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Abstract: The temperature sensitivity of the free spectral range (FSR) for a polymer-overlaid
microfiber Mach-Zehnder interferometer (MZI) is investigated both theoretically and experimentally.
The waist diameter of the optical microfiber can be controlled to alter the thermal expansion and
optic properties of the polymer-coated MZI. Inserting an optical microfiber with a strong evanescent
field into the MZI, a low index polymer with high thermal characteristics is deposited on the
surface of the microfibers to realize a polymer-overlaid microfiber MZI. It was found that the thermal
expansion factor in the proposed MZI plays an important role in the temperature sensitivity of the FSR.
The temperature sensitivity of the polymer-overlaid microfiber MZI is improved, which is measured to
be −8.29 nm/◦C at 25 ◦C. The optical transmission spectrum of the polymer-overlaid microfiber MZI
is converted to the spatial frequency spectrum via fast Fourier transform. The temperature sensitivity
of the spatial frequency in the proposed polymer-overlaid MZI is estimated to be 18.31 pm−1 ◦C−1,
which is 17 times higher than that of the microfiber MZI without polymer coating (1.04 pm−1 ◦C−1).

Keywords: microfibers; microfiber Mach-Zehnder interferometers; thermal expansion effect;
thermo-optic effect; temperature sensors

1. Introduction

Fiber-optic interferometric sensors have been widely investigated for their various applications
to mechanical, chemical, and biological measurement [1]. Fiber-optic Mach-Zehnder interferometers
(MZIs) in particular have demonstrated the large potential of various sensing probes because of
their numerous advantages, such as electromagnetic immunity, light weight, ease of fabrication,
and compactness [2–8]. Many techniques to enhance the performance of MZI-based sensors have
been proposed, including a micro-cavity inside the fiber [9–11], large lateral offset splicing [12], and a
special fiber [13]. Recently, optical microfibers with a strong evanescent field have been proposed and
applied to various physical sensors such as current sensing probes [14], compact refractometers [15],
bidirectional bending sensors [16], coil resonators [17], and magnetic field sensors incorporating a
fiber loop mirror [18]. Compared with conventional MZI-based sensing probes, inserting an optical
microfiber into the MZI can make the microfiber MZI sensitive to external perturbations [19–24].
The temperature sensitivity of the microfiber MZI, however, has not yet been sufficiently investigated.

In this paper, a polymer-overlaid microfiber MZI is fabricated by coating the microfiber with
low index polymer. By considering the waist diameter of the microfiber, the thermal expansion,
and the thermo-optic factors in the polymer-overlaid MZI, the temperature sensitivity of the proposed
microfiber MZI is investigated. To initially configure a microfiber MZI, a microfiber with a waist
diameter of 10 µm is fabricated. Then, low index polymer with high thermal quantiles is deposited
on the surface of the microfiber, and consequently the polymer-overlaid microfiber MZI is realized.
By considering the contributions of the thermal properties of polymer-coated microfibers to the
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temperature sensitivity of the proposed microfiber MZI, it was determined that the thermal expansion
factor is higher than the thermo-optic factor. Further, the temperature sensitivity of the free spectral
range (FSR) in the polymer-overlaid microfiber MZI is improved, and is measured to be −8.29 nm/◦C
at 25 ◦C. The transmission spectra of the proposed polymer-overlaid microfiber MZI is transformed to the
spatial frequency spectra using fast Fourier transform (FFT). Compared with the temperature sensitivity of
the microfiber MZI without the low index polymer overlay (1.04 pm−1 ◦C −1), the temperature sensitivity
of the spatial frequency is effectively increased via the proposed polymer-overlaid microfiber MZI,
and is measured to be 18.31 pm−1 ◦C −1 in the temperature range of 25 to 80 ◦C.

