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Abstract: The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method
that can provide unique insights into the hydrological properties of groundwater. The Cu coil
sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity,
low fabrication complexity and low cost. The tuned configuration was traditionally used for the
MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow
bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad
bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases.
Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises
in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor,
regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems,
we propose a matching network consisting of an LC broadband filter in parallel with a matching
capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical
parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated,
and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR).
Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized
equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/ (Hz)'/? @ 2 kHz
and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve
the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the
strong electromagnetic interference environment. Finally, a field experiment is performed with the
CSMN to show a valid measurement of the signals of an MRS instrument system.

Keywords: magnetic resonance sounding; coil sensor; LC filter

1. Introduction

Compared to other geophysical methods, the use of MRS technology can directly determine
the water content of the subsurface [1-3]. The method has become a competitive approach for
non-invasive investigations of groundwater resources in recent years [4]. The basic principle of
this method is that the transmitting loop is energized for a certain time T by a pulse of alternating
current Ij to stimulate a precession of the protons around the geomagnetic field. When the pulse
is terminated, the protons produce a free induction decay (FID) signal with a fixed bandwidth,
which depends on the pulse moment g = Iy x T and can be detected by the pickup loop. The FID
signal envelope is characterized by Ey(q) and T»*(g), which are the initial amplitude and the average
relaxation time of the signal, respectively [5]. After fitting the Ey(g) and T,*(q) values using the
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processed FID signal, the water content and pore size of the rock could be determined via the inversion
process [6]. MRS is a large-scale method, with the investigated volume approximated by a cube of
1.5 x d, where 100 < d < 150 m is the side of a square loop [7]. To date, the MRS technology has
been successfully applied in searching for underground water resources in arid regions and detecting
seawater intrusion [8-12]. Therefore, it is of paramount importance to obtain reliable FID signals with
suitable receiving sensors for MRS applications.

Coil sensors are widely used in biomedical and geological survey instruments because of their
excellent sensitivity, low fabrication complexity, robustness and low cost [13-16]. To optimize the
coil sensor designs and improve the sensitivity, numerical methods have been developed [17-19].
An air-core induction magnetometer for detecting low-frequency fields was developed by optimizing
the minimum coil size based on a specific type of amplifier and a fixed cut-off frequency [17]. Lin et al.
designed a high-sensitivity cooled coil system (77 K) by optimizing the coil diameter and the conductor
thickness for ultra-low-field nuclear magnetic resonance in laboratory and field conditions [18,19].
Nevertheless, the high sensitivity coil must be combined with a matching circuit that can achieve
optimum performances for applications, especially in MRS, whose detection signal is on the order of
nanovolts (10~ V). The tuned design was initially used for the MRS coil sensor design because it can
provide additional sensitivity with narrower bandwidth; however, the FID signals may be distorted
through the tuned coil sensor because of the narrowband characteristics. The signal distortion is
not acceptable, and this design is therefore seldom used in MRS. In the case of the non-tuned design,
the sensor can obtain valid signals because of the broad bandwidth; however, the sensitivity is lower
than that of the tuned design. Moreover, the FID signals sampled by the broadband sensor can be
better suited for the post digital signal processing methods [20-22]. Lin et al. described a non-tuned
coil system for the MRS application that involved minimizing the preamplifier equivalent input noise
to improve the sensitivity [23]. However, the sensitivity of their MRS coil system is still lower than that
of the tuned design. None of the tuned and non-tuned configurations has the advantages of both high
sensitivity and broad bandwidth. Hence, our first goal is to propose a method to design a broadband
MRS coil sensor with high sensitivity.

In addition, the fact that low-frequency harmonics always cause preamplifier saturation in
developed areas, regardless of which configuration for the MRS coil sensor design is selected is a
serious problem. Although the uses of a notch filter and “figure-eight” shaped coil are effective
methods of suppressing environmental noise, including power harmonic noises [24,25], low-frequency
harmonics with large amplitude prevent additional applications of the above-described MRS technique.
Lin et al. proposed a real-time anti-saturation technology that provides a new method for obtaining
effective FID signals [26]. This method can inhibit the post-amplifier saturation distortion, but it cannot
solve the problem of preamplifier saturation. Therefore, a specific coil sensor with a novel technology
for MRS applications in strong electromagnetic noise environments should be developed.

