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Abstract: The significant changes enabled by the fog computing had demonstrated that Internet
of Things (IoT) urgently needs more evolutional reforms. Limited by the inflexible design
philosophy; the traditional structure of a network is hard to meet the latest demands. However,
Information-Centric Networking (ICN) is a promising option to bridge and cover these enormous
gaps. In this paper, a Smart Collaborative Caching (SCC) scheme is established by leveraging
high-level ICN principles for IoT within fog computing paradigm. The proposed solution is supposed
to be utilized in resource pooling, content storing, node locating and other related situations.
By investigating the available characteristics of ICN, some challenges of such combination are
reviewed in depth. The details of building SCC, including basic model and advanced algorithms,
are presented based on theoretical analysis and simplified examples. The validation focuses on
two typical scenarios: simple status inquiry and complex content sharing. The number of clusters,
packet loss probability and other parameters are also considered. The analytical results demonstrate
that the performance of our scheme, regarding total packet number and average transmission latency,
can outperform that of the original ones. We expect that the SCC will contribute an efficient solution
to the related studies.
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1. Introduction

The idea of the Internet of Things (IoT) has been acknowledged as a popular term for many
years. Nowadays, it is attracting more attention from both industrial and academic communities
than ever. Different from the Wireless Sensor Networks (WSN), IoT extends the scope of nodes
and connectivities tremendously [1,2]. A batch of schemes and protocols are proposed by many
standardization organizations, such as IETF, ISO, IEC, ITU, IEEE, 3GPP, GS1, to enhance the overall
performance of IoT. For instance, there are several active working groups in IETF: 6Lo, 6tisch, ace, core,
detnet, lwig, manet, roll and so on. This latest progress empowers IoT to be easily utilized in intelligent
transportation systems [3,4], e-health [5,6], smart grid [7,8], and other common scenarios [9,10].

Fog computing is a novel paradigm which leverages many useful features of IoT to aggregate
many small nodes and achieve a significant capacity. It could be perceived as an intermediate stage
between cloud computing and personal computing. New research directions, such as D2D, M2M, V2V,
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are providing a substantial basis for it. Many new promising applications, e.g., virtual reality and
augmented reality, can profit from fog computing.

However, the conjunction between IoT and fog computing is not smooth due to the drawbacks of the
traditional network architecture. As a competitive clean-slate candidate, Information-Centric Networking
(ICN) is engaged in modifying the original host-oriented pattern. By including more information-oriented
characteristics into IoT, ICN may inspire more innovations in fog computing scenarios.

This paper focuses on several tough issues: Firstly, the connections among multiple IoT nodes are
usually unconsolidated. Guaranteeing the data distributions in such circumstance is hard. However,
the cooperative processing needs a firm foundation. Secondly, due to the constrained resource of IoT
nodes, the information storing needs to be explored. When the capacity is not sufficient, the node
should find an approach to achieve caching ability which is the basis of ICN. Thirdly, the content
can be uploaded based on the requirements if previous connecting and caching capability are ready.
Quickly locating the most suitable node is significant not only for the users but also for the network.

The main contributions of this work could be summarized in two aspects: (1) A new Smart
Collaborative Caching (SCC) scheme is designed to enable information-centric ability in IoT, which is
beneficial for better connecting the devices and providing cooperative caching in fog computing.
(2) The validation results are illustrated based on analyzing the performance of common IP network,
ICN flooding, ordinary SCC and enhanced SCC. The topology, scenarios, and experiments are also
carefully detailed.

The basic structure of this paper is as follows: In Section 2, the related work in combining IoT
with ICN and fog computing are presented respectively. In Section 3, the details of SCC design are
introduced. Three necessary parts, i.e., preliminary foundation, model establishment and primary
operations are involved. In Section 4, the validations are given to explore the capacity of SCC.
Two scenarios, two experiments, and four candidates are implemented and discussed. In Section 5,
the paper is summarized and future works are presented.

2. Related Work

Some recent work related with IoT in ICN and fog computing situations are presented. We believe
these work could motivate more excellent achievements in the community.

