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Abstract: Correlation Filter (CF) based trackers have demonstrated superior performance to many
complex scenes in smart and autonomous systems, but similar object interference is still a challenge.
When the target is occluded by a similar object, they not only have similar appearance feature but also
are in same surrounding context. Existing CF tracking models only consider the target’s appearance
information and its surrounding context, and have insufficient discrimination to address the problem.
We propose an approach that integrates interference-target spatial structure (ITSS) constraints into
existing CF model to alleviate similar object interference. Our approach manages a dynamic graph of
ITSS online, and jointly learns the target appearance model, similar object appearance model and the
spatial structure between them to improve the discrimination between the target and a similar object.
Experimental results on large benchmark datasets OTB-2013 and OTB-2015 show that the proposed
approach achieves state-of-the-art performance.

Keywords: similar object interference; correlation filter based trackers; online structured learning

1. Introduction

Research interest in visual object tracking comes from the fact that it is widely used in smart
and autonomous systems, e.g., anomaly detection, smart video compression, and driver intelligent
assistance systems. The main challenges of visual tracking are how the tracker can online adapt to the
large appearance variations including occlusion, abrupt motion, deformation, illumination variations,
in plane rotation, out of plane rotation, similar object interference, etc.

To get a more general adaptive tracker, researchers have proposed many tracking approaches
using various visual representations. These approaches, which are mainly focused on the research of
the object appearance model, can be divided into two categories: generative models and discriminative
models. Generative models [1–5] search the closest description in model space as the target observation
to estimate target state. These models adopt an appearance model to describe the target appearance
state without considering the background information of the target effectively. Therefore, they have low
discrimination when scene is complex. Compared with generative models, discriminative models [6–8]
have better discrimination and generalization ability. These models formulate object tracking as a
binary classification problem that does not estimate target specific location directly, and their accuracy
is limited by the number of candidate tests.

Recently, Correlation Filter (CF) based trackers have gained much attention in visual tracking,
and exhibited outstanding performance in both speed and accuracy. These trackers can be performed
effectively by employing all circular shifts of the positive sample in the Fourier domain, and overcome
the shortcomings of traditional discriminative model using densely-sampled samples. Bolme et al. [9]
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introduced CF into visual tracking for the first time. Henriques et al. [10] demonstrated the connection
between Ridge Regression with cyclically shifted samples and classical correlation filters. Then, the CF
tracking model was extended by its kernelized version (KCF) [11] to handle high-dimensional features.
By learning the scale model of the target using one-dimensional correlation filters, the DSST proposed
in [12] overcame the target scale change. Danelljan et al. [13] introduced a spatial regularization into CF
tracking model to deal with the boundary effects of circularly shifted patches. Ma et al. [14] applied
random ferns detector to CF tracking framework, and developed a long-term correlation tracking to
solve serious occlusion. In [15], a generic formulation was proposed for jointly learning the filter and
target response to alleviate motion blur and fast motion. Moreover, Bertinetto et al. [16] integrated
the advantages of DSST [12] and DAT [17] effectively, and proposed complementary learner called
Staple to alleviate target deformation problem. Thus far, CF trackers have alleviated some common
problems effectively in visual tracking, e.g., occlusion [14], large scale variations [12], deformation [16,17],
out-of-plane object rotation [16,17], fast motion [15] and motion blur [18].

However, similar object interference is still a challenge in visual tracking, and has no
corresponding algorithm to solve this problem in CF tracking framework. Most existing tracking
approaches, which are used to deal with occlusion problem, have difficulty discriminating the target
from a similar object. In [5,8,14,19], occlusion detection mechanism was introduced into tracking
framework to regain lost target. In [20,21], the appropriate historical tracking model was chosen
to correct the drift after the occlusion. In [22,23], part-based tracking strategy was applied to CF
tracking framework to overcome the occlusion. In [24], multiple trackers based on different feature
representations were integrated within a probabilistic framework to alleviate the occlusion. In [25], a CF
model with an anisotropic response was constructed for dealing with the occlusion. The shortcoming
of these algorithms is that there is no cooperative consideration of the association information between
the target and the similar target. When the target is occluded by a similar object, the target and the
similar object not only have similar appearance features but also are in same surrounding context.
Therefore, only using the information of the target is not sufficient for discrimination.