To improve the sensitivity of the system and suppress the signal distortion, we designed
a matching network consisting of an LC broadband filter in parallel with a matching capacitor.
Based on the characteristics of the pickup coil, the matching capacitor is selected to increase the
gain in the passband of the filter and improve the sensitivity of the sensor system. The rest of this
paper is organized as follows: Section 2 analyses the characteristics of the tuned and non-tuned
coil sensors and the origins of the coil sensor nonlinear distortion and then introduces the design
method of the matching network of the CSMN. Section 3 presents the equivalent schematic of
the CSMN with noise sources. Section 4 evaluates the sensitivity of the CSMN system using
the Allan variance. In Section 5, the effectiveness of the method is verified by laboratory and
field experiments. Finally, Section 6 provides the conclusion of this study and recommendations
for future research.
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2. High-Performance CSMN

In this section, the advantages and disadvantages of the tuned and non-tuned configurations for
the coil sensor are described in detail. The origins of the nonlinear distortion of the traditional MRS

coil sensor are analysed. Finally, we introduce the design method of the matching network used for
the CSMN.

2.1. Characteristics of the Tuned and Non-Tuned Coil Sensors

The tuned and non-tuned configurations illustrated in Figure 1 are the most widespread
configurations used for the MRS coil sensor design. The schematic of the tuned design (Figure 1a)
consists of three parts (i.e., coil, tuned capacitor and preamplifier). We take the resonance frequency
2330 Hz as an example to perform simulation analysis; the relevant parameters are as follows:
L =0.8mH, Rs =4 (), C =5.8 uF and the gain of the preamplifier is 0 dB. The amplitude-frequency
characteristics of the tuned design are shown in the red curve (Figure 1c). The magnitude is 9.48 dB
at a resonance frequency of 2330 Hz. Therefore, this configuration has the advantages of high
sensitivity and the ability to maintain the signal-to-noise ratio (SNR) with the resonance of the tuned
capacitor and inductor. However, this configuration may lead to a distorted broadband FID signal.
The maximum bandwidth of the signal is 105 Hz when T,* is 30 ms [7]. To ensure that all FID signals
measured by the sensor are undistorted, the bandwidth of the sensor must be greater than 105 Hz.
Inaccurate values of the tuned capacitor and inductor cause the centre frequency offset error, thus,
we should leave adequate margins. Therefore, the bandwidth of the sensor is usually set to 200 Hz
or more. The tuned design is rarely used for the MRS sensor because its narrow-band is lower than
200 Hz. The non-tuned design (Figure 1b) has only two parts without the tuned capacitor C; its
amplitude-frequency characteristics are shown in Figure 1c (the blue curve), exhibiting a very flat full
frequency bandwidth and 0 dB magnitude. This configuration, which can measure valid FID signals
and facilitate the post digital signal processing because of the broad bandwidth, is currently the most
commonly used structure; however, its sensitivity is lower than that in the tuned case. The sensitivity
of a coil sensor directly determines the performance of an MRS instrument. In MRS applications,
increasing the sensor sensitivity enables the system to detect thinner or deeper located aquifers.
In addition, the preamplifier of the coil sensor using the tuned or non-tuned configurations may be
saturated in strong electromagnetic noise environments. The reasons for the preamplifier saturation
distortion will be analysed in the following section.
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Figure 1. Schematics of the coil sensors with tuned and non-tuned configurations. (a) The tuned
design; (b) The non-tuned design; (c¢) The amplitude-frequency characteristic curves of tuned and
non-tuned configurations.
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2.2. The Coil Sensor Nonlinear Distortion

The power harmonic noises generated by the power line or AC power grid are the most serious
interference sources in developed areas. Here, we show a group of power harmonic noises (Figure 2)
collected on a lawn of Changchun City by a 100 m x 100 m square coil that is directly connected to the
analogue-to-digital (A /D) acquisition card. As shown in Figure 2a, the amplitude of the harmonic
noises is so high that it reaches 180 mV, especially the low-frequency harmonics (the part surrounded
by the red circle in Figure 2b), whose amplitudes are hundreds of times greater than those of the other
high-frequency harmonics. The low-frequency harmonics with large amplitude is one of the main
reasons for the coil sensor nonlinear distortion.
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Figure 2. The power harmonic noise waveforms. (a) Time domain waveform; (b) Frequency
domain waveform.

Moreover, we find that the circuit structure of the traditional MRS data acquisition system with the
coil sensor (the part surrounded by the red dotted line in Figure 3) is another reason for the coil sensor
nonlinear distortion. As shown in Figure 3, the bandpass filter after the preamplifier is ineffective
because the distortion of the coil sensor has already occurred.