2.1. IoT and ICN

Among combination investigations, Lindgren et al. [11] focused on the tradeoffs of ICN in
IoT structures. They also introduced the benefits the IoT gains from ICN and IoT architecture
design choices to solve the application challenges. Li et al. [12] then continued their research and
presented an IoT architecture based on ICN to manage the problem in combined processes. They used
NDN and MobilityFirst technologies in their design and improved the service discovery part in IoT.
Baccelli et al. [13] discussed the effect of utilizing ICN approaches in IoT. Some improvements on
control traffic and data path management are illustrated. Moreover, they also showed a comparison
of CCN with other IoT standards. In [14], the authors performed an analysis and implemented
several ways for the application of ICN in IoT scenarios. They demonstrated the possibility of this
combination based on many different ICN performance facts. Waltari and Kangasharju [15] introduced
an approach of using CCN in IoT environments, which can solve the Internet challenges brought by the
increasing number of access devices. A forwarding strategy of data transmission is proposed in [16]
by Melvix et al. It focused on reducing the energy consumption in an IoT system. The authors also
modified the naming scheme, and their approach has a better performance than IP-based techniques.
Datta and Bonnet [17] proposed a unified naming scheme for interests to facilitate the interaction
between two regions in NDN based IoT architecture.

For information processing, Siris et al. [18] investigated the overhead of data messages in the
ICN-based IoT. They designed a simulation of three optimization models in an ICN testbed with a
PSI prototype and showed their performance in reducing traffic loads. Borgia et al. [19] introduced a
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framework which combines ICN with global cloud via mobile facilities at the edge of the network.
They aim to offer better data management and service provisioning for IoT. Amadeo et al. [20]
presented a structure of ICN usage in an IoT environment. The proposed naming scheme can help with
the data exchange between the devices in the network. Ahlgren et al. [21] proposed an approach for
managing the sensor data from IoT instruments with CCN technique. In [22], Quevedo et al. discussed
the benefits of applying CCN in an IoT architecture. They studied several caching mechanisms in
consideration of bandwidth and energy consumption. Hail et al. [23] presented a new caching strategy
called pCASTING. They used ndnSIM to execute a simulation and evaluated the performance based
on the energy efficiency of the network. Ye et al. [24] proposed a novel scheme for data processing by
utilizing NDN in reconfiguring the relevant logic in network. The evaluation showed that it could
reduce the energy cost during the transmission and save bandwidth.

For communication enhancement, Chen et al. [25] presented the benefits of using MobilityFirst in
an IoT scenario to support the communication. This paper also explained the feasibility of using other
special ICN architectures. Dong et al. [26] presented an ICN-based distributed Resource Directory (RD)
scheme for IoT which takes the consideration of request forwarding (pushing) and name resolution.
It aim to significantly reduce the routing table size and the network overhead. Hahm et al. [27]
introduced their work by combining ICN with a particular IoT approach, TSCH. This combination may
improve the energy efficiency and decrease the need for error management in the MAC layer. In [28],
Dong and Wang proposed a context-based scheme for IoT communication in an ICN architecture
which ensure the correct information forwarding with the arrangement of FIB and PIT. They also
compared it with the existing methods to show its performance. Hail and Fischer [29] presented
an IoT application AAL, which is able to offer better health service for the elderly. This framework
realizes a timely communication among different devices by using a NDN structure. Moreover,
they continued to present a new NDN-based API [30] for IoT service which also focused on developing
the communication service. Amadeo et al. [31] studied the reliable data forwarding in IoT traffic whose
background has adopted NDN. They introduced three solutions and discussed their feasibility and
shortcomings, especially their performance in reducing the overhead and network load.

2.2. IoT and Fog Computing

In combination investigations, Sarkar and Misra [32] presented a mathematical formulation for
fog computing which is used to support for IoT application. They compared the performance of fog
computing in energy consumption and service latency with existing mechanisms. Yannuzzi et al. [33]
discussed the challenges faced by modern computing approaches in the IoT and introduced the reasons
why a mixed fog computing scheme is more suitable for IoT environments. Giang et al. [34] analyzed
the feasibility of applying fog computing in IoT. They introduced a new programming method called
DDF which combines cloud and fog from service perspective. The simulation showed the better
performance in different IoT applications. Lee et al. [35] focused on the particular security issues
brought by fog computing in IoT scenarios. They also evaluated the present security mechanisms of
IoT clouds. Sarkar et al. [36] proposed the comparison of the fog computing with the traditional cloud
computing. Moreover, they demonstrated the suitability of fog computing for its better performance
in dealing with the requirements from a large number of IoT applications. Bibani et al. [37] presented a
demo based on PaaS for enabling IoT applications in hybrid cloud and fog environment, which reduces
latency and promotes processing performance. Salman et al. [38] discussed several novel approaches
about their application in IoT architecture and highlighted the benefits of MEC for the IoT which has
adopted the fog computing technique.

