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Abstract: Precise azimuth-variant motion compensation (MOCO) is an essential and difficult
task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering
approaches, residual azimuth-variant motion errors are generally compensated through a set of
spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning
the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as
precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty
of robustness in declining, when strong motion errors are involved in the coarse-focused image.
In this case, in order to capture the complete motion blurring function within each image block,
both the block size and the overlapped part need necessary extension leading to degeneration of
efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm
(FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of
the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth
wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced
to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set
of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via
the back-projection integral. Then, the sub-aperture images are straightforwardly fused together
in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform
(CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the
efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the
proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate
the effectiveness and superiority of the proposal.

Keywords: synthetic aperture radar (SAR); motion compensation (MOCO); frequency domain fast
back-projection algorithm (FDFBPA); chirp-z transform (CZT)

1. Introduction

The atmospheric turbulence disturbs the ideal trajectory of aircraft during the whole process of
flight, and this causes not only serious blurring, but also geometric distortion of the synthetic aperture
radar (SAR) [1-3] imagery. Therefore, motion compensation (MOCO) [4-6] is an essential processing
procedure for airborne SAR imaging. For the efficiency and accuracy of MOCO, a high-precision
inertial navigation system (INS) is commonly mounted on the platform to record the real-time velocity
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and position information. Therefore, the MOCO accuracy prominently relies on the MOCO strategies.,
Effectively compensating the residual motion error is still a problem worth studying, especially for
millimeter-wave band SAR imagery.

As analyzed in [7], it is clear that the main difficulty of MOCO is sourced from the space-variance
of the motion error. The conventional two-step MOCO method [6] is proposed to compensate the
range-variant motion error, which is widely applied by embedding MOCO into the SAR algorithms [8].
However, the two-step MOCO method neglects the residual azimuth-variant motion errors, thus the
focusing performance decreases for SAR imagery with wide beam and high resolution, especially when
the atmospheric turbulence is severe. In order to solve this problem, several effective algorithms [9-15]
have been developed in the current literature, which compensate for the residual azimuth-variant
motion error in different ways. The sub-aperture topography- and aperture-dependent algorithm
(SATA) [10,11] and precise topography- and aperture-dependent motion compensation algorithm
(PTA) [13], are typical examples. Sliding sub-aperture processing is an essential tool in both of the
azimuth-variant MOCO strategies, which calculates the residual azimuth-variant motion error relative
to the center of each sub-aperture. A set of spatial filters are then established to remove the residual
motion errors. In SATA, the time-varying residual error within an azimuth-time sub-aperture is
approximated as a constant, and the residual motion errors are corrected in the Doppler domain under
a Doppler-to-angle map. On the other hand, PTA corrects the residual spatial-variant motion errors in
the image domain at a price of some efficiency losses. In PTA, the coarse-focused image is divided into
overlapping sub-blocks, and the residual motion error relative to every block center is compensated
for by a post-filtering strategy. Because of its high accuracy, PTA is one of the most widely used
algorithms for azimuth-variant MOCO in real airborne SAR imagery. In general, PTA performs well in
normal conditions, such as that when the motion errors are not very severe. However, a significant
problem arises in the case of strong motion errors, such as SAR imaging under unmanned aerial vehicle
(UAV) [16,17] platforms or serious atmospheric situations. In these cases, PTA would evidently expose
its shortcoming. Image domain post-filtering of PTA needs to segment the image into sub-blocks.
Because this strategy compensates the azimuth-variant motion error block-to-block, it confronts three
main problems when dealing with sever motion errors. Firstly, energy diffusion of point targets
is more severe in image domain, therefore, the sub-block size needs to be extended to make sure
that the whole diffused energy of each effective target point is included in either of the adjacent
sub-blocks. Otherwise, the target cannot be fully refocused with partial defocused energy in each
sub-block, together with ghost shadows after block stitching. Secondly, image domain post-filtering
assumes that azimuth-variant motion errors in one azimuth block are the same as the block center
point; this hypothesis is not consistent with strong motion errors. Therefore, the robustness of PTA
would evidently decrease. A solution is to extend the overlapping part between adjacent sub-blocks.
Thirdly, with the significant extension of sub-block size and overlapping ratio between the neighboring
sub-blocks for PTA post-filtering, the post-filtering strategy of PTA faces an increasing calculation
burden, which is approximately as complex as conventional the back-projection algorithm. Inevitably,
PTA has to make a balance between image quality reduction and increased calculation. The motivation
behind the current study is the desperate need for an imaging method with both high precision and
high efficiency for practical applications with strong motion errors.