Based on above discussions, we propose an approach that jointly learns the appearance model of
the target, the appearance of similar objects and the spatial structure between them to alleviate the
interference from similar objects. In the proposed approach, we train the target and similar objects
by their own appearance model. When the target is occluded by a similar object, the occlusion object
is matched by its own appearance model, which avoids the appearance model of the target being
updated by the similar object.

Our main contributions are listed as follows.

(1) We propose to add ITSS constraint into existing CF tracking model for alleviating similar object
interference. The proposed approach jointly learns the target appearance model, similar object
appearance model and the spatial structure between the target and similar objects.

(2) We propose to introduce interference degree weight into the model, which makes our approach
switch between the baseline model and the constraint model (integrating the baseline model and
ITSS constraint) dynamically.

(3) During the model update, instead of only updating the target appearance model,
we collaboratively update the target model and the interference object model. Moreover,
we propose combining the target model and the interference model for re-detecting the lost
target when the target is almost totally occluded by a similar object.

The rest of this paper is organized as follows. Section 2 presents the proposed method. Simulation
results are presented in Section 3, and conclusions are drawn in Section 4.

2. Proposed Approach

We found that the spatial structure constructed by similar object and target is very useful
information that can help to distinguish target from similar objects effectively. When the target
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and a similar object overlap, we can effectively identify the occlusion relationship between the target
and a similar object by their spatial structure. Once the spatial structure is obtained, the model update
can be controlled reasonably to alleviate occlusion of similar target. Thus, we propose utilizing online
learning interference-target spatial structure constraint for alleviating similar object occlusion.

Figure 1 shows the flowchart of the proposed approach. We divide the approach into three stages:
tracking based on ITSS model, update appearance model and re-detection the target. The similar
object detected will be regarded as the potential interference object which is used to construct
interference-target spatial structure graph. The edges in the graph reflect the spatial structure between
the target and each similar object, and can be used to determine whether the target overlaps with a
similar object. The graph’s nodes describe the target’s and similar object’s appearance models. If there
exists overlapping between the target and a similar object, we will use our occlusion analysis strategy
to determine whether the target is occluded by the similar object. Then, we accord the result of the
occlusion analysis to update models including the target model and similar object model. If the target
is severely or totally occluded, the flow will be into re-detection stage to detect the lost target. If all the
similar objects are outside the warning area in a frame, the process will switch to the baseline tracker.
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search region has a partial overlap with the target, but the size of the overlapping area is controlled 
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Usually, the similar object and target will deform during tracking, and the degree of the 
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2.1. Detecting Potential Interference

The interference from a similar object is gradually formed when similar objects get closer to the
target. Therefore, we assume that there exists a warning area where similar object is considered as the
potential interference. The warning area is divided into eight overlapping search regions. Each search
region has a partial overlap with the target, but the size of the overlapping area is controlled less than
half the size of the target. Similar targets are detected simultaneously by parallel computing in the
eight search regions. The spatial layout has several advantages. First, the maximum response of the
detector will be not on the target when similar object has attended in the search area. Second, each
search area is formulated conveniently by the location and size of the target, and the eight search areas
can be proportionally synchronized when the target size changes.

Usually, the similar object and target will deform during tracking, and the degree of the
deformation is random. To overcome the problem, we consider two types of features, one is sensitive
to deformation and the other is insensitive. Inspired by Staple tracker [16], we integrate a global color
histogram and HOG features to train detector for detecting similar object. Our method is different from
Staple tracker as follows. First, the detector model only models the target appearance using correlation
filters without including any surrounding context. Second, our method is not a simple combination of
two types of features by a fixed weight but dividing the detection process into coarse detection and
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fine detection. This strategy is beneficial since similar object detection is different from target tracking.
Target tracking assumes that the target has existed in the search region. The assumption is invalid in
object detection, because if the object is not in the search region, the location of maximal correlation
response is not the location of the object.

Specifically, during coarse detection, we take the location of maximal correlation response as the
center of a similar object. The correlation response is obtained by the correlation between each search
region and the detector trained by HOG features extracted from the estimated target. The confidence
map constructed from the correlation response reflects the structural similarity between the estimated
target and the testing sample from the search area. The second stage is called fine detection that gains
reliable similar objects and eliminates unreliable ones from potential candidate similar objects. In this
stage, the color statistical feature is extracted by a color statistical model trained by current estimated
target and surrounding context. For more details of the color statistical model training, we refer to [17].
The difference is that we only extract the color feature in each potential target region which does
not include any surrounding context. Then, we estimate the similarity between the target and each
potential similar object by comparing the similarity of their color histogram.