For resource arrangement, a model about the agreement of resources was proposed in [39].
The authors aimed to realize an efficient and reasonable resources management, and they executed the
evaluation work on the CloudSim toolkit to observe the performance of the model. Skarlat et al. [40]
presented a framework to deal with the disadvantages of fog computing in the release of resources.
Their design reduces the delay in the processing and has a shorter transmission time. Aazam et al. [41]
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focused on the topic of the resource evaluation in consideration of the Relinquish Rate (RR).
Their experiments were carried out in an actual IoT environment and demonstrated the efficiency in
reducing the waste of resources for their mechanism. They also proposed an approach [42] whose
management of the resources is based on the type and the price of services. This framework can
deal with the complicated requirements of the IoT-based services caused by their fast increasing
number. Abedin et al. [43] proposed a model which utilizes fog computing to realize a more efficient
communication among the devices in the IoT. Their model used a conception of matching theory
to realize node pairing. Aazam and Huh [44] analyzed the feasibility in the combination of fog
computing and smart gateways. Their design has taken into account of many types of delay to enhance
the performance of service provisioning in the IoT. Taneja and Davy [45] described an algorithm for
determining the locations of the analytic data operators which can be used in a fog framework.

For data integration, Jalali et al. [46] focused on the consumption of energy in different IoT
applications, and they proposed a method which facilitates the integration of fog computing and micro
grids. It can help with the storage and computation of the applications. Rauniyar et al. [47] discussed
the security problems in the IoT. They presented a fog computing framework and data offloading
scheme to detect and deal with disasters. In [48], Chiang and Zhang presented a conception called
Fog Servers. It is utilized in smart city scenarios to offer high-quality service based on the measure
of energy. Moreover, the experimental results show that adaptive FSs have a better performance due
to the dynamic power consumption and capacity. Hu et al. [49] built a face identification system
based on the fog computing technology. It is important for the security applications in the IoT.
Dastjerdi and Buyya [50] discussed the benefits offered by fog computing in IoT regarding how to deal
with the considerable amount of data which is generated from the applications. The authors deem
that the fog computing can effectively connect the cyber and physical environment. Prazeres and
Serrano presented a novel framework SOFT-IoT in [51]. They focused on the data processing to
realize a reasonable management of the service delivery operation for the subordinate systems in IoT
architectures. Gia et al. [52] proposed a monitor system based on fog computing with the aim of data
management in healthcare. This system combines with smart gateways to offer better detection results.

2.3. Comparison and Discussion

For IoT+ICN, the current combinations did not fully consider the requirements of fog computing,
which will seriously limit the scalability of these schemes. As the key functionalities, achievements in
information processing and communication enhancement only focus on high-level improvements.
Stable connection establishment is still a tough issue. For IoT+Fog, the existing combinations mainly
investigate the macroscopic and generic topics, which is quite necessary in its early stage. However,
most researches in resource arrangement and data integration are still based on a device-centric concept.
Information itself cannot be smartly exchanged among massive nodes.

Previous literature reviews help us to rethink the construction method of a comprehensive caching
solution. There are already some initial attempts in this area. More specifically, Abdullahi et al. [53]
introduced a conceptual framework for embedding ICN into ubiquitous computing paradigms as an
API. Although this paper included many relevant elements and illustrated complicated layer structures,
the detail of the particular scheme were not provided. Khan et al. [54] integrated “Centrality” into
ICN and proposed a novel concept named Content-Based Centrality (CBC). The authors also designed
a placement algorithm for content and validated the performance. Nevertheless, this paper only
focused on the distribution approach for content, which means the content finding approach is
still open. Motivated by the same target, Khan et al. [55] switched the application scenario to a
mobile environment. By merging the spatial temporal features of content and the eligibility of nodes,
the author proposed a new caching scheme. To balance the cost and available capacity, a coalition
game is adopted to encourage the contribution of nodes. Although this work considered multiple key
perspectives, an important issue, i.e., joining and leaving of nodes, is still lacking.
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3. Smart Collaborative Caching for IoT

To achieve information-centric IoT targets, the content should be appropriately cached inside
multiple intermediate nodes and easily found by the network. Such a difference will greatly enable
more possibilities in fog computing. Therefore, an efficient caching scheme is essential. By analyzing
the basic demands of SCC, the preliminary foundation is presented. Then, specific steps of establishing
the model are given based on a widely approved algorithm. To further support different scenarios and
improve overall performance, four primary operations are also investigated.