The coil sensor
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Figure 3. The traditional MRS data acquisition system.

2.3. Design of the Matching Network

To improve the sensitivity of the broadband coil sensor and suppress the low-frequency harmonics,
we propose a new circuit structure of the MRS data acquisition system, as shown in Figure 4. The
CSMN (the part is surrounded by the red dotted line in Figure 4) is designed by adding an LC filter
with a matching capacitor between the pickup coil and the preamplifier compared with the traditional
broadband non-tuned coil sensor in an MRS instrument (Figure 3). The matching capacitor connected
in parallel with an LC filter (the blue part in Figure 4) composes the matching network as the core of
the new sensor.



Sensors 2017, 17, 2463 50f 16

The coil sensor
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Figure 4. The new MRS data acquisition system.

We consider an LC filter with a bandwidth of 1500 Hz and a centre frequency of 2330 Hz as an
example to introduce the matching network’s design method, which includes the three following steps:

(1) The topology of the LC bandpass filter

To effectively suppress the low-frequency harmonics, the gain of the LC filter at 500 Hz is less than
—30 dB, and the gain at 100 Hz is less than —50 dB. In addition, to simplify design and reduce cost,
we use the topology of 7-type 3-order LC passive bandpass filter, as shown in Figure 5. (Note that other
circuit structures can also be selected, such as T-type 5-order filter, as long as the design indicators can
be met.)

Cz L2
_“_/WY\ 7Y
C Ls|Cst
p— p— :V

§RL '

v

Figure 5. 7t type 3 order LC passive bandpass filter.

(2) The approximate function and the calculation of the parameters of the filter

To avoid FID distortion, we choose the Butterworth function, which has the advantage of
relative flatness in the passband. As mentioned above, the selected bandwidth BW = 1500 Hz
and centre frequency Fy = 2330 Hz of the LC filter leads to the —3 dB low cutoff frequency and
high cutoff frequency of Fi, = Fy — BW/2 = 1580 Hz and Fyg = Fy + BW/2 = 3080 Hz, respectively.
The relative centre frequency and the quality factor can be calculated as Fy, = (FL x Fyy) 1/2 = 2206 Hz
and Q = Fy, /BW = 147, respectively. From Table 1, we can find the normalized values
K; =K3 =K =1, and K; = 2. In addition, to reduce the thermal noise of the preamplifier, we choose
Ry =R =50 Q). According to the normalized values and the empirical formula, we calculate the
value of each parameter as follows: L; = Lz = R/(2nKQFp,) = 2.46 mH, L, = QRK,/(2nFy) = 10.6 mH,
Cy =C3 = QK/(27nRFy) =2.12 yF and Cp = 1/(2nRQK,Fpy,) = 0.491 pF.

Table 1. Normalized values of 7 type 3 order LC filter.

1 Bessel Butterworth Chebyshev

Ky 0.337 1.000 1.633
Ky 0.971 2.000 1.436
K3 2.203 1.000 1.633

The amplitude-frequency characteristic curve of the LC filter designed is shown in Figure 6
(the red curve). The test results show that the LC filter can meet the design indicators with a gain at
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500 Hz of —53.5 dB, a gain at 100 Hz of —95.4 dB, a bandwidth of 1580 Hz and a very flat passband.
However, the gain within passband of the filter of —6.02 dB is problematic because the FID signal
will be attenuated by half through the filter, thereby increasing the difficulty of signal detection
(even reducing the detection depth). The solution for this attenuation problem will be introduced in

the next step.

)
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Figure 6. The amplitude-frequency characteristic curves of the filter. (a) The LC filter; (b) The LC filter
connected with the pickup coil; (¢) The LC filter connecting in parallel with a matching capacitor and

the pickup coil.

(3) Selection of the matching capacitor

As an example, we take a 100 m x 100 m square pickup coil with one turn, which can be equivalent
to a series circuit of an inductor (L = 0.8 mH) and a resistor (Rs = 4 (3). The amplitude-frequency
characteristic curve of the LC filter connected with the pickup coil is shown in Figure 6b (the blue curve).
It can be seen that the curve is obviously distorted and the gain in the passband of the filter is attenuated.