Aiming to solve the PTA problems mentioned above, a frequency domain fast back-projection
algorithm (FDFBPA) is proposed in this paper. Instead of post-filtering for a sub-block in the image
domain, FDFBPA compensates the residual azimuth-variant motion errors by precisely calculating
the azimuth matched filtering (AMF) [15] function, and using the fast back-projection process in the
azimuth wavenumber domain. FDFBPA could be thought of as an extension of previous work [18,19],
to achieve an effective spatial-variant MOCO. In FDFBPA, a precise AMF function with motion errors
is derived. The spectrum is uniformly partitioned in the azimuth wavenumber domain and each
sub-aperture is back-projected to obtain a set of coarse resolution images. Then, sub-images are
fused in the azimuth wavenumber domain in order to achieve a full resolution image. Moreover,
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by introducing a linear Doppler approximation in the AMF, sub-aperture back-projection integral is
implemented by the fast chirp-Z transform (CZT) [20,21], yielding promising efficiency enhancement
for the algorithm. Compared with PTA, FDFBPA promises fully focused images with high efficiency
and robustness, and is suitable for real airborne SAR imagery.

We organized this paper as follows: Section 2 gives the geometry model and calculates the precise
expression of signal with residual azimuth-variant motion error in azimuth wavenumber domain,
and illustrates the shortcoming of post-filtering algorithms; in Section 3, the principle of FDFBPA is
illustrated in detail; Section 4 shows a flowchart of the proposed FDFBPA and analyzes computation
burden; in Section 5, extensive experimental results with both simulated and real Ka-band airborne
SAR data are given; conclusions are drawn in the last section.

2. Signal Model and Conventional Post-Filtering Algorithms

Real SAR imaging geometry is given in Figure 1. The geometry is defined in a rectangular
system as O — XY Z, where O is the origin of coordinates and X, Y and Z indicate the long track
direction, cross track direction and height direction, respectively. In an ideal case, radar platform
travels along a straight line with a constant velocity V, shown as the solid line along the track. Because
of atmospheric turbulence, real trajectory is a curve shown as the dotted line across the track. During
the data acquisition process, a radar beam illuminates the ground with a squint angle ¢. Point C
denotes the scene center with the long track coordinate as x(, and the distance between O and C is
indicated as r. Symbol P stands for the target located on the scene center line O'C, which is parallel to

the trajectory. Distance between target P and scene center C is given by x. The echo expression from P
is given by [22]:

- —x0 — A2
s(1,X) =¢p .rect<T TAt> -rect(X)sz) -exp [jZﬂ(chtJr Oc(TzAt)>

p

@

where, ¢, corresponds to the complex valued scattering amplitude of the point target, T denotes the
range fast-time, T, denotes the pulse duration width, L denotes the synthetic aperture length, f is the
center frequency, « is the signal chirp rate, At = 2R, /c stands for the round-way propagation time
between target P and radar and ¢ denotes the speed of light. Symbol rect(-) denotes the rectangular
window function and X represents the along track position of flight. Ignoring the effects of motion
error, the slant range R, is expressed as:

Ry(X,x,1r) = \/(rcos 9+ (X —x9—x)? 2)

Figure 1. Real SAR imaging geometry.
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Actually, the real slant range deviates from the ideal R, for non-ignorable motion error, which is
shown as R, in Figure 1. The deviation blurred slant range R, contains four main components: ideal
R;, range- and azimuth-invariant motion error Ar, range-variant motion error Ar, and azimuth-variant
motion error Ar,. In order to compensate for motion errors during the imaging process, a two-step
MOCO [6] method is widely used. It achieves range-dependent MOCO for raw data, where the
first step is bulk MOCO to compensate, and the second step is range-variant MOCO to compensate.
However, the remaining azimuth-variant motion error is a considerable factor, especially for SAR
systems with a wide aperture in azimuth. It is not difficult to understand azimuth-variant motion error.
In Figure 1, it is shown that R, and R,, are ideal and real slant range from aircraft to point P, while
R, and R/, are ideal and real slant range from aircraft to scene center C. The two-step MOCO method
compensates for the whole scene with motion error of AR’ = R/, — R},. However, with respect to
point P, the actual motion error is AR = R, — R,. It is obvious that AR # AR’ because of the different
projection directions of aircraft deviation, which is the cause of azimuth-variant motion errors. We can
calculate the azimuth-variant motion error Ar, by Are = AR’ — AR.

Ignoring the envelope terms of Equation (1), after processing by range cell migration correction
(RCMC) [3] and two-step MOCO, the expression of range compressed signal is expressed by [14]:

St(X, X, 1’) = eXp{_jKrc [Rn (X/ X, 1’) + ATE(X/ X, 1’)]} (3)

where K;. = 47t/A, A denotes the wavelength and Ar; is the residual azimuth-variant motion error.
We omitted the detailed derivation procedures of RCMC, two-step MOCO and range compression
from (1) to (3), which are illustrated in [3]. The azimuth wavenumber domain signal would be obtained
through an azimuth Fourier transform to (3), which is given by:

S¢(Kx, x,7) = [s¢(X, x,r) - exp(—jKiX)dX

= [ exp{—jKrc[Ru(X, x,7) + Are(X, x,7)] — jK X }dX @

where K, denotes the azimuth wavenumber spectrum, with —K,; /2 < K, < K, /2 and K, denotes the
spectrum range.