3.1. Preliminary Foundation

Driven by the requirements of SCC, our scheme is established based on a test of time solution:
Chord [56]. We first introduce the shared concepts. Then the details of SCC will be proposed by
considering the typical characteristics of an information-centric IoT. Relevant algorithms will also be
presented. Only one operation was supported in the Chord protocol: Map a key onto a node. Let us
assume that the key identifier is a fixed length “abbreviation” of original key (a file, a web page, a name,
and so on). The node identifier is a fixed length “abbreviation” of a network node (a router, a switcher,
a server, and so on). By using a hash function, one could easily map the original key into an m-bit
key identifier. The associated network node information like IP address, MAC address, serial number,
and so on, could be selected as the hash function input to generate the m-bit node identifier. For
simplification, the term “key” (“node”) will refer to both the original key (network node) and key
(node) identifier under the hash function. Consistent hashing is adopted to ensure each node will be
in charge of roughly the same number of keys, which is useful not only for averaging the burden
of nodes, but also for reducing large-scale key migration. Chord further enhance the scalability of
consistent hashing by maintaining a small number of routing items in each node. If there are N nodes
in the network, both the information of other nodes and lookup message of one request are O(log N).
Identifier circle, successor, and predecessor are three significant elements in Chord. Both the key and node
are sharing the same identifier circle space. All identifiers are anticlockwise placed in a circle based on
their value modulo 2m. Key k will be assigned to the first node whose identifier is equal to or bigger
than k. This node is named successor node of key k, expressed by a successor (k). If the key belongs
to 0 to 2m − 1, actually the successor (k) is just the first node clockwise from k. The first node whose
identifier is smaller than k is named predecessor node of key k, expressed by predecessor (k). Similarly,
the predecessor (k) is just the first node anticlockwise from k. The Finger Table is an essential element
stored in each node. It is a particular routing table which contains m items at most. Each item records
a mapping relationship between one interval and one successor node who is in charge of this range.
The interval is the circular range separated by multiple break points. As long as a specific node n is
provided, the identifier of each break point could be easily calculated based on:(

n + 2k−1
)

mod 2m, 1 ≤ k ≤ m (1)

Then the interval range will be generated automatically. Since not all the slots in a circle can be filled
with nodes, one node might be mapped to multiple intervals.

3.2. Model Establishment

In the information-centric IoT, the situation is not as simple as before. Here are two practical
examples: when a node is supposed to cache the original key, the capacity is not big enough; when a
node leaves the system without sending the notification, there will be no original key which was
cached in this node. Therefore, “map a key onto a node” is not appropriate anymore in such scenarios.
According to the target of ICN, the original key should be stored in the entire network, not just in a
single node. Our basic idea is to separate the traditional binding between the key identifier and the
original key. The former will be handled by the leader of IoT cluster (introduced in Figure 1), the latter
will be stored by the leader itself or members insider cluster. It is also possible to cache the latter in
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other clusters. Then all clusters should establish a “Pointer Table” to maintain the mapping between
the key identifier and the original key. However, the additional complexity must be well controlled.
These collaborative operations are crucial for SCC, which enable it to be a strong tool in fog computing.
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A schematic circle of SCC is constructed in Figure 1a. For simplification, the term “content”
(“cluster”) will refer to both the original content (IoT cluster) and content (cluster) identifier under
the hash function. The distinction is easy to find based on context. Each cluster should maintain a
constant identifier which is hashed from the information of cluster leader, cluster member, or other
related components. It should not be changed until the last member has left the network. The cluster
leader can represent the whole cluster and mark itself with the cluster identifier. Assuming m is equal
to 4, there will be 16 empty slots (characterized by the circles with white) for both clusters and contents.
The position of slots is not proportionally spaced to better illustrate the main part. Four existing
clusters represented by their cluster leaders (marked by the circles with yellow) are 2, 4, 9 and 10,
respectively. The cluster members (characterized by the thin circles with white), i.e., 9-1, 9-2 and 9-3,
should have a direct connection with cluster leader 9. The circle linked them is not another Chord
circle. The identifiers of cluster members are just the extensions of cluster leaders, which means it is
only visible inside cluster by the local members. The six content (marked by the squares with white)
are 0, 2, 3, 4, 6 and 8, respectively. Three finger tables for cluster 2, 4 and 9 are given to locate the cluster
that is in charge of the content. The content 6 and 8 (marked by the squares with green) are cached
in 9-1, 9-2, 9-3 and 10 due to the limited capacity of cluster leader 9. It is suggested that the backup
content of a cluster leader should be stored in its successors. They could be easily found even if this
cluster is disappeared. A pointer table of cluster leader 9 is also given to identify the mapping between
the content and its location.

