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Abstract: Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on
Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the
inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial
sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise
conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white
Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF.
This paper developed a new approach for noise modeling on the basis of dynamic Allan variance
(DAVAR). In contrast to conventional white noise models, the new noise model contains both the
white noise and the color noise. With this new noise model, the KF for the MWD was designed.
Finally, two vibration experiments have been performed. Experimental results showed that the
proposed vibration noise modeling approach significantly improved the estimated accuracies of the
inertial sensor drifts. Compared the navigation results based on different noise model, with the
DAVAR noise model, the position error and the toolface angle error are reduced more than 90%.
The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

Keywords: FOG-based MWD; system noise model; vibration noise; dynamic Allan variance

1. Introduction

In the oil industry, horizontal drilling processes make use of Measurement While Drilling
(MWD) instruments to monitor the position and the orientation of the bottom hole assembly (BHA).
The traditional MWD instrument is comprised of three accelerometers and three magnetometers.
The magnetometers determine the orientations by measuring the earth magic field. The major defect
using the magnetometers is that their accuracy is influenced by the magnetic field existing in the oil
hole. Consequently, the deteriorative measurements accuracy could lead to drilling failure [1]. For the
sake of improving the survey accuracy, gyroscopic measure techniques based on fiber optic gyroscopes
(FOGs) have been put forward to replace the magnetic instruments [2]. Though the FOG-based inertial
navigation technique is a mature technique in the military domain, it encounters a lot of special
problems because of the harsh work environment of drilling. It needs to work over 200 h with a high
shock and strong vibration [1]. As we all know, the inertial errors accumulate with time, which leads
to accuracy degradation. For long-term measuring and high accuracy surveying, the external aiding
observations are fused into the FOG-based MWD by Kalman filter (KF), such as the drilling pipe
length, the penetration rate and the zero velocity update (ZUPT) [3–5]. In KF, the inertial sensor’s noise
should be modeled to be used as the system noise. They were often modeled as the stationary white
Gaussian noise. However, during the vibration, the gyroscope noise is no longer stationary white
Gaussian noise. What’s worse, an incorrect system noise model will influence the performance and
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accuracy of KF greatly. Therefore, it is very critical to put forward an accurate modeling approach for
the system noise.

Various approaches were researched to model the random errors in the gyros and accelerometers.
In Reference [6], the stochastic errors in the gyroscope were modeled with the autoregressive
moving average model (ARMA). In Reference [7], the stochastic errors in gyros and accelerometers
were simplified as an autoregressive (AR) model. But the ARMA model and the AR model were
unsuitable to process higher-order stochastic processes, and high-dynamic ranges [8]. In Reference [9],
the stochastic errors were assumed to be a stationary Gaussian-Markov process. Reference [10]
pointed out that the stochastic noise of the inertial sensors were not stationary. Thus, the stationary
Gaussian-Markov process was not an accurate model for the stochastic process. What’s worse, it is very
difficult to determine the order, the coefficients, and the time constant of a Gaussian-Markov model
for a particular stochastic noise. In Reference [11], the stochastic errors in the inertial sensors were
assumed to be a white noise process. The user’s manual or data sheet of inertial sensors often disturb
the power spectral density functions (PSDs) of this white noise process. Based on the PSD, the noises
covariance matrix (Q) of the white noise which was needed in the Kalman Filter could be obtained.
However, the real stochastic process in an inertial sensor may be much more complicated than white
noise. For most applications this assumption is an approximation and a simple model; it sacrifices
performances and precision. Reference [12] designed a colored-noise model for KF to diminish the
effects of the vibration error. But this method was verified by the simulation. In reference [13],
the random noise of the Micro-Electro-Mechanical System (MEMS) inertial sensor were identified
and modeled by Allan variance. This model was applied into this low cost Inertial navigation system
(INS) integrated system to improve the accuracy and performance of the system. But in order to
simplify the model, some components of the stochastic noise were ignored, such as Quantization noise.
In References [14,15], the stochastic errors in an inertial sensor were identified by Allan variance, and
an equivalent differential equation representation for each kind of stochastic noise was established.
The equivalent differential equation was augmented into the KF of GPS/INS integration. However,
after augmenting, the KF estimation process will become much more complicated and take more time.