For simplification of the derivation, the principle of the stationary phase (POSP) [3] is used to
approximately solve the integration operation in Equation (4). During calculation of the stationary
phase point in (4), it is noted that because the ideal relationship between Doppler frequency and
instantaneous radar slight angle is corrupted by the residual azimuth-variant motion errors, the
azimuth wavenumber spectrum is also distorted. In order to acquire the precise time—frequency
relationship, residual azimuth-variant motion errors need to be taken into consideration. Therefore,
precise stationary phase point X* would be solved by the equation as follows [15]:

O(Ry +Are) | Ky

X tr =0 5)

For the propose of deducing an explicit expression of X*, R, in (2) is expanded into fourth order
polynomial shown as follows:

cos? ¢(1 — 4sin? ¢)
a 8r3

cos? @
2r

cos? @sin ¢
2r2

Rn(x,x,r)m_%(x—xwr (X —x)>+ (X —x)° (X-x)* ()

Due to the fact that low-order components usually dominate the residual motion error function,
the azimuth-variant motion error Ar, is expressed by the Taylor expansion as follows:

Are(X,x) ~ ag+ a1 (X — x) 4+ a(X — x)? + a3(X — x)® + a5(X — x)* (7)
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where g - - - a4 represent the polynomial fitting parameters. It is important to mention that Ar, is
related to range 7, and that ag - - - a4 are also range dependent. We omit range variable r here in order
to simplify the expression. According to previous research in [15], the method of series reversion
(MSR) [23] can be utilized to obtain a precise expression of the stationary phase point X*, which is
given by:

X* = p1y+pay’ +psy’ +x ®)
where )
COS
p1= f(P +2ap )
3 cos? @ sin
p2 = 72;’; . a3 (10)
cos? ¢(1 — 4sin?
py = — 9 — ?) + 4ay (11)
K X
Y=g —mt+ (12)
rc

The stationary phase point X* takes azimuth-variant motion errors into consideration, and thus,
a precise expression in the azimuth wavenumber domain is obtained as follows:

S¢(Ky, x,7) = exp{—jKye[Rn (X", x,7) + Are(X*)] — jK X"} (13)

According to the analyses shown above, one can note that the azimuth-shift invariance of azimuth
wavenumber spectrum is destroyed in the presence of the residual azimuth-variant phase error. The
conventional azimuth-matched filtering function would fail to focus the image completely in this
case. As developed in [13], PTA, which compensates for the residual azimuth-variant phase error
using a post-filtering strategy, is an effective approach to deal with the problem. Its main focusing
flow is commonly divided into two stages, one is coarse focusing stage processed by conventional
azimuth matched filtering, while the other is image refocusing stage achieved by sliding window
compensation. However, in order to ensure the effectiveness of the post-filtering strategy, it needs
to make a careful selection of the window length and overlapping range. In order to illustrate these
constraints, explanatory drawings are shown in Figure 2. Figure 2a gives the refocusing condition of
window length with respect to a single point. Points A, B and C are three defocusing points for the
residual motion errors, the energy diverging width is denoted by W, and Ly denotes the window
length. It is clearly shown that Point A is able to be fully refocused because its spreading energy with
blur is entirely contained within the block. However, it is not effective for points B and C which have
truncated parts within neighboring blocks. Besides residual blur, the truncation would also emerge as
ghosts in the image. Based on this analysis, we give the sub-image length restrain for PTA as follows:

Ly > WE (14)

For the propose of analyzing the relationship between window length and the overlapping range,
Figure 2b also illustrates a case of the failure of sliding parameters for point array, Ls denotes the
sliding range and Lo = Ly — Lg denotes the overlapped length. In this case, the overlapped length
between the adjacent blocks is not long enough, so that points A and C both satisfy the refocusing
condition, while point B, which is not fully contained in neither of the adjacent windows, and the
refocused result of point B would be broken. In order to address this issue, the size of a block should
be extended accordingly, which gives a successful case of sliding parameters for the point array in
Figure 2c. In Figure 2c, the overlapped range between the adjacent blocks increases, indicating that
point B could be focused successfully. In general, the relationship between block size and overlapping
length is regulated as follows:

Ls < Lw —Wg (15)
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It is important to mention that Equations (14) and (15) represent the relation of block size and
overlapping parameters in a limited condition. A significant problem arises in the case of strong motion
errors, such as SAR imaging under UAV platforms or serious atmospheric situations. The energy
of a scatter in azimuth direction would be seriously diverged. In these cases, PTA would evidently
expose its shortcoming, so the size of sub-block in PTA post-filtering should be extended dramatically,
while the overlapping range between the neighboring blocks needs to be raised in order to satisfy the
refocusing condition, which causes serious computational loads. Therefore, PTA has to make a balance
between imaging quality reduction and inevitable increase in calculations. The motivation behind
the current study is the desperate need for an imaging method with both high precision and high
efficiency for practical applications with strong motion errors.

Point A Point B Point C
m "
: | 5
| W, ] | W,

i

M/@\/\« W Wﬁ\dwm
v X X
(@)

Point A Point B Point C Point N

(b)

Figure 2. Illustration of sliding parameters for the post-filtering strategy: (a) Window length restriction
for single point; (b) A failure case of sliding parameters for point array; (c) A successful case of sliding
parameters for point array.