3.3. Primary Operations

Four main actions of SCC will be discussed. More details are provided during the demonstration process:

3.3.1. Caching and Finding

To present the whole process of content caching and finding, we choose a specific content 8 as the
main object.

Assuming cluster 2 had received an original content and its hash function result is 8, the search
inside cluster 2 will be initiated immediately. Based on the partition rule, the successor of content 8
should be located. Since there are m items in the finger table, an efficient method is required. “Sta.”,
“Int.” and “Suc.” are abbreviations for start, interval, and successor. The simple idea is to check the
items one by one. However, it will take three steps to find interval [6, 10). Intuitively, it only needs two
steps if one checks from the end. We need to investigate if the step number of this scheme is always
smaller than that of the previous one when large m is adopted. According to Formula (1), the theory
behind that is it will halve the distance to the target after each item checking. The more clusters IoT has,
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the fewer steps it will need. Since a cluster knows more information about their neighbors than others
do, it makes sense to check it successor before the reverse lookup. When cluster 9 had been found,
a caching request of content 8 will be sent from cluster 2. Due to the limited capacity of cluster leader
9, the caching task of content 8 will be assigned to cluster member 9-3 and cluster 10, respectively. It is
also acceptable to execute fragmentation for content 8, but such operation is not recommended due to
the integrality considerations. A new item should be added into pointer table 9 (marked by the red
font). “Loc.” and “Bac.” are abbreviations for location and backup.

Assuming a request for content 8 was generated from cluster 4, finding processes will utilize the
same idea to locate the target cluster. When cluster 4 checks the first item of its finger table, it will
not succeed because the content 8 does not belong to the interval [5, 6). Based on the previously
discussed algorithm, cluster 4 should check the last item. Although it will fail again, the next step will
successfully find the interval [8, 12) as well as the successor cluster 9. Then a request for content 8 will
be sent from cluster 4 directly. Since the cluster leader 9 does not cache this content, it will check the
pointer table to find the practical location of content 8. We only use an ergodic algorithm here as a
primitive version. More efficient lookup algorithms could be designed based on that. When cluster
member 9-3 and cluster 10 are found, the content 8 will be sent to cluster 4. The relevant pseudocode
is illustrated in Figure 2a.
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Algorithm 1 Caching and Finding Process in SCC
1:   set content t, target cluster x, current cluster c;
2:   set m = the number of items in finger table c;
3:   if t    [c+1, c+2) mod 2m then
4:      x = successor cluster of c;
5:   else
6:      for i from m to 2 step 1
7:         if t    the interval of ith item then
8:            x = successor cluster in ith item;
9:         end if
10:    end for
11: end if
12: iteration among clusters until x is selected
13: if caching t is needed then
14:    if the size of t < the available space of x then
15:       cache t in c;
16:    else
17:       cache t in other clusters;
18:       update the pointer table of x;
19:    end if
20: else if finding t is needed then
21:    x forwards t to c;
22: end if





Algorithm 2 Joining and Leaving Process in SCC
1:   set new cluster n, successor cluster s, predecessor cluster p;
2:   if n is joining in the system;
3:      run the iterations of Algorithm 1 to find s;
4:      if predecessor of s != n then
5:         p = predecessor of s;
6:         successor of n = s; 
7:         predecessor of s = n;
8:         the content    (p, n] will be sent to n;
9:         establish new finger table for n;
10:    end if
11: end if
12: if predecessor of s != p then      //triggered by the check of p
13:    s sends new cluster n to p;
14:    successor of p = n;
15:    predecessor of n = p;
16: end if   
17: if n is leaving the system then
18:    n sends update notifications to its successor and predecessor;
19:    successor of p = s;    
20:    predecessor of s = p;
21: end if


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3.3.2. Joining and Leaving

We mainly focus on the cluster level changes since the fluctuations insider cluster could be
handled by the cluster leader and members.

