
sensors

Article

A Ratiometric Fluorescent Sensor for Cd2+ Based on
Internal Charge Transfer

Dandan Cheng 1,†, Xingliang Liu 1,†, Yadian Xie 1, Haitang Lv 1, Zhaoqian Wang 1,
Hongzhi Yang 1, Aixia Han 1,2,*, Xiaomei Yang 2 and Ling Zang 2,*

1 Chemical Engineering College, Qinghai University, Xining 810016, China; 1994990022@qhu.edu.cn (D.C.);
liuxingliang@qhu.edu.cn (X.L.); 1991990011@qhu.edu.cn (Y.X.); 1989990029@qhu.edu.cn (H.L.);
1990990009@qhu.edu.cn (Z.W.); yhz17@mails.tsinghua.edu.cn (H.Y.)

2 Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84108, USA;
jaimee@eng.utah.edu

* Correspondence: hanaixia@tsinghua.org.cn (A.H.); lzang@eng.utah.edu (L.Z.);
Tel.: +86-971-5310-427 (A.H.); +1-801-587-1551 (L.Z.)

† These authors contributed equally to this work.

Received: 9 October 2017; Accepted: 31 October 2017; Published: 2 November 2017

Abstract: This work reports on a novel fluorescent sensor 1 for Cd2+ ion based on the fluorophore of
tetramethyl substituted bis(difluoroboron)-1,2-bis[(1H-pyrrol-2-yl)methylene]hydrazine (Me4BOPHY),
which is modified with an electron donor moiety of N,N-bis(pyridin-2-ylmethyl)benzenamine.
Sensor 1 has absorption and emission in visible region, at 550 nm and 675 nm, respectively. The long
wavelength spectral response makes it easier to fabricate the fluorescence detector. The sensor
mechanism is based on the tunable internal charge transfer (ICT) transition of molecule 1. Binding
of Cd2+ ion quenches the ICT transition, but turns on the π − π transition of the fluorophore,
thus enabling ratiometric fluorescence sensing. The limit of detection (LOD) was projected down
to 0.77 ppb, which is far below the safety value (3 ppb) set for drinking water by World Health
Organization. The sensor also demonstrates a high selectivity towards Cd2+ in comparison to other
interferent metal ions.
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1. Introduction

Cadmium represents a highly toxic industrial and environmental pollutant, and it is classified
as a human carcinogen. Exposure to cadmium may cause cancer mutation of some organs, such as
lung, endometria, prostate, kidney, etc. [1]. World Health Organization (WHO) underlines drinking
water value for cadmium as 3 ppb [2]. So, detection of cadmium at trace level remains an important
task, for which cadmium ion (Cd2+) usually remains as the target for chemical sensors to monitor
the cadmium pollution in water environment. Current methods for Cd2+ detection include UV-Vis
spectrometry [3], atomic absorption spectrometry (AAS) [4], inductively coupled plasma atomic
emission spectroscopy (ICP-AES) [5], and fluorescent sensors [6–16]. Among these, fluorescent sensors
are uniquely compelling due to their high sensitivity, good selectivity [6–16], and capability for
ratiometric sensing to further improve the detection sensitivity [17–20]. However, many fluorescence
sensors for Cd2+ ion reported thus far have some technical drawbacks, for example, a poor limit
of detection (LOD) [7,8,18], complicated synthesis of sensor molecules [6], solvent toxicity [7],
and a hardly controlled fluorescence change [14]. In order to develop high performance fluorescent
sensors, the fluorophore must be designed with both high quantum efficiency and chemical tunability
in response to metal binding [21,22]. Borondipyrromethene (BODIPY) has long been studied
as an outstanding organoboron fluorophore and been used in the development of fluorescent
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sensors for many metal ions [23–27], including Cd2+ ion [28,29]. In 2014, a novel organoboron
compound bis(difluoroboron)-1,2-bis[(1H-pyrrol-2-yl)methylene]hydrazine (BOPHY) (Scheme 1) was
reported [30–32]. BOPHY has distinctive absorption and emission features that are suited for sensor
development, particularly when compared to those with spectral response in high energy blue or UV
region. Many BOPHY derivatives have ever since synthesized [33–35], including several from our lab
(F-BOPHY1-3) [36], which all showed high efficiency of fluorescence.
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We noticed that there have been only two BOPHY fluorescent sensors reported so far, which
were used for detecting Cu2+ and H+, respectively [37,38]. In this paper, we report on synthesis
of a novel fluorescent sensor 1 for Cd2+ (Scheme 1) based on a BOPHY fluorophore substituted
by tetramethyl group (Me4BOPHY), in conjugation through a vinyl link with an electron donor
moiety N,N-bis(pyridin-2-ylmethyl)benzenamine (BPA). BPA is also a strong chelator to Cd2+ ion,
thus affording high sensing sensitivity. Pristine sensor 1 exhibits a significant internal charge transfer
(ICT) transition between Me4BOPHY and BPA, with an absorption and fluorescence extending into
long wavelength, 550 nm and 675 nm, respectively. When chelated with Cd2+ the electron-donating
power of BPA will be reduced, thus quenching the ICT transition and turning on the π − π transition
of the fluorophore, which combined the results in blue-shift of the absorption and fluorescence of 1.
Such dramatic spectral change can be used to develop efficient fluorescence sensor for Cd2+ detection,
particularly through the ratiometric fluorescence modulation [39–43].