2. Fabrication of the Polymer-Overlaid Microfiber MZI

Figure 1 depicts the experimental configuration of the polymer-overlaid microfiber MZI, which
includes two 3-dB couplers, as well as reference and sensing arms. The reference arm (Region 3) is
composed of a conventional single-mode fiber (SMF) with a diameter of 125 µm and a length of 46.8 cm
(l3). The sensing arm contains a polymer-overlaid microfiber (Region 1) between two SMFs (Region 2)
with a total length of 40.6 cm (l2). A flame brushing technique was exploited to adiabatically taper an
SMF to gradually reduce the waist diameter [25]. The SMF fixed on the motorized translation stage
was elongated by exposure to a computer-controlled heater. High-order modes in the microfiber can
be excited from the fundamental core mode by non-adiabatically tapering the SMF, resulting in an
in-line modal interferometer depending on the waist diameter of the microfiber [25–27]. The waist
diameter and the length (l1) of the fabricated microfiber were measured to be ~10 µm and ~6.3 cm,
respectively. Then, the microfiber was spin-coated using a UV-curable polymer with a low refractive
index (PC-373, SSCP, n = 1.375) and, consequently, the polymer-overlaid microfiber MZI was realized.
Figure 2 shows the experimental results of the transmission spectra of the microfiber MZI (black line)
and the polymer-overlaid microfiber MZI (red line). The free spectral range (FSR) of the microfiber
MZI at room temperature (25 ◦C) changed from 47.5 to 27.8 nm before and after polymer coating,
respectively. Since the polymer coating overlay increased the effective refractive index of the microfiber,
the optical path length difference of the arms in the proposed microfiber MZI would also be increased.
Consequently, the FSR should be diminished by coating the microfiber MZI with low index polymer.
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The proposed microfiber MZI has two different optical sections that consist of 
polymer-overlaid microfibers and SMFs. The optical path length difference (Δφ) between the 
sensing and the reference arms in the polymer-overlaid MZI can be described as  
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By substituting Equation (4) into Equation (2), we obtain: 
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In Equation (5), it is evident that two dominant factors, the thermal expansion (TE) and the 
thermo-optic factors (TO), play an important role in determining the temperature sensitivity of the 
FSR in the polymer-overlaid microfiber MZI. By definition of the thermal expansion coefficient (α = 
∂l/l∂T), the thermal expansion (TE) term in Equation (5) can be modified as: 
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Figure 2. Interference spectrum of the polymer-overlaid microfiber MZI.

3. Theoretical Analysis of the Temperature Sensitivity of the FSR in the Polymer-Overlaid
Microfiber MZI

In general, the FSR (∆λ) of the MZI can be written as [7]:

∆λ =
λ1λ2

∆φ
(1)

where λ1 and λ2 represent the two adjacent maximum and minimum wavelengths, respectively,
and ∆φ is the optical path length difference between the two arms in the MZI. From Equation (1),
the dependence of the FSR on the temperature (T) can be described by:
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The proposed microfiber MZI has two different optical sections that consist of polymer-overlaid
microfibers and SMFs. The optical path length difference (∆φ) between the sensing and the reference
arms in the polymer-overlaid MZI can be described as

∆φ = φ1 + φ2 − φ3 = n1l1 + n2l2 − n3l3 (3)

where φ1, φ2, and φ3 are the optical path lengths in Regions 1, 2, and 3, respectively, and n1, n2, n3 and
l1, l2, l3 are the effective refractive indices and the physical lengths of Regions 1, 2, 3, respectively. Since
Region 1 (microfiber), when viewed as a sensing element, is only exposed to different temperatures
via a heating oven, the optical quantities of Regions 2 and 3 (n2, n3, l2, and l3) cannot be changed
by changing the temperature. The derivative of the optical path length difference with respect to
temperature can be written as:
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By substituting Equation (4) into Equation (2), we obtain:
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In Equation (5), it is evident that two dominant factors, the thermal expansion (TE) and the
thermo-optic factors (TO), play an important role in determining the temperature sensitivity of the FSR