Assuming cluster 7 wants to join in the system via cluster 4, it is acceptable to choose an arbitrary
cluster. For the changes of successor and predecessor, since cluster 4 had a macroscopic understanding
of the whole network, regarding how many clusters are online, cluster 7 could realize that its position
should be in the middle of existing cluster 4 and 9. Then the cluster 7 will modify its successor to cluster
9 and send an update notification to it. If the operation is successful, cluster 9 will mark cluster 7 as the
predecessor and forward the relevant content (i.e., content 6) back. Based on the “Stabilization” actions
of Chord, each node needs to check its successor periodically to ensure the correctness. When cluster 4
sends the check request to cluster 9, it will be notified that cluster 9 is not the predecessor anymore and
cluster 7 is the new one. Then the cluster 4 will modify its successor to cluster 7 and send an update
notification to it. If the operation is successful, cluster 7 will mark cluster 4 as the predecessor. For the
changes to finger tables, there are two ways to construct the finger table of cluster 7: Ask its introducer
cluster 4 or copy from its next neighbor cluster 9. The updates for all other nodes could be executed
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simultaneously. The result of cluster 7 join is presented in Figure 1b. All the changes in finger tables
had been marked with red color.

Assuming cluster 7 wants to leave the system, the necessary procedures are quite similar with that
of joining. When cluster 9 receives an update notification from cluster 7, it will change the predecessor
from cluster 7 to cluster 4. The relevant content (i.e., content 6) should be sent back to cluster 9 as
well. Cluster 7 may send an update notification to cluster 4 to trigger a quick change of the successor.
However, even these actions are not executed by cluster 7, the performance of the whole system will
not be affected seriously. Due to the success of its applications, more and more recent papers [57,58] are
presented to enhance this protocol. We believe all these works are also beneficial for SCC. The relevant
pseudocode is illustrated in Figure 2b.

4. Validation and Discussion

A topology (shown in Figure 3) is carefully built to compare and analyze the overall performance
of different schemes. Multiple IoT nodes are gathered to form a cluster, which is the basic element
of fog computing. A cluster is composed of a leader (marked by the circles with red) and a group of
members (marked by the circles with blue). The enlarged view of a cluster is illustrated at the bottom
left corner. There are totally N clusters (located in the center area), 100 subscribers and 100 publishers
(located at the left and right sides, respectively) in the network. The clusters are numbered from
1 to N, according to the distance between the cluster and subscriber (N means the farthest cluster).
A rendezvous server with aggregation function belongs to one cluster that is near to the publishers.
Let us assume that each cluster has caching ability to store a complete packet and one message will not
be separated into multiple packets. The period interval of requests is stable.
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Four kinds of schemes are enabled inside multiple clusters between subscribers and publishers.
The first one is a traditional unicast scheme in the IP network. The second one is a flooding scheme
in ICN, which spread the packets to all neighbors. The third one is our SCC scheme, which aims to
significantly reduce the number of packets and the transmission latency. The last one is ICN SCC-E,
which is an enhanced version of SCC based on one hop searching [59]. It could maintain one hop
feature during the cluster searching process by storing more items in their finger tables.

Two scenarios (simple status inquiry and complex content sharing) are established, and two
experiments (calculating packet number and transmission latency during the requests and content
exchanging) are executed by considering four candidates. In the first experiment, the subscribers
will generate and send requests. The best case and the worst case, regarding overall packet number,
will be calculated respectively. Then the average number of them are marked with different signs
in figures. In the second experiment, similar to the first one, we calculate the average transmission
latency between sending the requests and receiving the content.
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4.1. Scenario One: Simple Status Inquiry (One Request and One Response)

Suppose each subscriber requests one piece of content from 100 publishers. The corresponding
applications might be data collections, remote control, etc. All the information sent by the
publishers can be compressed into one packet inside the rendezvous server. We first carried out
a theoretical analysis for multiple candidates. Both the packet number and transmission latency will
be checked carefully.

For the packet number, when the subscribers want to achieve contents, the best case is: the first
subscriber initiates one request to the cluster 1. If the packet can reach the rendezvous server through
one hop, it is the shortest path. Then the rendezvous server sends one request packet to each publishers.
When receiving these requests, the publishers should return 100 responses back to the rendezvous
server. Since all these responses will be aggregated into a content packet and returned back to
cluster 1, only one packet appears in the network. Finally, this packet is forwarded to subscriber 1.
During previous procedures, there are 1 + 1 + 100 + 100 + 1 + 1 packets in total, i.e., P1B = 204 (P for
“Packet number”, 1 for “the first subscriber” and B for “Best”). The worst case is: after the subscriber
sends the request, such packet reaches the rendezvous server through N-1 clusters, which is the longest
path. In this case, N − 1 packets will be forwarded. Then 100 request packets are transmitted from the
rendezvous server to 100 publishers. Since the reverse direction of data flow will generate the same
packet, the total packet number P1W (W for “Worst”) can be calculated via Equation (2):