To solve the above problem, our idea is to connect a matching capacitor in parallel with the LC
filter to cancel the influence of the pickup coil on the post-stage circuit. The new passive filter connected
to the matching capacitor and the pickup coil is shown in Figure 7 (the matching capacitor is located
within the red dotted line). We find that the effect of the pickup coil on the amplitude-frequency
characteristic can be cancelled when the reactance of the equivalent inductor and the matching
capacitor is zero at the centre frequency (Fy = 2330 Hz). The value of the matching capacitor C can be

calculated as: 1

C=——— —58uF 1)
(27Fg)? x L
R C|:2 L,
o I|_rwv\ 7
| 1
- dSehde LelCos 1y,
VAR Rl
it v

Figure 7. The circuit structure of the LC bandpass filter connecting a matching capacitor.

The amplitude-frequency characteristic curve of the new passive filter connected to the matching
capacitor and the pickup coil is shown in Figure 6 (the green curve). The gain of the new filter at
500 Hz and at 100 Hz is —40 dB and —73.8 dB, respectively, and the gain in the passband is 4.6 dB,
which eliminates the attenuation. The bandwidth of the filter has changed, and the —3 dB low and
high cutoff frequencies are 1730 Hz and 2760 Hz, respectively. In fact, the bandwidth (BW = 1030 Hz)
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is adequate for detecting the FID signals in most areas. Moreover, according to actual needs, we can
design a larger or smaller bandwidth based on the above design method.

Note that the matching network is sensitive to the parameters of the pickup coil. The equivalent
inductance and equivalent resistance of the pickup coil have a great influence on the performance
of the matching network. We analyse the characteristics of the matching network with different
inductances and different resistances via Monte Carlo simulation. The Monte Carlo analysis results of
the equivalent inductance (Figure 8) show that only the amplitude-frequency characteristics of the
filter with L = 0.8 mH (the green curve) is correct, whereas the results of other values are distorted.
The Monte Carlo analysis results of the equivalent resistance (Figure 9) show that the gain in the
passband increases as the resistance reduces.

l O T T T T T T

Magnitude (dB)

1 L5 2 2.5 3 35 4 45
Frequency (kHz)

L=0.2mH — 1=0.5mH
—— L=0.8mH —— L=1.5mH
— L=2mH

Figure 8. Monte Carlo analysis of the equivalent inductance of the pickup coil.
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Figure 9. Monte Carlo analysis of the equivalent resistance of the pickup coil.

Therefore, we designed a new coil sensor with a matching network. To make effective use of
the CSMN, the value of the matching capacitor by using formula 1 for different equivalent parameter
of the pickup coil should be adjusted.

3. Equivalent Circuit of the CSMN with Noise Sources

In this section, equivalent circuits of the CSMN with the noise source are analysed. Figure 10
presents the schematic diagrams of the CSMN with noise sources.

3.1. The Proposed CSMN

As shown in Figure 10, the CSMN consists of three stages, namely, the air core coil, a matching
network and a low noise preamplifier. The air core coil is used to effectively detect the FID signal,
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which is indicated by the variations of the magnetic field. A low noise preamplifier is designed to
achieve a high gain and a high noise rejection ratio. Easy gain control is realized by changing the value
of two resistors R; and Ry, which can amplify the low amplitude signal to a few nV. The matching
network consisting of an LC filter and a matching capacitor is shown in Figure 4. As mentioned above,
the matching network circuit design makes it possible to detect all FID signals within the passband
filter bandwidth without distortion.

Matching

network
Zz Enr2
AMAN-E

|
|
|
|
:
|
| Zy Z
|
|
|
|
|
|
|

Ent1  Ent

——— e ————— e ——————————

Figure 10. The proposed CSMN circuits with equivalent noise sources.

Considering the gain G(f) of the matching network, the noise floor of the setup is used to estimate
the CSMN SNR, such that:

SNR(f) = es(f)G(f)/en(f) @

where ¢,(f) is the output signal induced in the coil, and e, (f) denotes the total equivalent voltage noise
at the input of the preamplifier. This total noise is calculated from all the individual noise sources
depicted in Figure 10 and consists of three components (i.e., input voltage noise e,;, input current
noise 7,;, and Nyquist noise e; = (4kTRyo;)!/? of all resistors in Figure 10) [17,27]. We assume these three
noise components to be uncorrelated. All these noise contributions can be combined to obtain e, as
expressed below.

en = \J€2, + (1 Zi)* + (4kTRyor)? 3)

where Z; is the impedance of all resistors that input current noise flows through, T is the environmental
temperature of resistance Ryot, and k is the Boltzmann factor (1.38 - 1072 W-s/ K). ey; and i,; represent
the input voltage noise and the input current noise of the preamplifier, respectively.