3. Frequency Domain Fast Back-Projection Algorithm (FDFBPA)

As is illustrated in Section 2, PTA removes the residual azimuth-variant motion errors by the
sliding window post-filtering strategy. However, the data segmentation in the image domain seems
not to be a wise choice when the residual motion error is severe. Because image domain blocking
has to face the dilemma of balancing imaging quality and efficiency, this strategy is inapplicable for
practical situations. In this section, we aim at providing a method for solving this problem in theory.
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A. Precise Frequency Domain Back-Projection Algorithm (FDBPA)

In order to ensure compensation precision, a point-to-point strategy is preferred rather than the
post-filtering block-to-block compensation method. FDBPA is more robust in dealing with strong
motion errors, and is thought of as a precise point-to-point imaging method. This method is based
on the precise wavenumber spectrum expression deduced in Equation (14), while each point in
the imaging grid would be well-focused by adapting a precise back-projection integral. We briefly
introduced the principle of FDBPA at the beginning of this section. Before the imaging process,
a full resolution imaging grid is used for the FDBPA imaging process. We pick out one point P with
coordinate (xp,7), and to P, the echo in azimuth wavenumber spectrum is expressed as S I (Kx, xp,7)
which is shown in (13); so the precise AMF function phase @, (K, xp, ) is calculated by:

Dy (Ky, xp, 7) = Kre [Ru (X*, xp,7) 4+ Are(X)] + Ko X* (16)

Coherent accumulation of point P is realized by the back-projection integration in the wavenumber
domain as follows:

AKy /2

S(er) = [ /; S (Ksy ) - oxp [0 (K, 5, 7) 4K a7)
where, AK, denotes the azimuth wavenumber spectrum width. It needs to calculate the corresponding
AMEF for a point-to-point back-projection accumulation for the other points. This FDFBPA process
avoids image domain post-filtering, and provides high robustness even with serious motion errors.
FDBPA achieves coherent accumulation in a point-by-point manner, and thus, its efficiency is low.
In terms of this issue, several studies [24,25] have discussed how to increase the computational
efficiency of the back-projection integral without focal quality loss.

B. Acceleration to FDBPA Process

According to our previous work in [18], the back-projection integral can be accelerated by the
sub-aperture coarse imaging and coherent spectrum combination, and we find that the sub-aperture
processing strategy is also applicable for acceleration. In this subsection, we investigate a further
acceleration to the precise FDBPA process, and it is named FDFBPA. Below , we introduce the theory
of acceleration method.

After RCMC processing, two-step MOCO and range compression to the raw data, the signal
expression is shown in Equation (3), and after azimuth Fourier transform, the signal is then transformed
to azimuth wavenumber domain shown in Equation (4). The procedure above is similar to FDBPA. The
difference is that we can then uniformly partition the signal in the azimuth wavenumber domain based
on the theory of sub-aperture strategy. In each sub-aperture procedure, a uniform coarse resolution
imaging grid is constructed, which has the coordinate (x,;, ) with —x,/2 < x5, < x,/2, where
x, denotes the scene range in azimuth. Assuming the total sub-aperture number is U, as for the uth
sub-aperture, the azimuth wavenumber spectrum center is Ky, and wavenumber spectrum length is
AKy,. For a target P at (xp, r), the sub-aperture coherent accumulation operation is given by [18]:

_ (KatdKu/2 g

Sulxsun?) = [ Ak ra Sy [X (xp), xp, 7] - exp{jPm[X* (Xsup), Xsup, 1] }dKx
O ey

~ Jin ks exp{jKe [ X (xoup) — X* (xp)] Ky (18)
~ éizleAIfx?//zz exp []Kx (xsub - xp)] dKy
where, S, (x4, 1) denotes the coarse imaging result of the uth sub-aperture. It is clear in Equation (18)
that one needs to calculate the coarse resolution image point-by-point with the sub-aperture
back-projection integral. Sub-aperture processing reduces the computational burden at some level.
Observing the AMF phase expression in Equation (16), @y, (Kx, xp, r) is a function with respect to the
azimuth wavenumber K. In each sub-aperture integral, since the wavenumber spectrum length AKy,
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is short,®,, (Kx, Xp, r) can be approximated into a linear function with respect to K. The approximation
expression of Equation (16) is given by:

Dy (er Xp, 7’) ~ay (xp> (Ky — Ky) + O (Kxur Xp, 7’) 19)

where notation u still denotes the uth sub-aperture and a, denotes the slope of AMF phase of the uth
sub-aperture. The sub-aperture back-projection integration in Equation (18) is transformed as:

KXMJ’_AKX[I /2

Su(Xgyp, 1) = / Sf(Kx, Xp, r) - expljau(Xsup, 1) Ky] - exp[jPm (Kxu, Xsup, 7)]dKy — (20)

Kyu—AKya /2
One can note that AMF phase slope a, is slowly varying along azimuth coordinate point

Xsup, because of the presence of azimuth-variant motion error. Therefore, a, is able to be linearly

approximated with respect to the variable x;,;, and Equation (20) can be written as follows:

Su(xsubr r) = Sul<xsubrr) : exp[jq)m(Kxu, Xsubs 1’)] (21)

where, S, (xs,p, 7) is the sub-aperture back-projection integral formula given by:

*Kyu+AKxq /2

Sut (Xsup, 1) = / S¢ (Kx, xp,7) - expjbu(r) x5 Kx] - expjbuo () Ky]dKx (22)

Kyu—AKya/2
where, b, is the monomial coefficient of a,, with respect to xg,;, and b, is a constant term. It can be
found that the integral formula in Equation (22) is regarded as a scaling Fourier transform with scale
a factor of —b,, and initial phase of —b,,g, so the integral operation in Equation (22) can be substituted
by the chirp-Z transform, which can enhance the computation efficiency in implementation of the
sub-aperture back-projection integral. The scale factor can be straightforwardly obtained by twice
differential operations on @, (Ky, X5, 7).

0 d
bu(”) B axsuh m

Dy (Kx/ xsubrr) (23)

where operational symbol 0 denotes the differential operator. Then, chirp-Z transform can be
introduced in each sub-aperture integral to obtain a set of coarse resolution images. Residual
azimuth-variant motion error for each point coordinate is completely compensated for in these
sub-aperture back-projection integrals. Substituting Equations (22) into (21), a series of sub-aperture
coarse resolution images are obtained.

The next question is how to combine these coarse resolution images into a full resolution image.
There is an effective method fusing these sub-images in the azimuth wavenumber domain. As to the uth
sub-image S, (x4, 1), transforming the sub-aperture images back to the azimuth wavenumber domain.

Xa/2
S“f(Kx' 7’) = / 5 Su(xsuh/ 1’) exp(_ijxsub)dxsub (24)

—xq/
Substitute the expression in (18) into (24), the azimuth wavenumber spectrum of sub-image is
expressed as:

Suf(Ky, 1) = rect(KxAKKx”> -exp(—jKxxp) (25)
xa

It is shown in Equation (25) that the center of azimuth wavenumber spectrum is Ky;. One can
obtain the full spectrum by sequentially stitching the sub-aperture azimuth wavenumber spectrum.
Therefore, with the full wavenumber spectrum, the fine resolution image is obtained by an inverse
Fourier transform to the full azimuth wavenumber spectrum.

AKy/2 U

S(X,r) = e Y Sup(Kx,7) - exp(jKy - X)dKy (26)
x u=1
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In terms of clarify, the FDFBPA procedure is represented in Figure 3. It is clear that FDFBPA is

designed to remove the residual azimuth-variant motion error directly from the azimuth wavenumber
sub-aperture back-projection integral strategy, and the integral operations in the coarse resolution
imaging process are substituted by a series of CZT operations yielding both enhanced robustness
and efficiency.

Azimuth
wavenum ber/ / / ------ / / /
spectrum =
CZTJ\ CZTJL
7

Coarse /
resolution f(—/—/ / f/—F+—F—F = eeecee

Image /
IXFFT :3/ FFT / S FFT FFT
- 7 /

Spectrum L. 7
stitching L /

IFFT
Fine
resolution
Image

Figure 3. Schematic diagram of frequency domain back-projection algorithm (FDFBPA).

4. Algorithm Description and Analysis

A. Algorithm Flow Description

According to the theoretical analysis in Section 3, we develop a complete SAR imaging flowchart

with FDFBPA given in Figure 4. The whole procedure is divided into two main stages, regular
processing stage and FDFBPA imaging stage. Some key steps are described as follows:

(a)

(b)

(©)

(d)

©

Range compression. This step is achieved by range-matched filtering. After range compression,
one-dimensional imaging is completed.

Coarse MOCO. This step is achieved by two-step MOCO. MOCO I is bulk compensation which
compensates the range- and azimuth-invariant motion errors, and MOCO II compensates the
residual range-variant motion error. The residual azimuth-variant motion errors would be
significant enough to induce distinctive azimuth blurring. According to the principle of two-step
MOCO, MOCO I is processed before RCMC and MOCO II after RCMC. Two-step MOCO can
also be replaced by some improved MOCO strategies to obtain a better performance in range cell
migration correction [26,27].

RCMC. This step is the core of regular processing stage, which is used to correct the range curve
in the data. The most commonly applied RCMC schemes include range-Doppler algorithm
(RDA), chirp scaling algorithm (CSA) and Omega-k algorithm.

Azimuth blocking in wavenumber domain. After Range compression, RCMC and two-step
MOCO, we obtain the azimuth wavenumber domain data by applying an azimuth fast Fourier
transform (FFT). The proposed azimuth wavenumber sub-aperture processing strategy can then
be introduced. The data need to be partitioned uniformly in the azimuth wavenumber domain,
so that we can process the data in azimuth sub-block for the next procedure.

Precise azimuth matched filtering function calculation. In this step, we first build a coarse imaging
grid, and calculate a series of precise wavenumber spectrum relative to each point in coarse
imaging grid by (13), where the coefficients ay - - - a4 are obtained by fourth order polynomial
fitting. Then the precise AMF function is the conjugation of calculated precise wavenumber
spectrum and the precise AMF function phase expression as shown in Equation (10).