Sensors 2017, 17, 2403 4 of 8

in the polymer-overlaid microfiber MZI. By definition of the thermal expansion coefficient (α = ∂l/l∂T),
the thermal expansion (TE) term in Equation (5) can be modified as:

n1
∂l1
∂T

= α1l1n1 ≈ αCoatingl1n1 (6)

where α1 is the thermal expansion coefficient of the polymer-coated microfiber (Region 1), which
consists of two terms, αSilica and αCoating. Microfibers with a small waist diameter of less than 10 µm
can be largely considered as a fused silica waveguide [28,29]. To improve the thermal expansion
factor in Equations (5) and (6), we exploited the low index coating polymer with a high thermal
expansion coefficient (αCoating = 400 × 10−6/◦C), which is 800 times higher than that of fused silica
(αSilica = 0.55 × 10−6/◦C). Consequently, we approximated α1 in Equation (6) and found it to be mostly
determined by the thermal expansion coefficient of the low index polymer (αCoating); this is because the
thermal expansion coefficient of silica (αSilica) is negligible. The thermo-optic factor (TO) in Equation (5)
can be written as [7,28,29]:

l1
∂n1

∂T
= l1

(
σSilica + σCoating

∂n1

∂nCoating

)
(7)

where σSilica (= 1.1 × 10−5/◦C) and σCoating (= −3.4 × 10−4/◦C) are the thermo-optic coefficients of
fused silica and the coating polymer, respectively, and nCoating is the refractive index of the coating
polymer around the microfiber. By substituting Equations (6) and (7) into Equation (5), the temperature
sensitivity of the FSR in the polymer-overlaid microfiber MZI can be derived as:
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where the first and second terms in the parentheses correspond to the thermal expansion (TE) and
thermo-optic (TO) terms, respectively, in the polymer-overlaid microfiber MZI. By using the finite
element method (FEM), we analyzed the effect of the thermal expansion and the thermo-optic factors
on the FSR variation in the proposed polymer-overlaid microfiber MZI as the external temperature
increased. In Equation (8), it is clear that the thermal expansion factor (TE) can be readily achieved by
considering αCoating and the effective index (n1) of the polymer-overlaid microfiber. After theoretically
evaluating the variation of the effective refractive index (n1) for the microfiber relative to variations
in the refractive index of the low index polymer (nCoating), we obtained the value of ∂n1/∂nCoating in
order to analyze the total thermo-optic factor (TO) in Equation (8). Since the effective index of the
microfiber with a strong evanescent field is highly sensitive to ambient index change, the value of
∂n1/∂nCoating depends on the waist diameter of the microfiber [30].

Figure 3a presents the FSR variation in the polymer-overlaid microfiber MZI as a function of
temperature when considering the thermal expansion and thermo-optic factors. It is evident that the
temperature sensitivity of the FSR in the polymer-overlaid microfiber MZI is eventually negative, which
is predominantly due to the thermal expansion factor (black square), as seen in Figure 3a. Increasing
the external temperature consequently reduces the FSR of the polymer-overlaid MZI. Figure 3b shows
the theoretical results of the spatial frequency shift as a function of temperature after applying FFT.
Since the spatial frequency (∆f ) is inversely proportional to the FSR, the spatial frequency shifts to
higher frequencies with increasing temperature. The temperature sensitivities of the spatial frequencies
(∆f ) affected by the thermal expansion and the thermo-optic terms were theoretically estimated to be
~17.2 and ~1.05 pm−1 ◦C−1, respectively. It is notable that the contribution of the thermal expansion
factor to the temperature sensitivity of the FSR in the polymer-overlaid microfiber MZI is ~16 times
higher than that of the thermo-optic term.
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Figure 3. Theoretical results on the FSR variation (a) and the spatial frequency shift (∆f ) (b) as functions
of the temperature by considering the thermal expansion and the thermo-optic effects.