2. Experimental Methods

2.1. Materials and Instrumentation

All of the solvents and chemicals were purchased in analytical grade and were used as received.
Column chromatography used 300–400 mesh silica gels. Ultrapure water was produced by a Milli-Q
Direct 16 system of Millipore. UV-Vis absorption spectra were gained on a Shimadzu UV-2550
spectrophotometer (Shimadzu, Kyoto, Japan). Fluorescence spectra were obtained on a Cary Eclipse
fluorescence spectrophotometer from Agilent. 1H- and 13C-NMR spectra were recorded with a Mercury
plus instrument at 400 and 100 MHz by using DMSO-d6 as the solvents. MS spectra were recorded on
a MALDI-TOF MS Performance (Shimadzu, Japan).

2.2. Molecular Synthesis

Compound 2 [30] and 3 [29] were synthesized according to literatures, while 1 was synthesized
as illustrated in Figure 1. Dry toluene used in synthesis was distilled over sodium and benzophenone.
A mixture of 2 (0.50 g, 1.48 mmol), 3 (0.45 g, 1.48 mmol), and p-toluenesulfonicacid (1 g, 5.81 mmol) was
dissolved in dry toluene (50 mL), followed by the addition of 1 mL piperidine as catalyst. The mixture
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was refluxed with stirring for 12 h under an atmosphere of nitrogen, during which time the color of the
reaction mixture changed from pale yellow to red. After cooling to room temperature, the mixture was
poured into H2O (100 mL) and extracted with CH2Cl2. After solvent removal, the crude product was
purified by column chromatography (silica gel, CH2Cl2/petroleum ether, v/v = 2/1), producing a dark
purple solid (0.45 g), yield 49%. 1H-NMR (400 MHz, DMSO-d6) δ = 8.61–8.60 (m, 2H), 7.92 (s, 1H), 7.84
(s, 1H), 7.65–7.62 (m, 2H), 7.38 (d, J = 5.6 Hz, 2H), 7.25 (d, J = 5.2 Hz, J = 5.2 Hz, 2H), 7.20–7.18 (m, 2H),
7.17 (d, J = 2.8 Hz, 2H), 6.72 (d, J = 6.0 Hz, 2H), 6.68 (s, 1H), 6.16 (s, 1H), 4.87 (s, 4H), 2.48 (s, 3H), 2.32
(s, 3H), 2.31 (s, 3H). (Figure S1, Supplementary Materials). 13C-NMR (100 MHz, DMSO-d6) δ = 157.67,
150.75, 150.07, 149.40, 148.72, 140.24, 139.84, 136.69, 136.49, 133.39, 132.27, 128.63, 124.96, 124.08, 122.98,
121.81, 120.34, 117.88, 114.17, 113.24, 112.24, 56.83, 13.66, 10.73, 10.65. (Figure S2, Supplementary
Materials). MALDI-TOFMS: m/z calculated for C33H31B2F4N7: 623.28; found: 623.47. (Figure S3,
Supplementary Materials).
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Figure 1. The synthesis route of 1.