In 2003, L. Galleani and P. Tavella developed the dynamic Allan variance (DAVAR) to track and
reveal the anomy and non-stationary in the atom clock behavior [16]. In contrast to Allan variance,
DAVAR can track and reveal the non-stationary characteristics of time series [17]. Li et al. [18],
Wei et al. [19] and Zhang et al. [20] utilized the DAVAR to describe the non-stationary of the laser
gyroscope. Wang et al. took advantage of DAVAR to identify and characterize the vibration noise of
FOGs in the MWD system [21,22]. However, DAVAR hasn’t been applied to model the random noise
to improve the performance of the KF. In this paper, the gyroscope vibration noise is identified by
DAVAR, and then a noise model based on DAVAR was developed for the first time. With this accurate
vibration noise model, the performance and the accuracy of the KF could be improved.

The organization of this paper is as follows. In the Section 2, the Dynamic Allan variance method
is introduced simply. Section 3, the KF for MWD is designed. Section 4, the new noise modeling
method was developed and the KF based on the new model is designed. The experimental results are
presented in the Section 5. Section 6 is the conclusion.

2. Dynamic Allan Variance

The Allan variance for FOGs is defined as follows [23],

σ2
ω(τ) =

1
2

〈
(ω(t + τ)−ω(t))2

〉
(1)

where τ is the observation interval, ω(t) is FOG output data. and 〈〉 is a symbol indicating a time
averaging. The average of ω(t) is calculated by

ω(t) =
1
τ

∫ t+τ

t
ω(u)du (2)



Sensors 2017, 17, 2367 3 of 17

where u is the integral variable.
The dynamic Allan variance (DAVAR) is developed based on Allan variance. It is a sliding

Allan variance. Its computation process can be described as following. Firstly, at a given time epoch,
we truncate the FOG data with a rectangular window. Secondly, the Allan variance of the truncated
data could be calculated using Equation (1). As a result, we get the Allan variance at a given time
epoch. Then repeating these two steps at every time epoch, the Allan variance at each time epoch can
be obtained. In the end, plotting all the variances in a 3D graph, we can obtain the DAVAR figure.
Please refer to reference [17] to get the detailed computation process. In this paper, we describe the
definition of DAVAR as shown in Equation (3).

σ2
ω(t, τ) =

1
2τ2(Nw − 2τ)

∫ t+ Nw
2 −τ

t− Nw
2 +τ

(ω(u + τ)−ω(u))2du (3)

where Nw is the length of the truncation window, t is the analysis time epoch, τ is the observation
interval, σ2

ω(t, τ) is the DAVAR.

3. Noise Modeling Based on DAVAR

El-Sheimy et al. [24] showed that a unique relationship existing between Allan variance σ2
ω(τ)

and the power spectral density (PSD) of the random noise. It is,

σ2
ω(τ) = 4

∫ ∞

0
Sω( f )

sin4(π f τ)

(π f τ)2 du (4)

where Sω( f ) is the PSD of the random process ω(t). Substituting PSD of any physical meaningful
random process into Equation (4,), we can obtain the Allan variance σ2

ω(τ) of this random process [23].
As far as we all know, there are five kinds of noise existing in the random noise of the gyros. These
are the quantization noise (Q), angular random walk (N), bias instability (B), rate random walk (R),
and the rate slope (K). The quantization noise is one of the errors introduced into an analog signal
by encoding it in digital form. The gyro angle random walk was contributed by the high-frequency
noise terms that have correlation time much shorter than the sample time. They come from the light
path noise of the gyro. The origin of bias instability noise is the electronics or other components that
are susceptible to random flickering. Because of its low-frequency nature, it is indicated as the bias
fluctuations in the data. Rate random walk noise is a random process of uncertain origin, possibly
a limiting case of an exponentially correlated noise with a very long correlation time. The rate slope is
considered to be a kind of deterministic error. It is caused by the slowly changing of the light source
intensity or caused by the temperature of the environment.

When the PSD of one random process passed through a filter with the transfer function sin4(π f τ)

(π f τ)2 ,

we can get its corresponding Allan variance. That means that different types of random processes
can appear in different region of τ and the different types of random noise can be examined by
regulating τ [25]. With this particular characteristic, the various noise terms existing in the gyro could
be identified. Table 1 summarized a relationship between noise terms and the Allan variance and
observation τ.
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Table 1. Relationship between noise terms, Allan variance and τ.