2.2. Interference-Target Spatial Structure Constraint

Zhang [26] proposed tracking multi-target by preserving structural model. Motivated by this
approach, we dynamically maintain the spatial structure between the target and a similar object for
online supervising them. The purpose is to distinguish the similar object and the target when they
occlude each other. Different from [26], we estimate the score of each object appearance (including
similar objects and the target) by CF model which takes advantage of surrounding context to improve
discrimination efficiently. Moreover, we introduce the weight constraint into the model to reflect the
differences of the interference degree from each similar object.

2.2.1. The Score Function of Spatial Structure Model

Interference-target Spatial Structure (ITSS) can be viewed as a topological graph figuratively.
We define a graph G = (V, E). Node set V is constructed by the target appearance and all similar object
appearance. The edges set E include all connection between the target and each similar object. The edges
of E can be viewed as springs that constraint between the target and each similar object. The length of the
edge indicates the relative distance between the target and each similar object. Meanwhile, the thickness
of the edge means the strength of a similar object interferes with the target. Now, our aim is to define a
score function for describing the structure of graph G and design an optimization method to obtain the
structural parameters when the score function reaches a maximum value.

The score function of the configuration Ct = {Bt
0, Bt

1, . . . , Bt
|V−1|,} is defined as

T(Ct; It, Θ) = ∑
c0,h0

〈α0, Φ0(It, Bt
c0,h0

)〉+
|V|

∑
j=1

wt−1
j

(
∑

c0,h0

〈αj, Φs(It, Bt
cj ,hj

)〉+ λ〈βj, Ψj(pt
j, pt

0)〉
)

(1)

The variable cj and hj represent row and column circular shifts from the bounding box of
j-th similar object in frame It. The variable Bt

cj,hj
= {Pt

cj,hj
, Wt

j , Ht
j} denotes the bounding box of

corresponding circular shifts from j-th similar object in frame It. Wt
j , Ht

j and vector Pt
cj,hj

denote the

width, the high and the center pixel coordinate of bounding box Bt
cj,hj

, respectively. The vector
Φ0 and Φs denote the feature of the target and similar object. Specifically, when there are no
similar objects around the target, Φ0 is corresponding to the feature used in base tracker. Contrarily,
if there are similar objects around the target, Φ0 and Φs are both HOG feature. Moreover, the vector
Ψj(pt

j, pt
0) = pt

j − pt
0, which is a 2D vector including two attributes of size and direction, denotes

the relative location between the j-th similar object and the target. The parameter Θ is denoted as
Θ = {α0, α1, . . . , α|V|−1, β1, . . . , α|V|−1,}, and |V| is node count in G. We use the distance between
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each similar object and the target to represent the degree of interference. The closer the distance is,
the severer the interference is. This relationship is represented as

wt
j =


exp(−‖Ψj(pt

j, pt
0)‖

2
), ‖Ψj(pt

j, pt
0)‖

2
< T

j ∈ {0, 1, 2, . . . , |V|}
0, ‖Ψj(pt

j, pt
0)‖

2
> T

(2)

T, which is a constant determined by the size of the searching region and the position relative to a
target, is the max-distance between the similar object and the target.

These weight parameters introduced into Equation (1) have two important functions. (1) They
control the importance of the corresponding similar object and reflect the interference degree of the
similar object to the target. The greater the weight is, the more serious the disturbance is. (2) These
weights also maintain a fixed function structure of Equation (1). We do not need to change the form of
Equation (1) when the number of similar targets in the warning area changes.

2.2.2. Online Learning for Structured Prediction

We train the parameter Θ by minimizing the mixture loss function L(Θ; C). The score of
configuration Equation (1) is rewritten into two components including appearance and deformation
cost. We define L(Θ; C) as

L(Θ; C) = `a(α; I, C) + λ`b(β; I, C) +
1
2
‖Θ‖2

2. (3)

Here, `a is the cost of appearance component

`a(α; I, C) = A0(α0, I, B0) +
|V|

∑
j=1

wj Aj(αj, I, Bj) , (4)

and `a consists of two parts, the target appearance loss A0 and the loss Aj of similar object appearance

A0(α0, I, B0) = ∑
c0,h0

(〈α0, Φ0(I, Bc0,h0)〉 − yc0,h0) + µ‖α0‖2
2 (5)

Aj(αj, I, Bj) = ∑
cj ,hj

(〈αj, Φs(I, Bcj ,hj
)〉 − ycj ,hj

) + µ‖αj‖2
2 (6)

The structure labels ycj ,hj
and yc0,h0 are computed by two-dimensional Gaussian function.