In summary, the values for the individual components of the CSMN with the matching network
can be calculated as:

iniZi = \/(im‘Z)2 + (iniReq)zz (4)

Z = (((jwL + Rs)||Z1) + Z2) || Z3, 5)
1

Z =17 L T == 6
. 1

Zy = jwly + @Gy’ ()

Zs = Ry ||jcwls||—— ®

Req = R1||Ry, 9)

where w is the angular frequency, w = 27f.
The Nyquist noise ¢; produced by all resistors included can be obtained as:

2 2
Tn:ﬂme) o (VETR) 4 ((farreg) (10
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The above electrical parameters of the CSMN are analysed, respectively. The CSMN with low
input noise can be achieved by adopting an operational amplifier with reasonable input voltage noise
and input current noise.

3.2. Optimization for Electrical Specification of the Preamplifier

To optimize the CSMN, we investigated the noise e, contributions of the CSMN by using different
operational amplifiers. Two low noise operational amplifiers (i.e., INA163 and AD745) are adopted.
INA163, which is a low-noise, low-distortion instrumentation amplifier, has a very low input voltage
noise V, =1 nV/(Hz)!/2 @2 kHz and a relatively high input current noise I,, = 0.8 pA/ (Hz)'2 @2
kHz. Conversely, AD745, which is an ultralow-noise, high-speed preamplifier has a slightly higher
input voltage noise V,, = 2.9 nV/(Hz)!/? @ 2 kHz and a relatively lower input current noise I,, = 6.9
fA/(Hz)'/? @ 2 kHz than INA163. The two resistors R; and R; are set to 1 Q) and 100 (), respectively.
All other electrical parameters are set to the values calculated in Section 2, as shown in Table 2. The
total noise e, of the CSMN by using INA163 and AD745, respectively, are calculated, as shown in
Figure 11.

Table 2. Electrical parameters of the proposed CSMN.

Parameters L Rs C Ly Cq L, Cy Lj Cs Ry Ry R,
Value 0.8 4 58 246 212 106 0491 246 212 50 1 100

The unit of inductance (mH); the unit of capacitance (uF); the unit of resistance ((2).

Enmmm
o—Ni63

—
[e=)
T

10T PR

The total noise e, (nV/Hz"?)

|izenvEz2 |

—_
[w=)
=l

10° 10! 102 103 104
Frequency (Hz)

Figure 11. The total noises of two sensors calculated using AD745 and INA163.

The whole frequency bandwidth can be divided into two regions (i.e., 1/f and broadband
regions) [28,29]. In the 1/f region, the total noise exhibits the characteristics of a 1/f slope that
decreases as frequency increases and reaches the minimum value at the corner frequency. For AD745,
the corner frequency is 200 Hz, which is higher than that of IN163 (i.e., 100 Hz). The broadband region
corresponds to higher frequencies than the corner frequency, in which the total noise is flat and is the
mainly usable bandwidth of the MRS instrument system. In the broadband region, the total noise of
AD?745 is as low as 3.66 nV/(Hz)'/2, and IN163 produces a smaller noise (1.76 nV/ (Hz)!/2) than that
of AD745. Accordingly, IN163 is chosen as the preamplifier of the CSMN.

To measure the total noise e, of the CSMN, an inductor is designed and connected to a
resistor to simulate a pickup coil, whose equivalent inductance and resistance are 0.8 mH and
4 (), respectively. The CSMN is developed by adopting the matching network mentioned above
and the preamplifier IN163. The dynamic signal analyser 35670A is employed in the shielding room to
minimize interference outside the room. Figure 12 displays the results. The total noise ¢, in the 1/f
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region is very high. The 1/f noise sharply decreases with the increase in frequency until it reaches
20 Hz and then decreases gradually in the regions between 20 Hz and 100 Hz. The total noise e, tends
to be stable after the corner frequency 100 Hz and is as low as 1.78 nV/(Hz)'/2 in the broadband region.
The agreement between the experimental and theoretical calculated results shows the reliability of the
CSMN model with noise sources.

104 5

- Experiment '

= Theory'

103

—_
(==
o

10t

The total noise e, (nV/Hz!?)

0 : I i b : SR ElE
10 10! 102 103 10*

Frequency (Hz)

Figure 12. The total noise e, of the proposed CSMN.