2.3. Sample Preparation and Spectral Measurements

A stock solution (0.5 mM) of sensor 1 was prepared in acetonitrile. Metal ion solutions of Cd2+,
Zn2+, Mn2+, Pb2+, Cu2+, Co2+, Mg2+, Ca2+, Ba2+, Fe2+, and Hg2+ were prepared by dissolving the
corresponding nitrate salts in acetonitrile. These stock solutions were diluted to needed concentrations
for sensor testing. UV-Vis and fluorescent spectra were measured under room temperature. Briefly,
2.5 mL solution of 1 (2 µM) was put into a 1 cm quartz cuvette, followed by addition of different
concentrations of metal ion. The series of concentrations of metal ions were thus added and were
measured for the absorption and fluorescence spectra. Since added volume of the metal ion stock
solution was small (up to 8 µL), the concentration of sensor 1 would remain almost unchanged.
For fluorescence spectra measurement, the excitation wavelength was set at 410 nm and slit widths at
5 nm/10 nm.

3. Results and Discussion

3.1. Spectral Change of 1 Upon Titration with Cd2+

As shown in Figure 2, the absorption spectrum of pristine 1 has two pronounced peaks around
505 nm and 550 nm. These two absorption peaks are significantly red-shifted in comparison with
those of Me4BOPHY, which has the corresponding two peaks at 444 nm and 467 nm. Such spectral
redshift is due to the ICT electronic transition, as previously observed in other electron donor-acceptor
molecules [29]. In molecule 1 the fluorophore Me4BOPHY is in full conjugation with the aniline
group of BPA through the vinyl bridge (Scheme 1), thus facilitating the ICT transition. Upon titration
with Cd2+ ion, the absorption at 550 nm gradually decreased, accompanied by a rising blue-shifted
absorption peak centered at 475 nm. An isosbestic point was clearly seen around 520 nm, indicating the
stoichiometric conversion of molecule 1 from unbound to the Cd2+-bound state. As the concentration
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of Cd2+ increased, the color of the solution turned from red to bright yellow, consistent the absorption
spectral change shown in Figure 2. The observed spectral change is due to the binding of Cd2+ at the
BPA chelator (Scheme 2), which in turn reduces the electron-donating capability of the aniline moiety.
As a result, the ICT transition of molecule 1 is diminished. Indeed, as molecule 1 is fully chelated,
the absorption spectrum becomes mostly characteristic of the π − π transition of the Me4BOPHY part,
centered around 475 nm (Figure 2).
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Scheme 2. Sensing mechanism of 1 towards Cd2+.

