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Abstract: Striped stem-borer (SSB) infestation is one of the most serious sources of damage to
rice growth. A rapid and non-destructive method of early SSB detection is essential for rice-growth
protection. In this study, hyperspectral imaging combined with chemometrics was used to detect early
SSB infestation in rice and identify the degree of infestation (DI). Visible/near-infrared hyperspectral
images (in the spectral range of 380 nm to 1030 nm) were taken of the healthy rice plants and
infested rice plants by SSB for 2, 4, 6, 8 and 10 days. A total of 17 characteristic wavelengths were
selected from the spectral data extracted from the hyperspectral images by the successive projection
algorithm (SPA). Principal component analysis (PCA) was applied to the hyperspectral images, and
16 textural features based on the gray-level co-occurrence matrix (GLCM) were extracted from the
first two principal component (PC) images. A back-propagation neural network (BPNN) was used
to establish infestation degree evaluation models based on full spectra, characteristic wavelengths,
textural features and features fusion, respectively. BPNN models based on a fusion of characteristic
wavelengths and textural features achieved the best performance, with classification accuracy of
calibration and prediction sets over 95%. The accuracy of each infestation degree was satisfactory,
and the accuracy of rice samples infested for 2 days was slightly low. In all, this study indicated the
feasibility of hyperspectral imaging techniques to detect early SSB infestation and identify degrees
of infestation.
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1. Introduction

Rice is one of the most important foods for more than half of the global population. Pest infestation
is one of the severe threats to rice growth, and it usually leads to serious loss of yield and quality [1].
Striped stem-borer (SSB) is one of the destructive rice pests in many rice-growing countries [2].
The traditional detection method for SSB is manual inspection according to conspicuous symptoms,
such as a dead heart at tillering age and a white head at booting age [3]. As striped stem-borer is
a boring insect and feeds on plant tissue in the stem wall [4], the stalk characteristics will change earlier
than the canopy characteristics. Accurate SSB statistics need to dissect rice in the laboratory, which
demands expert knowledge of the pest. This procedure is time-consuming and labor-intensive, and
will decrease the detection efficiency and delay the appropriate controlling time. Hence, an efficient
and effective detection method is necessary for early detection of SSB infestation in rice.

The optical properties of the plant refer to the absorption, reflectance and transmittance of light
when the plant surface interacts with radiant energy. Reflectance can be influenced by the plant’s
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physiological properties and, thus, has been utilized by spectral technology to detect plant disease [5],
fruit quality [6], agricultural product characteristics [7] and so on. Pest infestation can cause external
and internal damage to the plant, such as the destruction of cell structure by the nibbling of tissue [8]
and the loss of photosynthetic pigments by the piercing and sucking of sap [9], etc. The reflectance
of plants in the visible waveband is associated with pigments, while reflectance in the near-infrared
waveband provides information about plant water content and physical structure [10]. Thus, the
spectral technique has the potential to be used to detect pest infestation in plants by measuring changes
in spectral reflectance [11–13].

Besides changes in spectral characteristics, the external features of a plant would also change
along with the changes of its physiological properties induced by pest feeding, excretion and other
activities. These changes, such as yellowing, rot, defect, etc., could be captured by machine vision,
and the image features would vary with the level of aggravation of the infestation. The extracted
image features could be used to establish detection models with the reference data. Hence, imaging
techniques have been applied in order to detect pest infestation [14–16].

Hyperspectral imaging is a technique integrating spectroscopy and imaging techniques, which
can acquire both spectral and spatial information at high resolution. Hyperspectral imaging has been
investigated as a potential technique in crop protection [17]. Sytar et al. [18] have reviewed the studies
of hyperspectral imaging techniques to detect plant changes caused by salt stress and have shown the
potential of this technique to detect salinity in soil. Thomas et al. [19] have reviewed research about
plant disease detection based on the hyperspectral imaging technique and have shown the potential to
detect and identify plant diseases before visible symptoms appear.