We evaluate the bandwidth noise of the CSMN at one stacking time according to the total noise

floor measured above. The value equivalent to the square root of the integration of the noise floor in
3 dB bandwidth is described as follows:

€n_band = /Benz (11)

where B is the bandwidth. The minimum bandwidth of the system is 200 Hz, which allows one to
obtain the valid FID signals [7,30]. Consequently, the value equivalent of the bandwidth noise is
calculated as 25.2 nV, which represents the amplitude of this sensor system noise when the bandwidth
is 200 Hz. We assume that this noise is white noise with a Gaussian distribution that reduces to (N,)/2
times when averaged N, times (i.e., N, stacking times). In addition, we utilize the Allan variance to
describe the optimum averaging time of the proposed sensor system. The sensitivity of the CSMN can
be redefined and predicted based on the Allan variance and the SNR in the next section.

4. Sensitivity of the CSMN

Signal averaging is usually an effective method for improving the sensitivity. In terms of a
perfectly stable system, the signal could be averaged infinitely in theory, and infinite averaging should
lead to extremely sensitive measurements. However, all real systems are stable only for a limited time
because of temperature drifts, etc. Consequently, every real system has an optimum averaging time
that can be described using the Allan variance [31,32].

We utilize the Allan variance to analyse the stability of the new MSR instrument with the CSMN
leading to a detection limit (i.e., the sensitivity) for the FID signal. For a formal description of the
stability of our MRS instrument, we assume a recorded set of N time-series data x. The N elements of
the time-series data can be divided into M subsets containing k elements, where M = N /k. Next, each of
these subgroups is averaged, and if i denotes the subgroup number, then the subgroup average value
A;(k) can be calculated:

k
Al(k) = 2 x(i*l)kerli:l""'M (12)
m=1

| =
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The Allan variance is given by:
1 M

T = 531 (A0~ Ak (13

To obtain the optimum averaging time of our new system by Allan variance, 1000 continuous
tests (N = 1000) and 1 second acquisition intervals are used. In Figure 13, the black curve is the Allan
variance plot as a function of the integration time. The minimum of the Allan variance representing
the optimum integration time of 90 s is determined by the intersection of the grey dashed line and the
red dashed line.

10 : ;

107}

Allan variance
LA

10° ; : .
10 10! 10
Time (8)

Figure 13. Allan variance of the new system as a function of integration time. The grey and red dashed
lines are used to obtain the maximum available averaging time of 90 s.

The Allan variance is proportional to the sensitivity measurement of a given system;
therefore, we can use the Allan variance plot and SNR to redefine and predict the sensitivity of
the MRS instrument. First, the broadband noise e, ,,,; of the sensor is calculated or measured over
the effective bandwidth. Second, we use the Allan variance to determine the optimum averaging
time N,. Third, the new broadband noise is reduced to e, 3/ (Na)'/? after N, averaging times.
Finally, given that the signal is valid in MRS application when the SNR is greater than 2, the sensitivity
of a sensor is calculated as follows:

€s = Zenfbtmd/ V' Na (14)

In addition, the higher sensitivity of the CSMN system with the LC filter can be obtained according
to the formula (2) with the gain G (4.6 dB) in the passband of the matching network.

€s CSMN = Zen_band/ vV Na /Gr (15)
Therefore, the sensitivity measurement is 3.12 nV when the optimum averaging number and the
broadband noise are 90 and 25.2 nV, respectively.
5. Experiment

In this section, the performance of the CSMN that could inhibit the coil sensor nonlinear distortion
and the high sensitivity is first verified in the laboratory. Finally, a field experiment is performed to
show the valid measurement of the FID signals with the CSMN.

5.1. Experiment for Suppressing the Signal Distortion

To verify the performance of the CSMN system, a comparative experiment between the new
MRS data acquisition system (Figure 4) based on the CSMN and the traditional MRS data acquisition
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system (Figure 3) was conducted in laboratory under the same conditions. The technical indices of
the systems are as follows. (1) The new MRS system: the LC filter bandwidth is 1030 Hz, the gain
within the passband is 4.6 dB, the preamplifier (INA163) gain is 40 dB, the active bandpass filter has a
bandwidth of 1000 Hz, and the overall magnification of the new system is 4000. (2) The traditional
system: the overall magnification of the system is 4000, with a preamplifier INA163) gain of 40 dB
and an active bandpass filter with bandwidth of 1000 Hz.