The function `b is the deformation cost constraint which captures the special structure between
the similar object and the target. Mathematically, this amount is described as

`b(β; I, C) = max
Ĉ

[
S(Ĉ; I,β)− S(C; I,β) + ∆(C, Ĉ)

]
. (7)

Here, S(C; I,β) is deformation score function described as

S(C; I,β) =
|V|−1

∑
j=1
〈βj, Ψ(P0, Pj)〉 (8)

Herein, the task-loss ∆(C, Ĉ) is defined based on the amount of overlap between the correct
configuration C and the incorrect configuration Ĉ.

∆(C, Ĉ) =
|V|

∑
j=1

(
1−

βj ∩ β̂j

βj ∪ β̂j

)
(9)
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After the transformation above, the problem is how to optimize Equation (3) for learning
parameter Θ. Two components α and β from Θ are divided into the first term and the second
term of Equation (3). Therefore, we can optimize α and β alternatively by Equations (4) and Equation
(7). First, as far as α is concerned, Equation (4) is a linear combination of Equations (5) and (6) which are
both conventional correlation filtering operation. We can optimize them by kernel trick and circulant
matrix. Conversely, when α is fixed, we can get the solution of β by optimizing Equation (7). Thus,
calculating parameter β is transformed to a structured SVM problem. Equation (7) is the maximum of
a set of affine functions and does not contain quadratic terms. Thus, it is a convex function. We use a
similar method with Pegasos-based algorithm [27] to optimize the problem.

2.2.3. Target Detection with Spatial Constraints

The detection task is to find a configuration with the best score over all possible configurations
which maximizes Equation (1) when the model parameter Θ is given in new frame. We first construct
a minimum spanning tree model to build the graph G which determines the edge joint between the
target and each similar object. The root of the tree is set to the estimated target. Then, we search for a
set of connections to construct the tree. Once the structure of the graph is obtained, we find the best
score by dynamic programming Equation (10).

=(Ĉ; i) = ∑
j∈child{i}

max
j
{=(Ĉ; j)}+ wi

(
∑
ci ,hi

〈αi, Φs(I, Bci ,hi
)〉+ ∑

i
〈βi, Ψ(i, 0)〉

)
. (10)

All parameters in Equation (10) have the same physical meaning as in Equation (1). The score
of the best configuration from this recursive form corresponds to the max score of Equation (1), e.g.,
T(Ĉ) = =(Ĉ; 0). The algorithm automatically finds a best configuration for the target and every
similar object.

2.3. Update Model

Our model update method is controlled by the occlusion estimation, and the model is updated
when there is no occlusion. In our approach, the occlusion estimation is divided into two steps:
occlusion detection and occlusion identification.

2.3.1. Occlusion Detection

We dynamically maintain a topological graph, which consists of similar objects and the target,
by the method proposed in Section 2.2. The relative positive vector between the target and each
similar object is equivalent to provide us with an identifier that identifies the target and the
similar object. We estimate the occlusion between Bi and B0 by the overlap between them when
wt

i = max{ wt
j

∣∣∣j = 1, 2, . . . , |V| − 1}. The overlap is estimated by Equation (11).

f (m) = ‖Pt
i(m)− Pt

0(m)‖2
2 −

1
2
(Bt

i (m) + Bt
0(m)) (11)

By the Equation (11), we can compute the positional relation of abscissa and ordinate between
Bi and B0, respectively. We use f (x) to represent the positional relation of abscissa between the two
image areas. In this case, ‖Pt

i(x)− Pt
0(x)‖2

2 represents the distance of abscissa between center point
Pt

i and Pt
0. Bt

i (x) + Bt
0(x) represents the sum of the width of Bi and B0. Likewise, we utilize f (y) to

represent the positional relation of ordinate between Bi and B0.