P1W = 1 + (N − 1) + 100 + 100 + (N − 1) + 1 = 200 + 2N (2)

When the ith subscriber initiates the request (i 6= 1), since the request of previous subscriber(s)
had been received, the aggregation of required content should be stored inside the rendezvous server.
Therefore, the interaction between rendezvous server and publishers can be waived. To minimize the
number of packets in the network, the path should be as short as possible. The best case is: it takes one
hop to reach the rendezvous server and the required content returns back to the subscriber in the same
way. During such procedures, there are 1 + 1 + 1 + 1 packets in total, i.e., PiB = 4. The worst case is:
it takes N − 1 hops in both forward and backward directions inside network. The total packet number
PiW should be equal to 2N. To illustrate the mean level of all cases, we calculate their value range by
using Equation (3): [

100

∑
i=1

PiB/100 ,
100

∑
i=1

PiW/100

]
= [6, 2 + 2N] (3)

For the transmission latency, it is defined as the period between request sending and content
receiving. All the Round Trip Times (RTTs) are equivalently set and the fluctuations of jitters are set
to 5 ms. We assume that the delay of each link is half of RTT and the 100 publishers receive (send)
the requests (responses) simultaneously. In forward direction, when the first subscriber initiates a
request, it has to pass by several clusters and the rendezvous server before arriving at the publishers.
The minimum latency is 3 × RTT/2, i.e., only 1 cluster is involved. In backward direction, when all
publishers have returned 100 responses, the aggregation delay inside the rendezvous server can be
ignored since the RTT is relative large. If the reverse path is maintained, the overall minimum latency
L1B (L for “Latency”) should be 3 × RTT. Similar with previous analysis, the maximum latency will
appear if all clusters are involved in both directions. The calculation of L1W is shown in Equation (4):

L1W =
RTT

2
× (1 + (N − 1) + 1 + 1 + (N − 1) + 1) = RTT × (1 + N) (4)

When the ith subscriber initiates the request (i 6= 1), it will take 1 (N − 1) hop(s) between the
first cluster and the rendezvous server in the best (worst) case. Therefore, the LiB and LiW, in terms
of minimum and maximum delay, for each round are 2 × RTT and N × RTT, respectively. The value
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range of latency can be obtained according to Equation (5). Both the packet number and transmission
latency calculation process of the other candidates can follow the same methodology.[

100

∑
i=1

LiB/100,
100

∑
i=1

LiW/100

]
=

[
201RTT

100
,
(1 + 100N)RTT

100

]
(5)

In Figure 4a, the packet number statistics for different schemes are illustrated. The horizontal
axis is set to the number of clusters in the network. To better highlight the difference, we adopt
logarithm for vertical axis display. The curve with black (at the top of the figure) demonstrate the
packet number in ICN Flooding scheme. Although content caching is enabled in all clusters, plenty
of unnecessary packets are still generated and forwarded inside whole network. It is significant to
design an appropriate policy even ICN is adopted in IoT scenarios. The curves with red and blue
(at the middle area of the figure) represent the IP Network and ICN SCC, respectively. As we expected,
with the increasing of network scale (in terms of cluster number), the traffic volume of traditional
IP network is getting bigger. The growth rate in this scheme is not as high as that of ICN Flooding.
However, it still brings some additional burdens for the clusters. For ICN SCC scheme, the caching
cost and searching efficiency are properly balanced. The growth rate of packet number is obviously
controlled. The curve with green (at the bottom of the figure) shows that the fluctuation of ICN SCC-E
is always stable. It proves that one hop searching is effective in SCC and the clusters can find the
content with limited cost.
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Figure 4. Results for scenario one: simple status inquiry.

In Figure 4b, the transmission latency statistics for different schemes are illustrated. From top
to down, the gaps between ICN Flooding and IP network are quite small. Due to the similarity of
macro procedures in these two schemes, the advantages of ICN is not fully demonstrated. However,
using SCC and SCC-E to replace flooding scheme can respectively reduce the latency 80.7% and 85.4%
if 20 clusters exist in current network. With the increasing of clusters, such performance enhancement
is more obvious. For a particular case, when the number of clusters N is changed from 80 to 140,
we record the fluctuations in the vertical axis. The growth rate of ICN Flooding and IP Network curves
is 74%. The values in ICN SCC curve grow 10.2%, which is quite slow comparing with previous two
schemes. The values in ICN SCC-E curve are invariant.