Zhao et al. [20] have distinguished Chinese cabbage infested by aphids from healthy cabbage
based on hyperspectral imaging technology, and obtained the highest accuracy rate of 90%.
Wu et al. [21] have employed the hyperspectral imaging technique to detect Pieris rapae larvae on
cabbage leaves, and acquired classification accuracy above 96%. Thus, these studies indicated that the
hyperspectral imaging technique has great potential for detecting pest infestation.

The main purpose of this study was to detect early striped stem-borer infestation in rice
and identify degrees of infestation based on a visible/near-infrared hyperspectral imaging system.
The specific objectives were to: (1) establish back-propagation neural network (BPNN) models to
identify healthy rice samples and samples infested to different degrees; (2) select characteristic
wavelengths by successive projection analysis (SPA); (3) extract textural features based on the gray-level
co-occurrence matrix (GLCM); (4) improve detection performance by combining characteristic
wavelengths and texture features.

2. Materials and Methods

2.1. Rice Samples Preparation

A total of 114 rice plants (Y Liangyou689, non-glutinous rice) were grown in an outdoor
environment under insect-proof screen in Zhejiang University, Hangzhou, China. Eggs of the striped
stem-borer were bought from the Shennong Biotechnology Company, Hangzhou, China, and were
hatched on a moistened filter paper in a petri dish at a temperature of 28–30 ◦C and under illumination
of 3000 lux for 10 h. When the rice was at the tillering stage, one first-instar striped stem-borer larva
was placed on the rice after 2 h of starvation [22]; 69 rice plants were inoculated as the experimental
group; and 45 rice plants were kept as the control group without inoculation.

The hyperspectral images of control and infested rice plants were acquired every two days from
22 July 2016 (two days after infestation) to 30 July. The acquisition terminated on the eleventh day
after infestation because the symptoms of top yellowing and stem-rotting lesions were already serious
enough for there to be no need for detection by hyperspectral technology. The degrees of infestation
(DI) were divided into DI1, DI2, DI3, DI4, DI5 according to the infested days, as shown in Figure 1; and
the control group with healthy rice plants was referred as DI0. DI1 referred to the samples infested for
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two days, DI2 referred to the samples infested for 4 days, and so on. The number of infested samples
on the last day decreased to 44 because of the loss caused by aggravated infestation. Thus, a total
365 samples (the number of DI0, DI1, DI 2, DI3, DI4, DI5 were 45, 69, 69, 69, 69, and 44 respectively)
were acquired in this study.
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Figure 1. Samples of six degrees of infestation: (a) DI0; (b) DI1; (c) DI2; (d) DI3; (e) DI4; (f) DI5.

2.2. Hyperspectral Imaging System and Image Acquisition

2.2.1. Hyperspectral Imaging System

The visible/near-infrared hyperspectral imaging system, with 512 bands in the spectral ranges
of 380–1030 nm, includes an imaging spectrograph (ImSpectorV10E; Spectral Imaging Ltd., Oulu,
Finland); a 672 × 512 CCD camera (C8484-05, Hamamatsu Photonics, Hamamatsu, Japan); a camera
lens (OLES23; Specim, Spectral Imaging Ltd., Oulu, Finland); two 150 W tungsten halogen lamps
(Fiber-Lite DC950 Illuminator; Dolan Jenner Industries Inc., Boxborough, MA, USA) placed on both
sides of the camera at a 45◦ angle; and a conveyer belt driven by a stepping motor (IRCP0076,
Isuzu OpticsCrop, Zhubei, Taiwan). The system is controlled by a computer with Spectral Image-V10E
software (Isuzu Optics Corp, Zhubei, Taiwan).