Sensors 2017, 17, 2454 10 of 18

(f)  Scaling factor calculation and azimuth CZT. This step is the core of sub-aperture processing by
which we achieve the coarse resolution imaging in this step. Based on the AMF function phase
expression, we calculate a scaling factor by Equation (23), then CZT is performed to get a coarse
resolution image in each azimuth sub-block.

(g) Spectrum stitching. This step aims at fusing the coarse resolution images into full resolution,
which is achieved by azimuth wavenumber spectrum stitching. Specifically, the coarse resolution
images are transformed into the wavenumber domain by the azimuth FFT in Equation (24), then
a full-resolution and well-focused image is obtained by Equation (26).

Regular Processing FDEBPA Imaging
C SAR Raw Data ) _.1( Azimuth Sub-block )
v
¢ Calculate Matched Filter
Range Compression Function
v 2
MOCO | Calculate Scaling Factor
7 v
RCMC Azimuth CZT
7 v
-—(Coarse Resolution Image)
MOCO I T
¢ Azimuth FFT
Azimuth FFT v
i Spectrum Stitching
Azimuth Wavenumber 2
Domain Data Azimuth IFFT
v ¥
Azimuth Blocking C Well-Focused Image )

Figure 4. Flowchart of the measured data processing based on FDFBPA.

B. Computation Analysis

In this section, we consider the calculation burden of the FDFBPA imaging stage, especially the
times necessary for the FFT and inverse Fourier transform (IFFT) operations. As shown in Figure 4,
with respect to data, the whole azimuth point number is N. We define the coarse resolution imaging
grid point number as N,, so the compensation step is N/ N,. For analysis convenience, the azimuth
sub-aperture length is also defined as N;, so the number of azimuth sub-aperture is N/N,. According
to the FDFBPA imaging stage of Figure 4, three steps including CTZ, FFT and IFFT operations need to
be counted. There are N/ N, times N,-point CZT, N/N, times N,-point FFT and one N-point IFFT,
where one N;-point CZT operation includes two N,-point FFTs and one N,-point IFFT. It might be
beneficial to account for the computational burden by calculating floating-point operations (FLOPs).
One N,-point FFT /IFFT operation contains 5N, log, (N, ) FLOPs, so the total FLOP times is given by:

C =N/N;-(2+41)-5N,log,(Ns) + N/N; - 5N, log,(N,;) + 5N log,(N)

27
= % log,(N;) + 5N log,(N) 27)



Sensors 2017, 17, 2454 11 of 18

C. Constraint Condition Analysis

According to the computation analysis above, it is clear that the calculation burden will be reduced
with the increase of azimuth sub-aperture length N,, but N, cannot constantly increase to pursue
high computation efficiency. As illustrated in Section 2, the core of FDFBPA is based on a linearly
approximation of AMF phase ®,, in sub-aperture, so azimuth sub-aperture length N, is constrained
by the condition of this approximation. In most cases, the phase error is considered less than 7/16 to
ensure algorithm stability, so the restriction of N, is given by:

=

N

max ’q)m (Kxu - %Kﬂ) - q)m(Kxu) —ay (IE\IK“)

‘cpm (Kxu - ZNT@KH) — @y (Ks) — ay (—NKH)

=

" < % (28)

N

where VK, = n - %Ka and 7 is an integer with a range of nn € (—% +1,---, % - 1).

5. Simulated and Real Data Experiments
A. Experiments with Simulated Data

In order to validate the theory and analysis illustrated in the previous sections, we describe an
experiment performed with simulated Ka-band SAR data in this subsection. The main SAR system
parameters are shown in Table 1. In this experiment, two points are simulated in different squint angles
with trajectory deviations, which will cause azimuth-variant motion error significant enough to blur the
azimuth impulse response curve. The trajectory deviations are extracted from real-measured INS data
shown in Figure 5. The data contain 8192 pulses in azimuth direction. For the propose of comparing
the compensation performance, FDFBPA, PTA and two-step MOCO approaches are implemented to
focus the points. Due to the fact that the azimuth-variance of motion error in azimuth direction is
serious, the sub-aperture length is set as 16 points with 25% overlap. The azimuth impulse response
curve comparisons of FDFBPA, PTA and two-step MOCO are shown in Figure 6, where Figure 6a is at
0 degrees of squint angle, and Figure 6b is at 40 degrees. It is shown that azimuth-variant MOCO may
cause serious defocusing in azimuth direction, so two-step MOCO is blurred in the figures. PTA also
fails to refocus the points because the shortcomings of the post-filtering strategy; data blocking in the
image domain seriously disrupted the focusing performance. FDFBPA is able to refocus the points
well for comparison. In order to quantitatively evaluate the focused improvement of the proposed
algorithm compared with the other algorithms, three quantitative metrics are introduced to measure
the point impulse responses, which are peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR)
and impulse response width (IRW). The statistical results are shown in Table 2. We demonstrate that
the PSLR and ISLR of PTA are both large, because necessary extension is absent in the block length
and overlapping part. Furthermore, the inevitable split of energy in the image domain would cause
emergence of multiple peaks. In contrast, FDFBPA applies a blocking strategy in the frequency domain
so it performs in a robust manner in the face of strong motion errors.

