Xi in the signal sequence, and then divide the absolute
difference between with the mean value of the most recent N data. If D is sufficiently large, it indicates
a sudden environmental change. Then a somewhat higher sampling frequency is desired. Additionally,
if the value of D is smaller than the threshold t, which means the value changes are not significant
enough, the sampling frequency can be reduced in view of the relative stability of the monitored
data. Hence, the theoretical value of y is actually smaller than 2 but greater than y(0), that is, since the
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smallest value of D will not be a number smaller than 0 in data sensing process, the value of y(0) is
essentially greater than 0 regardless of the value of t. A representation of the revised sigmoid function
is presented in Figure 1. It is found the value of y in the simulation is mostly a number either slightly
smaller than 1 (e.g., when D equals to D1) when the sensed data numerically remain stable or greater
than 1 (e.g., when D equals to D2) when the sensed data abruptly change.

Sensors 2017, 17, 2551  5 of 14 

 

slightly smaller than 1 (e.g., when D equals to D1) when the sensed data numerically remain stable or 

greater than 1 (e.g., when D equals to D2) when the sensed data abruptly change. 

D1 D2t

D
 

Figure 1. Representation of the revised sigmoid function. 

Since the value of y(D) dynamically changes depending on the latest sampled data, the sampling 

frequency should also be changed accordingly. If the current sampling frequency is denoted by fcurr, 

which is used to acquire latest data, then the new sampling frequency, denoted by fnew is  

represented as:  

𝑓𝑛𝑒𝑤 = 𝑓𝑐𝑢𝑟𝑟 × 𝑦(𝐷) (3). 

Hence, a new sampling frequency for the next iteration is a function of the newly sampled data 

and the average value of the latest N sliding window-based data, which satisfy the needs for a 

reasonable manner of sampling as well as the needs for energy conservation. 

In summary, a pseudo code for implementing the DDASA is represented in Algorithm 1 as below: 

Algorithm 1. DDASA 

1. 
Initialize a constant sampling frequency denoted as 𝑓𝑐𝑜𝑛𝑠𝑡, sample a number of N for later 

use; store the samples in a sequence as 𝑆; 

2. Predetermine a threshold t according to the characteristics of the monitored parameter; 

3. Define 𝐷 =
|𝑋𝑖+1−𝑋𝑖|

1

𝑁
∑ 𝑋𝑖

𝑖
𝑖−𝑁+1

;  

4. Define 𝑓𝑐𝑢𝑟𝑟=𝑓𝑐𝑜𝑛𝑠𝑡; 

5. for (i=N; i++) { 

6. Sample 𝑋𝑖+1 based on 𝑓𝑐𝑢𝑟𝑟 (or 𝑓𝑐𝑢𝑟𝑟′); 

7. 𝐷 =
|𝑋𝑖+1−𝑋𝑖|

1

𝑁
∑ 𝑋𝑖

𝑖
𝑖−𝑁+1

; 

8. ( )

2
( )

1 D t
y D

e 



 ; 

9. 𝑓𝑛𝑒𝑤 = 𝑓𝑐𝑢𝑟𝑟 × 𝑦(𝐷); 

10. 𝑓𝑐𝑢𝑟𝑟′ = 𝑓𝑛𝑒𝑤;  

11. S(𝑖 + 1) = 𝑋𝑖+1;} 

12. end 

13. return 𝑆; 

It should be noted that the use of a sigmoid function corresponds with both the physical nature 

of the sampling process and the sensed data. This scheme ensures that a new sampling frequency to 

be adjusted not just based on the latest sensed data, but also a set of past-period data which reflect 

the overall environmental conditions throughout the time. More precisely, a faulty reading, whose 

Figure 1. Representation of the revised sigmoid function.

Since the value of y(D) dynamically changes depending on the latest sampled data, the sampling
frequency should also be changed accordingly. If the current sampling frequency is denoted by fcurr,
which is used to acquire latest data, then the new sampling frequency, denoted by fnew is represented as:

fnew = fcurr × y(D) (3)

Hence, a new sampling frequency for the next iteration is a function of the newly sampled
data and the average value of the latest N sliding window-based data, which satisfy the needs for a
reasonable manner of sampling as well as the needs for energy conservation.