2.2.2. Image Acquisition and Calibration

Before image acquisition, the parameters of the hyperspectral imaging system should be adjusted
to acquire a clear and non-distorted image. The height between the samples and the lens was 35 cm;
the conveyer belt’s moving speed was 3.00 mm/s; and the exposure time of the camera was 0.08 s.
The sample was placed flat on the conveyer when collecting the image. To reduce noise and avoid
the influence of dark current, the raw hyperspectral image should be calibrated according to the
following formula:

Ic =
Iraw − Idark

Iwhite − Idark
(1)

where the Ic is the calibrated hyperspectral image; Iraw is the raw hyperspectral image; Idark is the dark
reference image with 0% reflectance; and Iwhite is the white reference image with 99.9% reflectance.
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2.3. Spectral Information Extraction

The region of interest (ROI) was predefined as the stalk region of rice in the image. As each pixel
in the hyperspectral image corresponds to a spectral curve in full bands, the spectrum of all pixels in
the ROI was averaged as representative of the sample. The samples were divided into a calibration set
and a validation set by the Kennard–Stone (KS) algorithm [23] in a ratio of 2:1. There were 243 samples
in the calibration set and 122 samples in the prediction set.

2.4. Texture Feature Extraction

Textural features have been utilized to reflect a plant’s physical characteristics such as firmness,
color and roughness, which are related to the spatial arrangement of pixel intensity in an image. SSB
infestation would influence not only the spectral characteristic but also the textural features of rice stalk.
The gray-level co-occurrence matrix (GLCM) [24], as one of the most commonly used textural features
in hyperspectral imaging, is defined as the relative frequency of occurrence of pixel pairs in a certain
distance (D) and direction (θ) [25]. Eight descriptors of GLCM were chosen in this study, including
mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. Mean
is the average grey level in the chosen image. Variance reflects the grey-level standard deviation.
Homogeneity measures the closeness of the distribution of elements in the GLCM to the GLCM
diagonal. Contrast is a measure of the degree of spread of the grey levels or the average grey-level
difference between neighboring pixels. Dissimilarity is similar to contrast, but increases linearly as
the difference between two pixels increases. Entropy measures the degree of disorder in an image.
Second moment measures the textural uniformity or pixel-pair repetitions. Correlation is a measure of
grey-level linear dependencies in the image [26,27].

Each band in a hyperspectral image corresponds to a gray-scale image, and one hyperspectral
image contains 512 images. The textural features set will be huge and difficult to calculate if GLCM
features are extracted based on full bands. Thus, principal component analysis (PCA) was employed
to transform hundreds of images into principal component (PC) images, and the textural features were
extracted based on the first few PC images that contained enough valid information. The extraction
of spectral and textural features from hyperspectral images was performed on ENVI 4.6 (ITT, Visual
Information Solutions, Boulder, CO, USA).

2.5. Data Analysis

2.5.1. Characteristic Wavelength Selection

The hyperspectral data of each sample contains 512 variables in a full band. The redundancy
and collinearity of the huge dataset would inevitably disturb the detection accuracy. A selection of
characteristic wavelengths which have the most influence on the degree of infestation is essential in
order to reduce the data dimensions and improve the detecting efficiency.

The successive projection algorithm (SPA) was employed in this study to choose the characteristic
wavelengths. SPA is a common and effective method for reducing the variables of hyperspectral data,
which can minimize the collinearity effects of raw input [28,29]. SPA is a forward variable selection
method [30] by optimizing the multiple linear-regression (MLR) model, which includes two phases.

Phase 1 is to project the input X (N × K) matrix, and generate K chains with M variables,
M = min(N − 1, K). This process includes six steps: Step 1 is to initialize zi with xk, where i is the
iteration counter, and initialize xi

j with xj, where j = 1, . . . , k. Step 2 is to calculate the matrix P of

projection onto the orthogonal subspace to zi. Step 3 is to calculate the projected vector xi+1
j . Step 4 is

to determine the index jmax of the largest projected vector and store the index. Step 5 is to initialize
zi+1 with xi+1

jmax. Step 6 is to return to Step 2 and start another iteration if i < M.
Phase 2 is to choose the best variable subset from the candidate subsets extracted from the K

chains according to the minimum root mean square error (RMSE) obtained by applying the MLR
model to the validation set [31].
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2.5.2. Chemometrics Algorithm