4.2. Scenario Two: Complex Content Sharing (One Request and Multiple Responses).

Suppose each subscriber requests 100 pieces of content from one publisher. The corresponding
applications might be video surveillance, file transmission, etc. To better reflect the real situations,
we consider drop events in this scenario. Set the packet loss probability of each link among clusters
is p (0 < p < 0.5). Let us assume that the request packets, retransmitted packets and packets in last hop
will not be dropped by the network.
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Before calculating the packet number and transmission latency in four candidates, a fundamental
issue must be analyzed in depth: Will longer path or shorter path generate larger packet number during
the transmissions? It is straightforward in previous scenario because no packet is lost. To answer such
question quantitatively, we need to consider a generic case. The topology is minimized by adding
one subscriber, one cluster, one rendezvous server (located inside another cluster) and one publisher.
For the backward path, the number of data packets X (for the shorter path case) can be achieved based
on Equation (6):

X = 100 + 100(1− p) + 100(1− p) (6)

where each item is for each independent link. Then the topology can be enlarged by adding N-2 more
intermediate clusters. For the backward path, the number of data packets Y (for the longer path case)
can be recalculated based on Equation (7):

Y = 100 +
[
100(1− p) + · · ·+ 100(1− p)N−1

]
+ 100(1− p)N−1 (7)

where the items inside square brackets are for the links among clusters. If the target condition is “larger
packet number belongs to longer path”, the value of Y should be bigger than that of X. Based on the
geometric progression theory, such condition could be equivalently converted to Formula (8):

(1− p)− (1− p)N−1 + p(1− p)N−2

p
> 1 (8)

To further explore the relationship between p, N and packet number, we draw two analytical
figures in Matlab. Figure 5a illustrates the results of three representative N (5, 10 and 20 are represented
with black, blue and red, respectively). With the increasing of packet loss probability (from 0 to
1), all curves are getting down. The critical value appears when p is around 0.5, i.e., the value of
polynomial will approach 1. Since more values of N will lead to serious overlaps, we only reserve
three curves in Figure 5a. More details are demonstrated in Figure 5b from the three-dimensional
perspective. It also proves that 0 < p < 0.5 is a reasonable selection for scenario two.
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Figure 5. Relationship analysis for p, N and packet number.

Figure 6a illustrates the packet number statistics. Although the sequence (from top to down)
of four curves are the same with Figure 4a, the values of many points have been changed. We still
select 80 and 140 as two representatives for N. The increasing rates for ICN Flooding and IP Network
curves are 207.8% and 9.3%, respectively. The disadvantages of the flooding scheme are also displayed.
By adding new features of ICN SCC, the packet number growth is only 7.4%. Such a benefit is more
obvious if the ICN SCC-E scheme is utilized.
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Figure 6b illustrates the transmission latency statistics. The variations in scenario switching
and experiment adjustment did not drastically influence the validation results. The performance
enhancement of ICN SCC and ICN SCC-E is confirmed.Sensors 2017, 17, 2512  12 of 15 
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Figure 6. Results for scenario two: complex content sharing.

5. Conclusions

Fog computing has provided unprecedented and attractive offers in multiple perspectives.
IoT is a significant and promising candidate to provide a response for that. By analyzing the
advanced characteristics of ICN, a Smart Collaborative Caching (SCC) scheme has been proposed to
assist an information-oriented IoT establishment. We presented the details of cluster composition,
content processing, position management, and so on. Four representative SCC actions, i.e., caching,
finding, joining and leaving, have been carefully introduced. The relevant algorithms have also
been presented. A validation topology including 100 subscribers, 100 publishers and N clusters was
established to compare the performance differences among four solutions (IP network, ICN flooding,
ICN SCC and ICN SCC-E). Two scenarios (based on the number of responses) and two experiments
(based on packet number and transmission latency) have been designed. The results demonstrated
that naïve flooding in ICN is almost useless for an IP network improvement. Both ICN SCC and
ICN SCC-E could achieve acceptable efficiency in all experiments. In the future, we would like
to investigate the applicability of SCC in more scenarios and further optimize the data exchange
processes. We believe that SCC could have an essential role in the information-centric IoT and promote
the relevant developments in fog computing.
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