The same series of titration of Figure 2 was also monitored for fluorescence spectral change,
as shown in Figure 3a. The unbound molecule 1 has an emission band centered at 675 nm, which is
significantly red-shifted in comparison to the two emission bands (485 nm and 518 nm) that are typically
observed for the fluorophore of tetramethyl substituted BOPHY (Me4BOPHY). The strong redshift
is mainly a result of the ICT transition (Scheme 2), which in turn is caused by the BPA substitution.
Upon binding with the Cd2+ ion, the emission peak was blue-shifted to 570 nm, implying that the ICT
transition is diminished, as discussed above. The fluorescence quantum yield of pristine 1 determined
as 7.6% by using Rhodamine B in acetonitrile as a standard (ϕF = 0.89, λex = 495 nm). By comparing
the total fluorescence intensity and the absorbance at the same excitation wavelength 495 nm between
the unbound and Cd2+-bound state of 1, the fluorescence quantum yield of Cd2+-bound 1 can be
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estimated to be 44.2%. The spectral change shown in Figure 3a enables ratiometric sensing by plotting
the ratio of fluorescent intensity at 570 nm and 730 nm (F570/F730) as a function of the concentration
of Cd2+ (relative to that of 1), as shown in Figure 3b. An approximately linear relationship was
obtained, allowing for determining the concentration of Cd2+ using this linear calibration. The limit
of detection (LOD) can be projected by taking three times the standard deviation of measurement as
the detectable signal, that is, 0.3 in this study. Using the slope of the linear fitting of Figure 3b, we can
determine the LOD to be 6.9 nM, or 0.77 ppb, which is far below the safety value set for drinking
water by WHO (3 ppb), indicating a strong feasibility of using sensor 1 for trace level detection of
Cd2+. The ratiometric sensing, relying on the fluorescence measurement of both bound and unbound
state of 1, could potentially improve the robustness of signal by canceling the interference from the
environment. By comparing with other fluorescence sensors for Cd2+ reported in literature (Table 1),
sensor 1 developed in this study has many advantages over other Cd2+ sensors.
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Figure 3. (a) Fluorescence spectral change recorded for an acetonitrile solution of sensor 1 (2 µM) upon
titration of Cd2+ ion; (b) The ratio of fluorescence intensity (F570/F730) measured for the same solutions
at 570 nm and 730 nm as a function of the concentration of Cd2+ (relative to that of 1), showing linear
fitting as indicated in the plot.

Table 1. The comparison of 1 with other Cd2+ sensors in literature.

Refs. LOD (mol L−1) Wavelength of Emission Solvent Used

[7] 1.97 × 10−7 456 nm CH2Cl2/CH3CN (1/9)
[8] 2.76 × 10−7 500 nm H2O
[18] 1.76 × 10−7 495 nm/558 nm HEPES
[29] Not available 597 nm CH3COCH3/H2O (9/1)

This work 6.9 × 10−9 570 nm/730 nm CH3CN

3.2. Sensing Mechanism and Job’s Plot

As illustrated in Scheme 2, the sensing mechanism of 1 relies on switching the fluorescence from
ICT transition to local π − π transition at the BOPHY site. The BPA chelator affords strong binding to
the Cd2+ ion, and this weakens the electron donating power of the aniline moiety, thus diminishing
the ICT transition. The tridentate chelation of BPA forms 1:1 complex with Cd2+ ion, as also reported
in other studies wherein the same chelator was used [29]. The 1:1 chelation stoichiometry was also
confirmed in this study through a Job’s plot approach [44], as shown in Figure 4. Job’s plot is commonly
used to determine the stoichiometry of a complex between two species, for which the total molar
concentrations of the two species (here molecule 1 and Cd2+ ion) are kept constant, while their relative
concentrations are varied. A measured variable (here the fluorescence intensity ratio, F570/F730) that is
dependent on the complex formation can be plotted as a function of the molar fractions of the binding
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species. The maximum of the plot corresponds to the stoichiometry of the complex formed. In this
study, the total concentration of molecule 1 and Cd2+ ion was fixed at 2 µM, and the molar ratio of the
two species was changed from 1:9 to 9:1, and the fluorescence intensity ratio F570/F730 was measured
under the same conditions. Clearly, as shown in Figure 4, the maximum of the plot corresponds to
a 1:1 complex between 1 and Cd2+.Sensors 2017, 17, 2517 6 of 10 
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the two species fixed at 2 µM.