In summary, a pseudo code for implementing the DDASA is represented in Algorithm 1 as below:

Algorithm 1. DDASA

1.
Initialize a constant sampling frequency denoted as fconst, sample a number of N for later use;
store the samples in a sequence as S;

2. Predetermine a threshold t according to the characteristics of the monitored parameter;

3. Define D = |Xi+1−Xi |
1
N ∑i

i−N+1 Xi
;

4. Define fcurr = fconst;
5. for (i = N; i++) {
6. Sample Xi+1 based on fcurr (or fcurr

′);

7. D = |Xi+1−Xi |
1
N ∑i

i−N+1 Xi
;

8. y(D) = 2
1+e−(D−t) ;

9. fnew = fcurr × y(D);
10. fcurr

′ = fnew;
11. S(i + 1) = Xi+1;}
12. end
13. return S;

It should be noted that the use of a sigmoid function corresponds with both the physical nature of
the sampling process and the sensed data. This scheme ensures that a new sampling frequency to be
adjusted not just based on the latest sensed data, but also a set of past-period data which reflect the
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overall environmental conditions throughout the time. More precisely, a faulty reading, whose value
might be unusually higher or lower than the average, would not change the next sampling frequency
drastically. Instead, if an abrupt change is detected, which constantly leads certain reading numerically
increase or decrease, the future sampling frequency will therefore increase gradually based on a
consecutive set of obtained data. In equivalent words, a much higher sampling frequency is the
consequence of using fcurr to multiply y(D) (greater than 1 but lower than 2) in each iteration for
multiple times after comparing the latest acquired data with a set of past-period data. As a result,
this data-driven scheme allows the energy to be reasonably either consumed or conserved, as it is
the trend of the sensed data rather than certain unusually high or low value data that decides future
sampling frequency.

4. Illustrative Simulation

The performance of the proposed algorithm is assessed by using a set of real-time data provided by
National Oceanic and Atmospheric Administration (NOAA) [25]. NOAA uses distributive platforms
(buoys) to form a network for collecting real-time water-quality data. The data chosen for the
simulation are collected from a platform called “Jamestown,” where the monitoring duration ranges
from 15 December 2016 to 15 March 2017 with a sampling interval of 1 h for a sample. To validate the
robustness of the DDASA, two distinct parameters, turbidity and DO, are selected since their value
range differs enormously among various water-related parameters.

In order to evaluate the performance for different values of the pre-determined parameters,
the term Normalized Mean Error (NME) is introduced, which indicates the overall goodness of fit and
is defined as:

NME =
1
n

n

∑
i = 1
|x̂i − xi| × 100% (4)

Here, x̂i denotes the normalized ith data in the reconstructed signal, xi represents the normalized
ith data in the original signal, and n denotes the total number of data in the reconstructed data set.
In general, different parameters correspond with different numeric ranges. For example, the measured
pH values typically lie in the range from 0 to 14, while the sensed value of conductivity in water
can reach as high as 500 µS/cm. Based on NME, the overall goodness of fit can be directly indicated
regardless of the numeric scale of sensed data.

5. Simulation Results

The simulation results are divided into two parts. First, the proposed DDASA is tested using DO
and turbidity data separately, followed by the selection of a list of parameters and the corresponding
performance indicator (i.e., NME). Later, with regard to energy conservation, a comparison between
the proposed algorithm of the present paper and a traditional adaptive sampling is presented.
The simulation results demonstrate that the DDASA algorithm is not only capable of maintaining a
high level for energy-efficient sampling, but also effectively reconstructing the original signal with
much less number of data.

First, a plot of the original DO data signal is shown in Figure 2a for later comparison,
which consists of 2182 sensed samples in total. To interpret the original signal, it can be inferred
that an abrupt change in the water might occur around the 600th sample, leading to a significant
increase of the DO content.

In the simulation, the initial sampling frequency is set to the same value as the constant frequency
used for sampling the 2182 data. The window size (i.e., N) is set to 50, while the threshold is a
variable. Then a linear interpolation between two neighboring measurements is used to fit the
reconstructed signal with respect to different threshold values. Hence, the trend of the DO parameter
is given intuitively.