Both systems were tested in the laboratory according to the schematic diagram shown in Figure 14.
A programmable signal source (AFG3021B, Tektronix, Johnston, OH, USA) is used to generate an
exponential decay signal with Eg = 500 mV, T>* = 150 ms and f; = 2330 Hz. The programmable
signal source is connected to a 2 x 10° times voltage attenuator. Hence, a simulated FID signal with
a 250 nV amplitude is produced in the signal coil (the blue one in Figure 14). In addition, a signal
generator (HDG2102B, Qingdao Hantek Electronic Co., Qingdao, China) is connected to the noise coil
(the red coil in Figure 14) to produce a low-frequency power harmonic noise with fixed amplitude
at 500 Hz. The pickup coil (the green coil in Figure 14) is closely placed in parallel with the signal
coil and the noise coil. As the three coils have the same configuration, an integrated signal that
contains a decaying FID signal with Ey = 250 nV, T>* = 150 ms, f; = 2330 Hz and a low-frequency
power harmonic noise of 500 Hz can be induced. The inductance of every coil is 0.8 mH, and the
pickup coil is connected in series with a 4 () resistor to simulate a 100 m x 100 m receiving coil with
one turn. The programmable signal source is set to external trigger mode, and the signal generator is
set to continuous operation mode. As shown in Figure 14, the specific working process is as follows:
the controller triggers the programmable signal source to generate the simulated signal through the
synchronous circuit; meanwhile, the A/D converter is activated and acquires data.

 Traditional |
| system [ ] AD
. - converter
Noise Passive filter J 4
Magnetic  coil system
core Controller
_ Signal $
Signal generator coil Synchronous
(Generating circuit
harmonic noise)
Voltage Programmable
Pickup attenuator signal source
coil

Figure 14. Schematic diagram of the test in the laboratory.

We adjust the signal generator so that the amplitude of the 500 Hz noise is 10 mV and then
perform the comparative experiment between the new system and the traditional system using the
method described above. Both groups are stacked 90 times. Similarly, the amplitude of the noise is
adjusted to 150 mV, 200 mV and 300 mV for the experiments.

The key parameters Ey and T,* are extracted after the experiments, as shown in Table 3.
The traditional system and the new system can obtain the effective Eg and T,* when the amplitude of
the noise is 10 mV or 150 mV. In addition, the signal accuracy sampled by the new system is higher
than that of the traditional system because of the lower background noise and higher sensitivity of the
new coil sensor system.

However, the traditional system cannot obtain the effective Eg and T* when the amplitudes of
the noise are 200 mV and 300 mV. In contrast, the new system can still extract the effective Eg and T,*
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at the noise amplitude of 200 mV and 300 mV. When the noise amplitude is 200 mV, the data after the
preamplifiers are sampled, as shown in Figure 15. The time-domain signal (Figure 15a) sampled with
the traditional system is distorted because of preamplifier saturation. To obtain a better view of the
saturation region, the signal from 10 to 30 ms in Figure 15a is enlarged in Figure 15b In contrast,
the time-domain signal sampled with the new system is valid without preamplifier saturation,
as shown in Figure 15c.

Table 3. The experimental results in laboratory.

Traditional System New System
Noise Amplitude
Ey (nV) T,* (ms) Ey (nV) T,* (ms)
10 mV 245.2 155.6 249.3 152.6
150 mV 243.8 154.3 2485 153.8
200 mV * * 246.9 155.2
300 mV * * 246.3 153.4

Remark: The * means that the valid key parameters can’t been extracted because of the preamplifier saturation.

=5
;g 50 50 100 150 200 250
(]
=
20 (b)
=
g .5 .
< 10 15 20 25 30
0.1 . :
0 (©)

0 50 100 150 200 250
Time (ms)

Figure 15. Time-domain signals after the preamplifier. (a) Signal sampled by using the
traditional system; (b) Enlarged saturation signal from 10 to 30 ms in Figure 15a; (c) Signal sampled by
using the new system with the CSMN.

When the noise amplitude is greater than a certain value, the preamplifier of the traditional
system will saturate. This value is determined by the maximum output voltage of the preamplifier
Up and the preamplifier gain A. The value can be calculated as Vimax = Ug/A. The maximum output
voltage of the preamplifier is 4.76 V, and the preamplifier gain is 30 times. Therefore, when the noise
amplitude is greater than 158.7 mV, the traditional system cannot obtain the effective data with the
signal distortion, whereas the new system can obtain valid data because the CSMN can effectively
suppress the noise.