4. Experimental Results and Discussion

Figure 4 depicts the theoretical (black line) and experimental results (red circles and blue
triangles) on the variation of the FSR in the proposed polymer-overlaid microfiber MZI as a function
of temperature. The temperature dependence of the FSR shows a strong nonmonotonic behavior
because the FSR of the polymer-overlaid microfiber MZI is inversely proportional to ∆n·l. As seen
in Figure 4 (specifically the red circles), increasing the external temperature reduced the FSR of the
polymer-overlaid microfiber MZI due to the enhanced thermal expansion and thermos-optic terms of
the polymer-overlaid microfiber MZI. In contrast, decreasing the temperature increased the FSR of
the polymer-overlaid microfiber MZI, as seen in Figure 4 (blue triangle). No differences in the FSR
variations via increasing or decreasing the temperature were observed. The temperature sensitivity
of the FSR was experimentally measured to be −8.29 nm/◦C at a temperature of 25 ◦C, as shown in
Figure 4. The theoretical results were in good agreement with the experimental ones.
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Figure 4. Theoretical (black line) and experimental results (red circles and blue triangles) on the FSR
variation in the polymer-overlaid microfiber MZI as a function of temperature.

Figure 5 shows the spatial frequency spectra of the polymer-overlaid microfiber MZI (transformed
using FFT) as the applied temperature increases. The zero padding method was applied to enhance the
frequency resolution and analysis accuracy [31]. Figure 6a,b show the spatial frequency shift (∆f ) with
and without polymer overlay, respectively, as a function of temperature. The nonmonotonic behavior of
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the temperature dependence of the FSR was effectively eliminated by considering the spatial frequency
after applying the FFT, as seen in Figure 6a,b. As seen in Figure 6, increasing the temperature shifted
the spatial frequency peak to higher frequencies (red circles) because of the decreased FSR in the
polymer-overlaid microfiber MZI. Conversely, decreasing the temperature shifted the spatial frequency
peak to lower frequencies (blue squares). However, no severe differences in the spatial frequency shifts
when increasing or decreasing the temperature were observed. The temperature sensitivity of the
spatial frequency peak of the polymer-overlaid microfiber MZI was higher than that without a polymer
overlay. The temperature sensitivity of the spatial frequency in the polymer-overlaid microfiber MZI
was measured to be 18.3 pm−1 ◦C−1, which was ~17 times higher than that of the microfiber MZI
without polymer coating (1.04 pm−1 ◦C−1).
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Figure 6. Spatial frequency shift (∆f ) (a) with and (b) without a polymer overlay as a function
of temperature.

5. Conclusions

The temperature sensitivity of the FSR in a polymer-overlaid microfiber MZI was investigated by
considering the thermal expansion and thermo-optic factors. After fabricating the microfiber with a
waist diameter of ~10 µm, the microfiber was spin-coated with a low index polymer and eventually
the polymer-overlaid microfiber MZI was configured. Since the microfiber has a strong evanescent
field and a small waist diameter, the temperature sensitivity of the microfiber MZI was inevitably
affected by the thermal properties of the low index polymer overlay. The effects of the thermal



Sensors 2017, 17, 2403 7 of 8

expansion and the thermo-optic factors on the temperature sensitivity of the FSR in the proposed
polymer-overlaid microfiber MZI were theoretically analyzed. It was determined that the thermal
expansion contribution to the temperature sensitivity of the FSR for the polymer-overlaid microfiber
MZI was 16 times higher than that of the thermo-optic factor. The temperature sensitivity of the FSR in
the polymer-overlaid microfiber MZI was successfully improved to −8.29 nm/◦C at a temperature of
25 ◦C. After applying the FFT and zero padding methods, the optical spectra of the polymer-overlaid
microfiber MZI was converted to spatial frequency spectra. The temperature sensitivity of the spatial
frequency in the proposed polymer-overlaid MZI was found to be 18.31 pm−1 ◦C−1 in the temperature
range of 25 to 80 ◦C, which was 17 times higher than that of the microfiber MZI without polymer
coating (1.04 pm−1 ◦C−1).
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