2.3.2. Occlusion Identification

If f (x) < 0 and f (y) < 0, there exists overlap between Bi and B0. We need to figure out
whether B0 is occluded by Bi or not. The occluded object has more significant changes in appearance
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feature than the not occluded object. Hence, corresponding confidence response map will show
more dramatic changes. To reduce the interference information from surrounding context, we only
estimate the confidence response map corresponding to Bi and B0, in which background information
is not included. We use the combination [19] of the average peak-to-correlation energy Ei and E0 and
maximum response score of the response map Ri,max and R0,max to estimate the change of both the
confidence maps.

E =
|Rmax − Rmin|2

mean(∑w,h (Rw,h − Rmin))
2 (12)

We compare Ri, R0, Ei and E0 in the current frame with their respective historical average values
Rha

i , Rha
0 , Eha

i and Eha
0 . These four parameters are estimated before the overlap between Bi and B0,

which are considered as the feedback from non-polluting tracking results. If R0/Rha
0 < Ri/Rha

i and
E0/Eha

0 < Ei/Eha
i , the target B0 is occluded by the similar object Bi. Otherwise it is contrary.

Next, we can update the appearance model of the target and the similar object according to the
result of the occlusion detection. We optimize these models by kernel trick and circulant matrix, so our
model update formula is defined as Equation (13).

α̂d
i,t = η

ŷ� Φ̂d
i,t

∑D
j=1 Φ̂j

i,t �Φj
i,t + λ

+ (1− η)α̂i,t−1 (13)

Here,
∧

represents the Fourier Transform. The superscript d corresponds to a dimensional
component of HOG feature. The subscript i is the appearance model identifier, e.g., i = 0
represents object appearance model. η is a learning rate fixed to 0.075, and t denotes the t-th frame.
The bar—represents complex conjugation.

2.4. Target Re-Detection

When the target is almost completely occluded by a similar object, the distance between the
target and the occlusion object ‖Ψ(i, 0)‖2

2 will become very small. In this case, ITSS constraint will
lose its effectiveness. To avoid the target being erroneously positioned on the occlusion object,
we collaboratively employ the target appearance model and similar object appearance model to
re-detect the lost target. Specifically, the re-detection strategy is divided into three parts: detection
model, startup condition and termination condition.

2.4.1. Detection Model

When f (x) = 0 and f (y) = 0, Bi and B0 are both in the edge position of their overlapping and
non-overlapping area. Currently, Bi and B0 are believed to be reliable and free from contamination
from each other. We save the appearance model D0 trained by B0. Di and D0 will be used to detect the
B0, when B0 is lost for the occlusion of Bi. Specifically, our approach tracks Bi and updates its model
online, and detects B0 in surrounding context of Bi.

2.4.2. Startup Condition

We activate the re-detection mechanism when the target is lost. In our tracking framework, the
spatial structure constraint can alleviate the part occlusion. However, when B0 is almost completely
occluded by Bi, the max values of the two response maps from tracking Bi and B0 will point to nearly
the same location in Bi, and the spatial structure constraint becomes disabled. We define this criterion
according to Equation (14).

‖Ψ(i, 0)‖2
2 <

1
6

√
width(Bi)

2 + height(Bi)
2 (14)

When Equation (14) is established, we need to activate re-detection strategy to detect the lost target.
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2.4.3. Termination Condition

If R0 > kRRhistory
0 and E0 > kEEhistory

0 , we consider the detection result reliable and then terminate
detection and switch task to baseline tracker. Here, kR and kE are predefined ratios. In this paper,
the two ratios are 0.65 and 0.42, respectively.

3. Experiments

Our experimental observations are reported from two aspects: special performance evaluation
and comprehensive performance evaluation. In special performance evaluation, we evaluate the
proposed tracking algorithm and other six state-of-the-art tracking algorithms on nine challenging
sequences including occlusion from a similar object to demonstrate the effectiveness of the proposed
approach for alleviating similar object interference. In comprehensive performance evaluation, the goal
is to demonstrate the comprehensive performance of the proposed algorithms in various challenges
including serious occlusion, noise disturbance, non-rigid shape deformation, out-of-plane object
rotation, pose variation, similar object interference, etc.

To achieve a latest comparison, we report the results of several recent trackers by adding these
trackers to the testing framework of visual tracking benchmark. In experiments, each tracker uses
the source code provided by the author. The parameter settings from authors are kept for all the test
sequences. All testing sequences are from the OTB-2015.