5.2. Experiment for the Sensitivity of the CSMN

To verify the sensitivity performance of the CSMN system, another experiment on the CSMN
system was conducted in the shielding room. In this experiment, we used the same technical indices
and schematic diagram (Figure 14) as those of the experiment described above. The programmable
signal source is adjusted to generate an exponential decay signal with Eg = 30 mV, T>* = 150 ms and
fr =2330 Hz. In addition, a simulated FID signal with a 3 nV amplitude is produced in the signal coil
through the 1 x 107 times voltage attenuator. In this experiment, we did not use the signal generator.
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Similarly, as these two coils have the same configuration, an FID signal with Eg =3 nV, T* = 150 ms,
and f; = 2330 Hz can be induced by the pickup coil. The CSMN system was tested in the same manner
as before, and the number of stacking is 90 times.

The results obtained by the CSMN system after a digital bandpass filter and 90 stacks are shown
as Figure 16. The relaxation FID signal allows the signal to be observed in both the time (Figure 16a)
and frequency domains (Figure 16b) using the CSMN system. An envelope fitting curve with the
exponential decay is found (the red line in Figure 16a), and the fitting Ej is 3.5 nV. The agreement
between the experimental and theoretically calculated results shows that the CSMN system can
effectively detect the signal, provided its amplitude is greater than 3 nV.

> 6
-E 0 (a)
2 -6
<.‘::E 0 50 100 150 200 250
Time (ms)

24

£

<0 ; . A

2 000 2200 2330 2 600
Frequency (Hz)

Figure 16. The results for the CSMN system. (a) Time domain signals (the blue curves) and envelope
fitting curve (the red one); (b) Frequency domain signals.

5.3. Field Experiment

To further verify the performance of the CSMN system, a field experiment was conducted in a
suburb of Changchun city in China. A 100 m x 100 m square receiving coil with one turn is laid at a
field site near a brickyard that generates a variety of large amplitude noises. In addition, a borehole
exists near the field site, on which pumping tests were conducted. Ten different g values ranging from
0.2 to 4.5. As were employed, and 90 time stacks were used in the experiment.

The detailed drilling data shows that three aquifers can be observed at a depth of 13-25 m,
37.5-39 m and 45-50 m. The water content of the three aquifers is 5.0%, and the water content of the
other underground media layers is 1%. Based on this drilling data, 10 values of Eg vs. g marked by
red stars and the corresponding fitting curve (the red curve) are given by the forward calculation in
Figure 17. The values of Ej extracted from the data sampled by the CSMN system are marked by a
green circle and the corresponding fitting curve of Ej vs. g (the green one) in Figure 17. This fitting
curve of Eg vs. g is in good agreement with that of the forward calculation. The results of the field
experiment show the satisfactory performance of the designed CSMN in accurately measuring the FID
signals of an MRS system.

400

——Forward calculation

—_

/

% = —— ACSMN system
= 300+ . ?
g » / ™
3200+ /
E_ ]
Z 100} 1
0
0 | 2 3 4

Pulse moment (As)

Figure 17. Ej vs. g curves extracted by the forward calculation and the CSMN system.
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6. Conclusions and Prospects

For MRS applications, the proposed CSMN was designed to improve the sensitivity of the
system and prevent signal distortion by adding an LC filter with a matching capacitor between the
pickup coil and the preamplifier. The CSMN integrates the advantages of the tuned and non-tuned
configuration sensors. The basic working principle and design method of this CSMN were elaborated,
and a generalized electrical model was introduced. The schematic diagrams of the CSMN with
noise sources were analysed correspondingly. To minimize the noise floor and maximize the SNR,
the operational amplifier of the preamplifier was designed and optimized. To unify the capability
of the MRS system detecting the minimum signal, we provided a more rigorous definition of the
sensitivity of the MRS instrument using the Allan variance. Compared with the traditional system,
the results of the laboratory indicated that the proposed sensor can have a greater ability at suppressing
the low frequency noise with a higher sensitivity. Finally, a field experiment was performed
using a fabricated sensor to demonstrate the reliability of an MRS system based on the designed
matching network. Accordingly, the CSMN not only improves sensitivities of the MRS instrument but
also inhibits the signal distortion by suppressing power harmonic noises in the strong electromagnetic
interference environment. Moreover, the specifications of the sensor can be changed in accordance with
the requirements of the local MRS exploration on the basis of the described optimization procedures.
In our future work, the noise sources of the sensor (e.g., coloured noise in the developed areas) and a
denoising algorithm will be explored.
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