To identify degrees of infestation, the chemometrics algorithm needs to be employed as a classifier
in order to accept the extracted information as input. The BPNN is a multi-layer feed-forward neural
network with great capacity for non-linear mapping, and has been applied in hyperspectral imaging
analysis in many studies [32–34]. The basic BPNN consists of an input layer, a hidden layer and
an output layer. The connection between layers depends on the nodes of each layer. There are three
main steps to train the BPNN model, including feed-forward computation, errors back-propagation,
and weights updates [35]. Feed-forward computation aims to calculate and transmit the value of nodes
in the order from the input layer to the output layer. Errors back-propagation aims to calculate the
errors between the output and the reference and transmit the errors back successively. The weights
are then updated until the error meets the target error or the training times reach the requirements.
After comparing multiple network structures with different parameters, the optimal parameters of the
number of nodes, the learning rate, the target error and the training times were set as 5, 0.6, 1 × 10−5,
and 1000, respectively. Identification accuracy and run time were employed to evaluate the BPNN
performance with different datasets. The SPA and BPNN algorithms were executed on Matlab R2011b
(The Math Works, Natick, MA, USA).

3. Results

3.1. Spectra Features

The head and end ranges of wavebands contain a large proportion of noise. Therefore, the first
82 bands and the last 22 bands were removed to improve the signal-noise ratio. Spectra in the range of
480–1000 nm were pre-processed by Savitzky–Golay smoothing before analysis. The average spectra of
each degree are shown in Figure 2. It was found that the general trends of six curves were similar.
Significant differences of reflectance were observed in the range of 530–700 nm and 750–940 nm.
The differences between the first three degrees were smaller than the differences between the last
three degrees, which could be explained by the fact that damage symptoms of the samples in the first
four days were mild and the stem structures were not destroyed too seriously. In the visible range of
570–700 nm, the reflectance was higher with the increase of infestation severity. This was because of the
destruction of chlorophyll located in the chloroplast of the rice stem’s cortex cell [36]. In the near-infrared
range of 750–1000 nm, the reflectance of DI0 was higher than that of the infested samples. The more
severe the sample was infested, the lower the reflectance. The reduction of reflectance with the increase
of severity was mainly due to the destruction of stem structure, which led to photon scattering [37].
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As illustrated in Figure 2, the reflectance of DI1 and DI2 was lower than that of DI0 in the
range of 570–700 nm, and the reflectance of DI1 and DI2 was higher than that of DI0 in the range of
750–1000 nm. This phenomenon may be explained by the compensation effect while pest infestation
was in the incipient stage. In the early stage of striped stem-borer infestation, rice can generate a series
of compensating responses to the injury, such as increasing the photosynthesis rate of healthy leaves,
translocating photoassimilates from the damaged tillers to healthy tillers, and increasing productive
tiller numbers [38,39]. But if the SSB cannot be controlled in a timely way, the compensating responses
will not counteract the damage that SSB causes to rice, leading to serious yield loss.

3.2. Qualitative Analysis by PCA

PCA was employed in this study to investigate qualitatively the clustering trend of the samples
based on full spectra. PCA can orthogonally transform the original possibly correlated variables into
more uncorrelated variables that display the internal structure of the data [40]. The first principal
component explained the largest variance, and the explained variables of the following PCs decreased
successively. Thus, the first few PCs usually explain the most variances. In this study, PC1, PC2, and
PC3 totally explained 98.3% of the variables, which were chosen to investigate the distribution pattern.