In Figure 2b–d, the simulation results with different threshold values are presented. It is seen
that as the predetermined threshold increases, fewer sample data are acquired based on the DDASA.
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Combined with the linear interpolation fitting, the trend of the DO content can still be maintained
at a high level of similarity compared to the original DO signal when t = 0.01, t = 0.015 and
t = 0.02, respectively.
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The frequency trend for each corresponding threshold is also shown in Figure 4. It is believed that
when the threshold is set to a proper number, (i.e., t = 0.01), the sampling frequency will eventually
converge or remain at a stable level. However, it is also found out that when the threshold is set
to a value smaller than 0.01, for instance, when t = 0.009, the frequency trend will not converge.
This happens mainly because the value of D(i) in most iterations is greater than the threshold,
which results in a constant increase in the sampling frequency. This also means the dynamically
changed sampling frequency is not sensitive to the data change, which in fact is not a desired outcome.
Additionally, when t = 0.015 and t = 0.02, compared to the case when t = 0.01, the sampling frequency
is more sensitive to the data change, and as a consequence, more energy will be conserved since the
sampling frequency in each iteration is lower than the initial sampling frequency.
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In Table 1, an investigation of the algorithm performance and the predetermined threshold
values is given. It is noticed that although the value of the predetermined threshold increases evenly,
the number of samples drops unevenly, however, the NME increases as the number of samples
decreases. In Figure 5, it is obvious that some important peaks are missing due to a lack of sampled
data where the threshold equals to 0.03 and 0.07, respectively. The corresponding NME are 9.99% and
11.70%, which is relatively high. Thus, in order to find a suitable value for the threshold, it would be
necessary to preset a minimum required data quality in terms of NME and, meanwhile, the threshold
value should not be too small, which ensures that the sampling frequency will eventually converge.
More details regarding the choice of threshold value will be discussed later.

Table 1. Results with different threshold values for DO data sampling.

t = 0.01 t = 0.015 t = 0.02 t = 0.03 t = 0.07

Number of Samples 1064 548 421 297 146
Normalized Mean Error (NME) 1.62% 5.52% 8.43% 9.99% 11.70%
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A similar simulation is conducted based on turbidity data. The results are presented in Figure 6
with threshold values of 0.110, 0.112 and 0.115. A comprehensive comparison is found in Table 2.
The same linear interpolation scheme is implemented between two neighboring measurements to fit
the plot.
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Table 2. Turbidity data sampling results for different threshold values.

t = 0.110 t = 0.112 t = 0.115 t = 0.120 t = 0.140

Number of Samples 1591 422 320 244 172
NME 1.14% 4.26% 5.33% 5.39% 6.16%

It still can be shown that when the threshold value increases from 0.110 to 0.112, the number of
samples drastically drops from 1591 to 422, while a 4.26% NME is still tolerable when t equals 0.112.
As t increases from 0.112, the number of samples decreases correspondingly, which is, however, not as
many as the case when t increases from 0.110. Thus, it is reasonable to believe that setting the threshold
value as 0.112 is relatively a suitable choice, while choosing a value of 0.115, 0.120 or 0.140 for t is also
acceptable considering their corresponding NME. Since only 422 or less data values are sampled with
the DDASA, which is less than quarter the original data values, it is believed that the energy consumed
for data acquisition, storage and transmission will be significantly reduced. Thus, the lifetime of
the battery will be prolonged while maintaining a high level of accuracy within the sampled data
compared to the original ones.

A comparison of algorithm performance is presented in Figures 7 and 8, and Table 3. Using the
same sequence of DO data, a traditional ASA is implemented as well. A set of parameter values are
chosen as empirically suggested in paper [10]. Figure 7 shows the reconstructed signal using ASA
can still indicate the fluctuation of the DO compared to the original signal in Figure 2a. The NME
for the results is 5.31% with a number of 637 samples. The performance is similar when t = 0.115 for
analyzing DO data in the proposed DDASA. However, to achieve a similar result, the ASA uses 637
samples in total, which proves to be more energy-consuming in contrast to the proposed DDASA,
where only a number of 320 is needed. Figure 8 presents the comparison of energy consumption over
time for ASA and for different values of predetermined thresholds of DDASA. Considering the fact
that a more frequent sampling process will equivalently increase the energy consumption for storing
and transmitting data, to simplify the comparison process, only the energy consumed for keeping a
node active and for data acquisition is considered. Moreover, the active time of the node in each case
will be equivalent, which means it should be equal to the total length of time for a fixed rate sampling
process. The specific number of energy consumption for different sensing activities can be found
in [20], which is the basis for obtaining the simulation results in Figure 8. In Table 3, a performance
comparison is provided, in which the DDASA outperforms the ASA when t = 0.115 and t = 0.112 with
respect to the remaining battery level.
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(t = 0.110)
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(f = 1/3600 Hz)