3.1. Baseline Tracker

The Staple tracker combines template and histogram scores to alleviate deformation, and significantly
outperforms many state-of-the-art trackers in comprehensive performance. However, color histogram
weakens structural information while alleviates deformation, which leads to the poor performance of
Staple tracker when there exists similar object in the scenes. Thus, we choose the Staple tracking algorithms
as the baseline tracker. The new tracker integrates the basic tracker and the proposed ITSS.

3.2. Specific Performance Evaluation

To fully reflect the merits of our approach, we evaluate the specific performance of our approach
from two aspects: qualitative evaluation and quantitative evaluation.

3.2.1. Qualitative Evaluation

Figure 2 reports the qualitative evaluation results divided into four columns from left to right
in each row. The first column is the initial frame where the target is marked by red solid rectangle.
The second column is a frame before occlusion occurs. The third column is the frame where there is
occlusion between the target and similar objects. The fourth column indicates that the occlusion is
removed. The qualitative evaluation is carried out by comparing these four columns in each sequence.
We compare the proposed approach with six state-of-the-art trackers: CSK [10], DAT [17], KCF [11],
Staple [16], MOSSE [9] and DSST [12]. To demonstrate the effectiveness of the proposed algorithm,
we select nine typical sequences. These sequences contain some objects that are not only similar in
color but also similar in structure to the target, and there is severe occlusion between the target and the
similar object.

(1) Basketball, Girl and Walking2: in the Basketball, Girl and Walking2 sequences, target and occlusion
object have similar appearance feature including structure and color. Staple uses color statistical
feature to alleviate deformation, so the tracking result is easy to drift to occlusion object when the
occlusion object has similar color feature with the target. Although the DAT algorithm also uses
color statistical feature to resist deformation, but it does not consider the structural information
of the target. It shows a poor performance on this video. Our tracker integrates ITSS to the Staple,
which alleviates similar object interference, can resist deformation. In contrast, the Staple tracker
does not obtain the spatial structure information of between the similar object and the target,
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and do not distinguish accurately the target and similar targets. Rest trackers rely too much on
structural information and lead to drift when the target undergoes severe deformation.

(2) Football and Girl: in the Football sequence and the Girl sequence, the target is almost fully
occluded by nearly the similar object. Thus, these trackers relying on structural feature mistakenly
estimate the target location to the interference. In this case, our ITSS model is powerless because
the structural features that the model relies on disappear. However, our tracker introduces a
re-detection strategy which can effectively distinguish the target and nearly similar objects when
the target appears again, then reconstruct the interference-target spatial structure. The experiment
demonstrates that it is necessary to introduce the re-detection into our tracking framework to
alleviate almost full occlusion.

(3) Shaking1: the target and interference have similar structure and color in the Shaking1 sequence.
Compared to our algorithm, KCF and DSST exhibit varying degrees of drift because they have no
ability to resist deformation. The Staple tracker the model, which can resist deformation by color
statistical features, have no enough prior information for distinguishing target from similar objects.
Our tracker combines effectively advantages of ITSS and Staple. When similarity interference
occurs, using ITSS distinguishes the target and the interference. When the interference is removed,
our algorithm switches to Staple. Therefore, our tracker can resist similarity interference as well
as deformation.

(4) Coupon: the Coupon sequence is different from other sequences, where the target occludes the
similar object. In addition, the target and the interference are obviously different in structural
feature, but similar in color statistical feature in the sequence. Thus, except DAT, all other
algorithms track the target robustly. Our tracking model not only gains the color feature of
target appearance but also obtains its structure feature; therefore, our tracker gains satisfactory
performance on this type of sequence.

(5) Liquor: there exist multiple structures similar targets in the Liquor sequence. In addition, the target
is occluded repeatedly by different similar objects. Only our approach and Staple keep correct
tracking throughout the tracking process. Staple utilizes the color difference between the target
and other objects to distinguish them, while our approach uses ITSS constraint to discriminate
the target from similar objects.

(6) Bolt2 and Deer: These two sequences are different from other sequences. The target is not occluded
by a similar object, but the similar object is occluded by it. When the similar object gradually
approaches the target, some tracker track the similar target incorrectly, e.g., DSST, while our
tracker can use the learned ITSS constraint to correctly differentiate target and interference.