Table 1. SAR System Parameters.

Parameter Value
Carrier frequency 35 GHz
Bandwidth 900 MHz
Center slant range 5000 m
Coherent Processing Interval 15s
Ideal velocity 70m/s

Pulse repetition frequency 5000 Hz
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Figure 5. Trajectory deviations for simulation.

B. Experiments with Real-Measured Data

In this subsection, two sets of comparison experiments are provided based on the processing
of measured data recorded by an experimental airborne Ka-band SAR system. The first experiment
aims at broad side operating modes. Some main SAR system parameters are shown in Table 1, where
the squint angle is less than two degrees with a resolution of 0.15 m in both range and azimuth.
The instantaneous position and motion parameters of the platform are measured by a high-accuracy
INS equipped on the platform, the azimuth-variant motion error during the data collection is severe
enough to cause defocusing of the image. A set of imaging results processed by the FDFBPA, 25%
overlapped PTA and two-step MOCO are shown in Figure 7. In these images, two typical areas with
obvious artificial structures are marked by yellow rectangles, which are amplified in Figures 8a,b for
comparison. The sub-block length for processing is 16 points. It is clear that there are ghost shadows
appearing in PTA results for the reason that the sub-aperture length is too short to meet the refocus
conditions in Equations (14) and (15). Furthermore, the defocusing of two-step MOCO results are also
significant because the residual azimuth-variant motion error remains.

oF

——FDFBPA
---PTA

—FDFBPA
---PTA
----- Two-step

N
o

Amplitude (dB)

Amplitude (dB)

. O .
o

02 0 02 04
Azimuth (m) Azimuth (m)

(a) (b)

Figure 6. Azimuth impulse response curve comparison of FDFBPA, 25% overlapped PTA and Two-step
MOCO: (a) 0 degree of squint angle; (b) 40 degrees of squint angle.

In order to check the azimuth point impulse response improvement of the FDFBPA algorithm,
two isolated point-like targets named point A and point B are extracted from Figure 7 by yellow circles
for azimuth point impulse response function comparison, and are shown in Figure 9a,b respectively.
Sidelobes of PTA and two-step MOCO are obviously higher than FDFBPA, the presence of high
sidelobes causes image ghosting and raises the floor noise of the SAR image. The quantitative analysis
results of the azimuth point spreading response functions of Figure 10 are listed in Table 3. It is
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evident that serious distortion and smearing occur in both PTA and two-step MOCO results, while
only the FDFBPA results provide a well-focused performance. From the comparison of the local
scene images and point target impulse responses, one can conclude that FDFBPA achieves significant
improvements in focusing data with strong motion errors. With the point-to-point correction precision
of azimuth-variant motion error phase terms, FDFBPA performs a more robust manner than PTA with
the image domain post-filtering strategy.

Table 2. Comparison of Quantification Statistics Results.

A i 0 Degree of Squint Angle 40 Degrees of Squint Angle
pproac
PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)
FDFBPA —12.4113 —10.5214 0.1313 —12.4936 —10.5719 0.1312
PTA —4.4790 —0.8512 0.1451 —2.3360 —2.7938 0.1489
Two—step —0.4803 —0.9381 0.2199 —1.8899 —3.3940 0.2000

(@) T ) ’ ©

Figure 7. Imaging result processed with different algorithms: (a) FDFBPA; (b) PTA; (c) Two-step MOCO.

In the second experimental set, the radar is working at a high squint angle of about 40 degrees
with a resolution of 0.15 m in both range and azimuth; some main system parameters are shown
in Table 1. The range and azimuth coupling is firstly removed by range walk correction (RWC)
processing, and we can regard the processed data as obtained in broad side mode. The precise azimuth
wavenumber spectrum needs to be recalculated considering the influence of RWC, which has been
previously worked out in [28], and will not be discussed here. According to the precise azimuth
wavenumber spectrum, a set of imaging results processed by the FDFBPA, 25% overlapped PTA and
two-step MOCO are shown in Figure 10, with sub-block length of 16 points. Two typical areas marked
by yellow rectangles are amplified for comparison and shown in Figure 11a,b. Furthermore, two
isolated point-like targets named points A and point B are extracted from Figure 10 by yellow circles
for azimuth point impulse response function comparison, which are shown in Figure 12a,b respectively.
Statistical indicators like PSLR, ISLR and IRW are used to numerically measure the impulse response
function performance (Table 4). Two-step MOCO can effectively remove the range-variant motion
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errors, but cannot correct the azimuth-variant phase terms, which is more significant in highly squinted
imaging modes. Therefore, the two-step result is severely blurred with error phases. PTA seems to
partly compensate for the defocusing by image domain post-filtering, however, the sub-block length
and overlapped part are not long enough to meet the refocusing condition. As a result, the PTA
results suffer from ghost shadows that would decrease imaging performance. FDFBPA performs the
SAR imaging process by a point-to-point strategy in the sub-aperture focusing stage, which provides
overwhelming precision and robust improvements in correcting strong motion errors.