3.3. Sensing Selectivity

The high selectivity of 1 towards Cd2+ ion was examined by comparative experiments, which were
conducted by repeating the same fluorescence measurements shown in Figure 3 but in the presence
of 10 other common metal ions, Mn2+, Pb2+, Cu2+, Co2+, Mg2+, Ca2+, Ba2+, Fe2+, Hg2+, and Zn2+.
In contrast to the efficient spectral change observed for Cd2+ (far left bar in the figure), all of the
other metal ions (except for Zn2+) demonstrated almost no spectral change, as indicated by the low
values of F570/F730 measured under the same experimental conditions (Figure 5a). However, upon the
addition of Cd2+ ion at the same concentration, all of the 10 solutions containing the different metal
ions showed dramatic fluorescence change at the same degree as that observed for the solution of
1 + Cd2+. This observation indicates good sensing selectivity for molecule 1 towards Cd2+, which in
turn is largely due to the strong chelation, as illustrated in Scheme 2. The mild fluorescence response
observed for Zn2+ ion is not surprised considering the similar coordination property between Zn2+

and Cd2+. However, due to the weaker electron affinity of Zn2+ ion (with standard reduction potential
of −0.7 V, as compared to that of Cd2+, −0.4 V), the binding with Zn2+ cannot block the ICT transition
as effectively as Cd2+. Indeed, as shown in Figure 5b, under the same concentration the solution of
1 + Cd2+ exhibited a dramatic fluorescence color change (consistent with the spectral measurement
shown Figure 3), whereas the solution of 1 + Zn2+ remained about the same color as the solution of 1.
Such dramatic difference in color change provides additional feature to distinguish Cd2+ from other
metal ions when using 1 as sensor.
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Figure 5. (a) Fluorescence intensity ratio (F570/F730) measured for sensor 1 in acetonitrile (2 µM) in
the absence of metal ions (black), and in the presence of various metal ions (2 µM), (blue), followed
by addition of 2 µM Cd2+ into each of the eleven solutions (red); (b) Photographs taken for the 2 µM
solution of 1, in comparison to the ones containing 2 µM of Zn2+ and Cd2+.

3.4. Fast Sensor Response

The sensor 1 could rapidly detect Cd2+ ion, as shown in Figure 6. When we put 2 µM Cd2+ into
2 µM sensor 1 solution, the fluorescence intensity ratio (F570/F730) of sensor 1 quickly increased and
reached a stable value within 1 min. This is a good trait for fast and real-time determination.
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Figure 6. Time course of the fluorescence intensity ratio (F570/F730) change measured on an acetonitrile
solution of sensor 1 (2 µM) upon addition of Cd2+ ion (2 µM).

In addition to the high sensitivity and selectivity observed above, sensor 1 also demonstrated
a fast response, consistent with the strong chelation with Cd2+. As shown in Figure 6, the ratiometric
fluorescence response of 1 was finished in one min upon addition of 1:1 Cd2+ ion. Due to the
experimental operation limit, we could not monitor the sensor response in any faster time scale,
though the real response time of 1 seems to be in seconds or even faster. This fast fluorescence response
makes sensor 1 ideal for real-time monitoring, particularly for in-field detection. Also indicated from
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Figure 6 is the high photostability sensor 1, wherein the fluorescence of 1 was measured ten times after
binding with Cd2+ ion, but no significant change in the fluorescence intensity was observed.

4. Conclusions

We report on a novel fluorescence sensor 1 for the selective detection of Cd2+ ion with LOD
down to 0.77 ppb. The sensor molecule is based on a fluorophore of Me4BOPHY in conjugation with
an electron donor group, namely BPA, which also affords strong binding with Cd2+. The electron
donor-acceptor conjugation enables ICT fluorescence at long wavelength, desired for sensor
development. Upon binding with the Cd2+ ion, the fluorescence is switched from ICT transition
to be the π − π transition, which dominated by the Me4BOPHY fluorophore, which is located in
much shorter wavelength region. Such dramatic fluorescence change enables ratiometric sensing by
measuring the relative emission intensity at the two wavelengths as a function of the concentration of
Cd2+ ion, thus allowing for quantitative detection of Cd2+. High selectivity towards Cd2+ was also
evidenced for the sensor as examined with ten other common metal ions.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1424-
8220/17/11/2517/s1.
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