The three-dimensional scores’ scatter plot is displayed in Figure 3. In general, there was an obvious
separation trend between the first four degrees and the last two degrees. The samples of the first four
degrees were closely distributed while the samples of the last two degrees had a scattered distribution.
The overlaps were serious between different degrees, but the samples of the first three degrees were
seldom confused with the samples of the last two degrees. These phenomena indicated that the spectral
characteristics would evidently change after DI3, and the chemometric method is necessary to identify
accurately the degree of infestation.
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3.3. Identification Results Based on Full Spectra

Full spectra were used as input to the BPNN model in order to identify different degrees of
infestation. The results are given in Table 1. The overall accuracy was satisfactory, with classification
accuracy over 90% for both the calibration and prediction sets. The classification accuracy of each
degree was over 90% for both the calibration and prediction sets, except for DI0. The detection accuracy
of DI1 was higher than DI0 but lower than DI2, DI3, DI4 and DI5. The main errors were attributed to
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the misclassification of the adjacent degree. A total of 9 samples and 6 samples were confused between
DI0 and DI1 in the calibration and prediction sets, respectively.

Table 1. Detection accuracy of six infestation degrees by the BPNN model based on full spectra.

Model Actual
Value

Calibration Set Prediction Set

DI 10 DI1 DI2 DI3 DI4 DI5 Accuracy DI0 DI1 DI2 DI3 DI4 DI5 Accuracy

BPNN

DI0 23 6 0 0 1 0 76.67% 9 5 0 0 1 0 60%
DI1 3 43 0 0 0 0 93.48% 1 22 0 0 0 0 95.65%
DI2 0 0 46 0 0 0 100% 0 0 23 0 0 0 100%
DI3 1 0 0 44 0 1 95.65% 0 0 0 22 0 1 95.65%
DI4 0 0 0 0 46 0 100% 0 0 0 0 23 0 100%
DI5 0 0 0 0 0 29 100% 0 0 0 0 0 15 100%

Total 95.06% 93.44%
1 Degree of infestation.

It can be concluded from the results that the spectra combined with the BPNN algorithm was
effective in identifying the degree of SSB infestation. Furthermore, early infestation was comparatively
difficult to identify, which might because few changes of spectral characteristics occurred in this degree.

3.4. Characteristic Wavelengths Selection

Hyperspectral images with hundreds of variables will result in information collinearity and
redundancy, and slow the calculation efficiency. Thus, selecting the most informative variables will
reduce the variables, obviously, and hence simplify the analysis. SPA was implemented in this study
and selected a total of 17 variables (481, 497, 505, 532, 539, 564, 588, 638, 655, 681, 696, 762, 830, 958,
979, 998, and 1000 nm) from the entire 490 variables. The selected wavelengths are shown in Figure 4.
The number of variables has decreased by more than 96%, which can simplify the detection models
and improve the calculation efficiency.
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As shown in Figure 4b, there were 11 wavelengths in the visible range and 6 wavelengths in
the near-infrared range. The characteristic wavelengths in the visible range were mainly due to the
alteration of photosynthetic pigments; for example, 532 nm was related to xanthophyll and 696 nm
was largely sensitive to variation in chlorophyll content [41,42]. Furthermore, the characteristic
wavelengths in the near-infrared range had a close relationship with the water content and internal
structure of the rice [36]. These were correlated with destruction caused by the SSB, further indicating
that characteristic wavelengths selected by SPA were meaningful in this study.
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3.5. Identification Results Based on Characteristic Wavelengths

The results of the BPNN model based on characteristic wavelengths are shown in Table 2. On the
whole, the overall accuracy of both calibration and prediction sets slightly decreased compared with
the model based on full spectra. A better performance was achieved for detecting DI0. The results
of each degree were promising, as accuracy was all beyond 90% except for DI1. The accuracy of DI0
and DI1 was lower than the rest of the degrees. Samples in DI2 and DI3, as well as in DI4 and DI5,
were more easily confused with each other. However, misclassification between DI3 and DI4 occurred
rarely, which was consistent with the clustering trend in the PCA analysis. These results indicated that
the selection of characteristic wavelengths by SPA was effective at both maintaining performance and
reducing variables. The spectral characteristics of the samples in adjacent degrees was similar, and this
would increase the difficulty in identifying the degree of infestation accurately.