(b)

Figure 8. Comparison of three algorithms in Scene 1 and Scene 2: (a) Comparison of Scene 1 (left to
right: FDFBPA, PTA and Two-step MOCO); (b) Comparison of Scene 2 (left to right: FDFBPA, PTA and
Two-step MOCO).

R ] O —FDFBPA .
5. "7 "PTA A \ | ---PTA
e Two-step~" _/ [ L L Two-step
g 5t
8100 S &
Z z
o 15+ o -
E E 10 ,-"r\'. A
520 5 P
g B |
-25 AS P
N ‘5
30+ P
204 \
-35 : SR
0.5 0 0.5 -0.5
Azimuth (m) Azimuth (m)

(@) (b)

Figure 9. Azimuth pulse response curve comparison of FDFBPA, PTA and Two-step MOCO. (a) Scatter
Point A; (b) Scatter Point B.

Table 3. Comparison of Quantification Statistics Results.

Point A Point B
Approach
PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)
FDFBPA —10.9869 —8.5942 0.1968 —9.3550 —6.1651 0.2531
PTA —8.5014 —5.6829 0.1968 —5.1406 —2.9050 0.2531

Two—step —4.8080 —4.3006 0.3937 —4.1109 —2.8496 0.2812
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(b) ©

Figure 10. Imaging result processed with different algorithms (a) FDFBPA; (b) PTA (c) Two-step MOCO.

(b)

Figure 11. Comparison of four algorithms in Scene 1 and Scene 2: (a) Comparison of Scene 1 (left to
right: FDFBPA, PTA and Two-step MOCO); (b) Comparison of Scene 2 (left to right: FDFBPA, PTA and
Two-step MOCO).
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Figure 12. Azimuth pulse response curve comparison of FDFBPA, PTA and Two-step MOCO: (a) Scatter

Point A; (b) Scatter Point B.

Table 4. Comparison of Quantification Statistics Results.

Point A Point B
Approach
PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB) IRW (m)
FDFBPA —9.9872 —7.4124 0.2152 —7.8962 —7.1813 0.2583
PTA —0.5440 3.9724 0.2439 —4.0268 —0.9475 0.2583
Two—step —3.0850 —2.3533 0.2870 —2.7590 —3.9529 0.3214

For the propose of testing the calculation improvement of FDFBPA compared with PTA, we record
the calculation time for the two algorithms under different sliding step factors. The sliding step here
means the interval between centers of adjacent sub-blocks for PTA, and also means the interval of
coarse resolution grid. According to the analysis in Section 3, we know that with the lengthening
of sliding step, block number of FDFBPA is increasing while the block number of PTA is decreasing
correspondingly. In order to get the experiment closer to the actual situation, sub-block length of PTA
is 64, and the overlapped part depending on the sliding step range block length is 16 points without
overlap. The computer platform is installed with Windows 7 64-bitoperating system, E5-2643@3.3GHz
CPU, 32-GBmemory and Matlab with version of R2015a. A block of 3072 x 16384 (range x azimuth)
points SAR data is used for test. The computation time comparison results are shown in Table 5.
It is shown that, with the help of CZT operation and without sub-aperture overlapping, FDFBPA
processes a much higher operation efficiency compared with PTA under short sliding steps. It is
worth to explaining that the computation time of PTA decreases with the increase of sliding steps for
the reduction of sub-block number. In contrast, the computation time of FDFBPA is slowly growing
with the increase of sliding step due to the fact that we approximately use CZT for sub-aperture fast
imaging, and the computation time mainly depends on the sub-aperture block number. However,
we cannot infinitely shorten the interval of coarse resolution grid for FDFBPA to pursue a higher
computational speed, because the sub-aperture length would be correspondingly extended so that the
phase linear approximation condition in Equation (28) would be destructed.

Table 5. Computation time comparison of FDFBPA and PTA under different sliding step.

Sliding Step (Points)
Approach
8 16 32
FDFBPA 159.58 s 192.75 s 243.67 s
PTA 1427.24 s 72541 s 423.05s
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6. Conclusions

Focusing on the precise azimuth-variant MOCO for airborne SAR, a frequency domain fast
back-projection algorithm named FDFBPA is proposed in this paper to deal with strong azimuth-variant
motion errors. Based on the analysis of image domain post-filtering strategy such as PTA, it is known
that PTA has to make a balance between reduction in imaging quality and increased calculations.
FDFBPA is designed with both high precision and high efficiency for imaging with strong motion errors.
FDFBPA disposes of the azimuth-variant motion errors by precise azimuth wavenumber spectrum
calculation. Moreover, with the utilization of the wavenumber domain sub-aperture processing
strategy and CZT operation, the efficiency of the algorithm is further improved. Simulated and
real-measured data experiments show that the proposed FDFBPA is more robust for imaging with
strong motion errors compared with PTA, and the efficiency of FDFBPA for processing real measured
data is also verified.
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