Overall, our approach provides promising results compared to the six other trackers on these
sequences including similar object interference.
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Figure 2. Qualitative comparisons. We list the tracking results of the representative frames of nine
sequences (Basketball, Coupon, Football, Girl, Shaking1, Liquor, Bolt2, Deer and Walking2 from top to
bottom) for seven trackers, and our results are marked with red solid rectangles.

3.2.2. Quantitative Evaluation

In addition, we provide a quantitative comparison of our tracker and the six trackers on the
nine challenging sequences mentioned above. Our quantitative evaluations with fame-by-frame
comparison are two metrics: center location errors (CLE) and overlap ratio (OR). CLE is measured
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by the Euclidean distance between the ground-truth center location and the estimated target center
location. OR is described as OR = S(BT ∩ BGT)/S(BT ∪ BGT), where BGT and BT are the ground truth
bounding box and the tracking bounding box, respectively, and S(B) is a function used to calculate
the area of the bounding box B. We compare the CLE and VOR frame-by-frame on the nine sequences
in Figures 3 and 4, respectively. Generally, our method is comparable to the best performer on the
sequence Basketball, Skating1, Football, Coupon, Girl, Liquor, Bolt2, Deer and Walking2. In particular,
on the sequence Basketball and Skating1, our tracker slightly drifts in the 200th and 230th frames,
respectively, due to in plane rotation of the target and deformation of the nearest similar object
appear simultaneously.
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Figure 3. Frame-by-frame comparison of 7 trackers on 9 video sequences in terms of average center
location errors (in pixels) in descending order. The horizontal axis represents the frame number, and the
vertical axis represents the center location error. The smaller is the center location error, the better is the
tracking accuracy.
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Figure 4. Frame-by-frame comparison of seven trackers on nine video sequences in terms of overlap
ratio. The horizontal axis represents the frame number, and the vertical axis represents the overlap rate.
The greater is the value, the better is the tracking accuracy.

Tables 1 and 2 report the comparison of the average CLE and the average OR of seven trackers
in the nine sequences mentioned above. Our approach achieves the best results in six of the nine
sequences in average CLE, and achieves the best performance in seven of the nine sequences in the
average OR. These results demonstrate that our approach obtains superior performance than the six
other trackers in alleviating similar object interference. In Coupon and Basketball sequences, our tracker
gains the second and the third biggest, respectively, which is very close to the best ones. The overall
results present that the proposed approach significantly outperforms the others in average CLE and
average OR.

Table 1. Comparison results in terms of average CLE (in pixels). The best three estimates are marked
in red, blue, and green fonts in descending order.

Sequences CSK DAT KCF Staple MOSSE DSST Ours

Basketball 6.53 17.72 7.89 16.89 162.21 10.92 8.38
Coupon 3.240 4.45 1.57 2.84 2.80 3.23 2.28
Football 16.19 189.31 14.60 13.00 16.86 15.76 5.05

Girl 19.34 15.25 11.92 13.12 4.65 11.11 3.10
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Table 1. Cont.

Sequences CSK DAT KCF Staple MOSSE DSST Ours

Liquor 160.56 171.86 193.74 8.68 71.75 98.70 5.20
Skating1 7.78 182.62 7.670 70.62 66.86 8.33 7.57

Bolt2 429.40 6.630 6.370 4.05 414.48 4.510 4.21
Deer 4.970 143.90 21.16 19.73 4.60 16.66 3.97

Walking2 17.93 23.13 28.98 3.43 29.20 2.950 2.88
Average 73.99 83.87 32.66 16.93 85.93 19.13 4.73

Table 2. Comparison results in terms of average OR. The best three estimates are marked in red, blue,
and green fonts in descending order.

Sequences CSK DAT KCF Staple MOSSE DSST Ours

Basketball 0.71 0.75 0.65 0.71 0.05 0.58 0.68
Coupon 0.90 0.86 0.940 0.900 0.91 0.9 0.91
Football 0.56 0.04 0.56 0.60 0.57 0.57 0.72

Girl 0.38 0.47 0.55 0.50 0.70 0.44 0.73
Liquor 0.25 0.34 0.11 0.660 0.48 0.41 0.76

Skating1 0.50 0.07 0.49 0.410 0.40 0.53 0.54
Bolt2 0.02 0.74 0.69 0.80 0.01 0.74 0.86
Deer 0.76 0.12 0.64 0.65 0.76 0.65 0.81