Table 2. Detection accuracy of infestation degrees by the BPNN model based on characteristic
wavelengths.

Model Actual
Value

Calibration Set Prediction Set

DI 10 DI1 DI2 DI3 DI4 DI5 Accuracy DI0 DI1 DI2 DI3 DI4 DI5 Accuracy

BPNN

DI0 24 2 1 0 3 0 80% 13 0 1 0 1 0 86.67%
DI1 5 40 0 0 1 0 86.96% 4 18 0 0 1 0 78.26%
DI2 0 0 45 1 0 0 97.83% 0 0 22 1 0 0 95.65%
DI3 0 0 1 44 0 1 95.65% 0 0 0 22 0 1 95.65%
DI4 0 1 0 0 44 1 95.65% 0 0 0 0 22 1 95.65%
DI5 0 0 0 0 1 28 96.55% 0 0 0 0 1 14 93.33%

Total 92.59% 90.98%
1 Degree of infestation.

3.6. Identification Results Based on Textural Features

The hyperspectral image contains 512 gray-scale images according to the dimension of
wavelengths, and it would be better to compress these into fewer images. Therefore, PCA was
performed on the ROI hyperspectral image to extract the most informative PC images. The PC1 and
PC2 images comprised a total 93.42% of the eigenvalues, and the rest of the PC images contained more
noise than information, which would disturb the detection. Thus, only the PC1 and PC2 images were
retained to extract the GLCM features. There were a total of 8 features for each image including mean,
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation; thus, a new
features set was formed for 16 features of each sample, as shown in Figure 5. Multiple linear-regression
analysis was executed to inspect the relationship between textural features and infestation degrees.
The multiple correlation coefficient R was 0.811 and the coefficient of determination R2 was 0.658,
which meant the prediction was satisfactory. These demonstrated that the GLCM features contained
useful information, which could be helpful for identification of SSB infestation.

The new dataset was used as input for the BPNN, and the results are shown in Table 3.
The identification accuracy of the DI0 and DI4 and DI5 was all over 80% in the prediction set, while
the accuracy of the DI1-DI3 was relatively low. Furthermore, the rice samples in medium infestation
degrees were similar with respect to the textural features, and hence had a greater possibility of being
confused with each other. However, the overall results proved that the GLCM features were worthy of
further exploration combined with spectral data.
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Table 3. Detection accuracy of infestation degrees by the BPNN model based on the GLCM features.

Model Actual
Value

Calibration Set Prediction Set

DI 10 DI1 DI2 DI3 DI4 DI5 Accuracy DI0 DI1 DI2 DI3 DI4 DI5 Accuracy

BPNN

DI0 30 0 0 0 0 0 100% 15 0 0 0 0 0 100%
DI1 9 25 3 5 3 1 54.35% 3 12 2 3 3 0 52.17%
DI2 0 1 32 10 1 2 69.57% 0 0 16 4 1 2 69.57%
DI3 0 5 10 26 2 3 56.52% 0 2 6 14 0 1 60.87%
DI4 0 0 2 1 38 5 82.61% 0 0 1 0 19 3 82.61%
DI5 0 0 0 4 2 23 79.31% 0 0 0 2 0 13 86.67%

Total 71.60% 72.95%
1 Degree of infestation.

3.7. Identification Results Based on Data Fusion

The fusion of spectral data and textural features has been explored by many studies into food
quality and plant-disease detection based on hyperspectral imaging technology [43–45]. Data fusion
can be performed at three levels: pixel-level fusion, feature-level fusion, and decision-level fusion [46].
Data fusion at the feature level means extracting a feature from different data sets and fuses statistical
approaches such as arithmetic combinations and filters [47]. This study adopted feature-level fusion
to fuse the characteristic wavelengths with textural features. Spectral and textural features were also
normalized in the same dimension before fusion.