Number of Samples 320 422 637 1591 2182
NME 5.33% 4.26% 5.31% 1.14% 0

Remaining Battery Level 86.03% 82.86% 80.72% 75.19% 55.37%

6. Model Validation

In the developed scheme above, finding an appropriate value for the threshold plays a key
role in determining the performance of the proposed algorithm. Considering that the value of D in
Equation (2) is highly related to not only the absolute value between the newest sample data and its
former one, but also the mean value of a set of window-based data. Thus, the function for looking for
a suitable threshold value should be in a similar way, which is defined as:
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To validate the proposed model, a k-fold cross-validation has been conducted based on
Equation (5). To simplify the cross-validation process, a 5five-fold cross-validation has been selected in
regard to the total number of data. Meanwhile, the whole set of data has been divided into five equal
sized subsets, four of which are utilized as training sets while the remaining subset functions as a
testing set. In each cross-validation process, a threshold value will be given depending on Equation (5),
in which Xi is the sensed data amongst the training set. Afterwards, based on the very threshold
value, a NME will be obtained comparing the reconstructed signal against the training set. If each
of the five subsets is denoted as A, B, C, D and E separately, the outcome for the cross-validation is
presented in Table 4.

Table 4. Model validation using five-fold cross-validation.

Training Sets ABCD ABCE ABED ACED BCED

Testing set E D C B A
Threshold 0.0102 0.0113 0.0115 0.0120 0.0136

NME 3.37% 3.40% 3.12% 2.53% 2.25%
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It turns out that through the cross-validation process, the average value of NME is 2.93% while a
suggested average value of threshold is 0.01172. This threshold value and its corresponding NME also
correspond with the results presented in Table 1, where a slightly smaller value of t results in a smaller
NME, while a slightly larger value of t leads to a higher NME.

Also, to prove that this algorithm is universally applicable, a different dataset from Intel Berkeley
Research lab [26] has been utilized. The dataset is comprised of real-time data for temperature,
humidity, light and voltage measured by Mica2Dot sensor nodes within a WSN (see Figure 9).
In particular, a set of temperature data consisting of 25,000 samples, which were collected by Sensor 13
from 28 February 2004 to 20 March 2004, is selected as the original data set. Based on the whole data
set, a suggested threshold for sampling is derived based on Equation (5), which is 0.0016. Afterwards,
the reconstructed signal is given in Figure 10, with an NME equal to 0.08% and 17,957 samples needed.
Since around 7000 samples are deducted comparing with the original data set, it should therefore be
believed much energy can be saved throughout the sampling process. Furthermore, since the accuracy
of the reconstructed signal is 99.2% when t equals to 0.0016, for the sake of saving more energy,
slightly increasing the value of t and thus reducing the sample numbers should also be acceptable.
For instance, when t increases to 0.0020, the corresponding NME is 0.29%, while only 11,423 samples
are necessarily collected.
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7. Conclusions

In this paper, a data-driven adaptive sampling algorithm (DDASA) for node-level sampling was
presented. It was proven that this algorithm was robust for different types of parameter sampling,
and could effectively conserve energy with a satisfactory reconstructed signal. Compared with
some existing adaptive sampling algorithms, which are battery-state driven, there are justifiable
occasions where the sampling frequency is based on the real-time sampled data, especially when the
fluctuation of the environmental parameters, is of significant interest. Additionally, it was shown that,
by dynamically changing the sampling frequency according to the newly sampled data, the proposed
DDASA would outperform a traditional ASA with respect to the accuracy of the reconstructed signal
and the energy conservation. Thus, the goal of prolonging the life time of the nodes has been achieved
with the proposed approach.

Possible future work will involve considering a hybrid approach based on DDASA, in which
the priority can be given either to data accuracy or battery state based on the real-time level of data
fluctuation and the percentage of remaining battery energy. Since there exists a tradeoff between the
data accuracy and battery state, it is speculated that a hybrid method will maintain a good accuracy of
data samples while maximizing the lifetime of the sensor nodes.
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