Walking2 0.47 0.25 0.41 0.77 0.43 0.80 0.80
Average 0.51 0.40 0.55 0.67 0.48 0.62 0.75

Table 3 shows the time consumption. In the experiment, the main time consumption of our
approach is embodied in three aspects: the Staple tracking model (basic tracker), the similarity target
detection and the ITSS model. In the Staple tracking model, the main factor affecting the computation
is the parameter of the HOG feature and the color histogram feature. In practice, the cell size of HOG
features is set into 4× 4 pixels. We set the area of the samples to 42 times of the target area. Samples
are multiplied by a Hann window. Then, samples are normalized to a fixed size by a 50× 50 square,
so that the fps is unaffected by the height and width of video sequence. Moreover, bin color histogram
is set into 32× 32× 32. In the similarity target detection, time consumption of this part is similar with
Staple model. In this part, the parameters of HOG feature and color histogram feature are similar to
the parameters in Staple model. In the ITSS model, the time consumption is related to the number of
nodes in the graph. We set that the max number of nodes in the graph to 8 and the fps to 24 when
only running ITSS model. In practice, the number of nodes is controlled by w in Equation (1), and is
usually less than 8. Moreover, our approach is switched dynamically between the baseline model and
the constraint model by weight w in Equation (1). Thus, the time consumption of the approach should
be between the Staple and the ITSS. We run our approach approximately for 35 frames per second on a
computer with an Intel I7-4790 CPU (3.6 GHz) and 4 GB RAM. Therefore, our algorithm satisfies the
real-time applications.

Table 3. Comparing the Seven trackers on the nine sequences, the average time consumption of every
tracker is shown in terms of fps.

Tracker CSK DAT KCF Staple MOSSE DSST Ours

FPS 185 60 178 58 350 60 35

3.3. Comprehensive Performance Evaluation

To evaluate our tracker in comprehensive performance, we perform comprehensive evaluation
using one-pass evaluation (OPE) on benchmark datasets [28]: OTB-2013 and OTB-2015. The OPE
includes two scenarios: distance precision (DP) and overlap success rate (OSR). The threshold in DP
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is 20 pixels while OSR uses the area under curve (AUC) as the evaluation criterion. We compare
our tracker called ITSS with state-of-art trackers including Staple [16], DLSSVM [29], MEEM [21],
DSST [12], Struck [30], KCF [11], TLD [8], MOSSE [9], VTD [1], CSK [10], MIL [7] , and Frag [22].

We present the results of OTB-2013 and OTB-2015 in Figures 5 and 6, respectively. Among these
methods, our approach performs well with overall success (64.5% on OTB-2013 and 59.1% on OTB-2015)
and precision plots (85.7% on OTB-2013 and 80.4% on OTB-2015). Moreover, our approach achieves
higher performance than Staple tracker on these two datasets. Specifically, the OSR of the proposed
approach is 1.5% and 0.8% higher than Staple tracker on these two datasets, respectively. The DP of our
approach is 2.4% and 1.3% higher than Staple tracker on these two datasets, respectively. Because our
approach integrates the advantages of Staple tracker and ITSS constraint, it would implicitly mitigate
the weaknesses of HOG and color features, and resist similar object interference at the same time.
In other words, the overall evaluation proves that our approach improves the performance (alleviating
interference from similar object) of Staple algorithm and does not weaken its existing advantages.
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Figure 6. Distance precision and overlap success plots on entire OTB-2015 dataset using OPE.

Comparing Figure 5 with Figure 6, the performances of all trackers in Figure 5, including success
plots of OPE and precision plots of OPE, are better than those in Figure 6, because those sequences
reflecting performance of every tracker makes up a smaller proportion in OTB-2015 than in OTB-2013.
Similarly, our algorithm also performs better in dataset OTB-2013 than in dataset OTB-2015.

4. Conclusions

In this paper, we propose a generic approach for alleviating similar object interference.
The approach integrates the interference-target spatial structure (ITSS) constraint to existing CF
tracking algorithm for improving the robustness of the algorithm when the target is severely occluded
by a similar object. When a similar object exists around the target, the proposed ITSS constraint is online
learning by using a minimum spanning tree model to optimize the structured SVM, which provides
an effective strategy to identify the target and similar object when there is occlusion between them.
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Moreover, when the target is almost completely occluded by a similar object, we combine the target
model and the interference model for re-detecting the missing target. The experimental results
demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.
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