The results of the BPNN model using data fusion are shown in Table 4. The identification results of
both calibration and prediction sets were excellent, with classification accuracy over 95%. Meanwhile,
the performance in detecting each infestation degree was satisfactory, with classification accuracy over
95%, except for DI1. The cause of this error was misclassification with DI0, which was consistent with
the phenomenon discussed in the above sections.

Table 4. Detection accuracy of infestation degrees by the BPNN model based on data fusion.

Model Actual
Value

Calibration Set Prediction Set

DI 10 DI1 DI2 DI3 DI4 DI5 Accuracy DI0 DI1 DI2 DI3 DI4 DI5 Accuracy

BPNN

DI0 29 1 0 0 0 0 100% 15 0 0 0 0 0 100%
DI1 4 42 0 0 0 0 82.61% 4 19 0 0 0 0 82.61%
DI2 0 1 45 0 0 0 95.65% 0 1 22 0 0 0 95.65%
DI3 0 0 1 44 1 0 100% 0 0 0 23 0 0 100%
DI4 0 1 0 2 43 0 95.65% 0 0 0 1 22 0 95.65%
DI5 0 0 0 0 1 28 100% 0 0 0 0 0 15 100%

Total 95.06% 95.10%
1 Degree of infestation.
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3.8. Comparision of BPNN Models Based on Different Datesets

In this study there were four data sets—including full spectra, characteristic wavelengths, textural
features and data fusion—as input for the BPNN model to detect different degrees of SSB infestation.
The total accuracy of the BPNN models based on full spectra and characteristic wavelengths was higher
than models based on textural features. This indicated that the spectral features contributed more to
the identification of infestation than the textural features. The accuracy of the BPNN models based
on characteristic wavelengths decreased in comparison with the BPNN models based on full spectra,
which might be connected with the loss of certain useful information after extracting 17 wavebands
from the full 408 wavebands. The BPNN models based on data fusion acquired the highest total
accuracy among the four data sets, which could not only remedy the deficiency of the set of individual
characteristic wavelengths or textural features, but also improve the calculation efficiency, as the
run time decreased by about 90% compared with models based on the full spectra set in Table 5.
The accuracy of individual degrees was all elevated by the fusion of characteristic wavelengths and
textural feature; even the accuracy of DI1 exceeded 80%. These results indicate that the spectral and
textural features were complementary in internal and external aspects, which could reflect integrated
changes of plant characteristics. The fusion of spectral and textural features could take full advantage
of hyperspectral imaging technology, and was effective at detecting SSB infestation and identifying
different degrees of it.

Table 5. Run time of the BPNN models based on different data sets.

Data Set Run Time

Full spectra 16.91s
Characteristic wavelength 3.86 s

Texture features 1.64 s
Data fusion 1.80 s

4. Conclusions

This study explored the feasibility of using a visible/near-infrared hyperspectral imaging
system to detect early SSB infestation and identify degrees of infestation in rice. We selected
17 characteristic wavelengths by SPA from full spectral data, and extracted 8 GLCM features from the
PC images transformed from hyperspectral images. BPNN models were established using different
data sets, including full spectra, characteristic wavelengths, textural features and features fusion.
The BPNN model based on feature fusion acquired the best results, with overall accuracy over 95%.
The identification accuracy of each infestation degree was over 95%, except for DI1, which was also
improved compared to models using characteristic wavelengths and textural features alone. The run
time decreased significantly as a result of variables selection. DI1 was easily confused with DI0, which
increased the difficulty of the early detection of SSB infestation. In total, these results proved that the
fusion of spectral and textural features from hyperspectral images combined with BPNN was feasible
for identifying degrees of SSB infestation in rice. In future studies, we will develop more stable and
universal models with more rice cultivars and more species of pests for laboratory-based detection.
Field-based research will also be conducted on the basis of this laboratory-based research in order to
expand the application of hyperspectral imaging combined with chemometrics in the field. Small and
portable pest-detection equipment will be developed based on future work.
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