Noise Terms Noise
Coefficient SΩ(v) PSD of the Random Process σ2(τ)

Slope of
log σ(τ) − log τ

the quantization
noise Q SΩ( f ) =

{
4Q2

τ sin2(π f τ)

(2π f )2τQ2
f ≥ 1

2τ
f < 1

2τ

3Q2

τ2 −he

angular random
walk N SΩ( f ) = N2 N2

τ
−ngul

bias instability B SΩ( f ) =

{
( B2

2π )
1
f

0
f ≤ f0
f > f0

f0 cutoff frequency

2B2

π ln 2 0

rate random walk K SΩ( f ) = ( K2

2π )
1
f 2

K2τ
3 0.5

the rate slope R SΩ( f ) = R2

(2π f )3
R2τ2

2 1

Assuming that the noise terms existing in the gyro are statistically independent, the Allan variance
could be rewritten as the sum of the Allan variances due to each random process at the different τ [25].
In other words,

σ2(τ) = σ2
Q(τQ) + σ2

N(τN) + σ2
B(τB) + σ2

K(τK) + σ2
R(τR)

= 3Q2

τQ
2 + N2

τN
+ 2B2

π ln 2 + K2τK
3 + R2τR

2

2

= C−2τQ
−2 + C−1τN

−1 + C0τB
0 + C1τK

1 + C2τR
2

(5)

where σ2
Q(τQ), σ2

N(τN), σ2
B(τB), σ2

K(τK), σ2
R(τR) stand for Allan variance of each random noise term.

τQ, τN , τB, τK, and τR are the observation times of individual random processes, respectively.
C−2, C−1, C0, C1 and C2 are the polynomial coefficients of the σ2(τ)− τ. With the line fitting approach,
the relationship between the noise coefficients and the coefficients of the σ2(τ) could be established.
If the unit of gyroscope signal is degree per hour (◦/h), each noise coefficient could be obtained as
follows:

N =

√
C−1
60 (◦/h

1
2 ), K = 60

√
3C1(

◦/h
3
2 ), B =

√
C0

0.664 (
◦/h), Q =

106π
√

C−2

180×3600×
√

3
(′′), R = 3600

√
2C2(

◦/h2) (6)

DAVAR is an assembling of the Allan variances at each the time point. Therefore, at any given
time epoch, the DAVAR can be rewritten as Equation (7):

σ2(t, τ) = σ2
Q(t, τQ) + σ2

N(t, τN) + σ2
B(t, τB) + σ2

K(t, τK) + σ2
R(t, τR) (7)

Fitting the σ(t, τ)− τ curve, the noise coefficients Q(t), N(t), B(t), K(t), and R(t) at that time t could
be obtained. Therefore, coefficients for all the time t could be obtained. With all these coefficients,
we can establish the dynamic model for the random error of the gyroscope.

Institute of Electrical and Electronics Engineers (IEEE) 952 1997 [23] puts forward that the
magnitude of the five noise term can be read off from the slope line of the log σ verse log τ curve,
namely bi-logarithmic curves. The magnitude of Quantization noise can be read off from the logσ–logτ

curve at τQ =
√

3, the magnitude of Angle random walk noise can be read off from the bi-logarithmic
curves of slop −0.5 at τN = 1. The magnitude of Rate random walk can be obtained from the
bi-logarithmic curves at τR =

√
2 and the magnitude of the Rate Slope noise can be read off at τK = 3.

The numerical value of the bias instability has nothing with τ. Therefore, for a given time t, substituting
observation time τQ, τN , τR, τK and their corresponding noise coefficients into Equation (5), we can
obtain the accurate Allan variance including all kinds of noise. This accurate Allan variance which
changes with time can be described as follows

σ2(t) = σ2
Q(t, τQ) + σ2

N(t, τN) + σ2
B(t) + σ2

K(t, τK) + σ2
R(t, τR)

= 3Q2

τ2
Q

+ N2

τ2
N
+ 2B2

π ln 2 + K2τK
3 +

R2τ2
R

2
(8)
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σ2(t) in Equation (8) is the accurate noise model which could track and exhibit the non-stationary
characteristics of the noise. What’s more, it not only contains the white noise, such as angler random
walk, but also the color noise, such as Quantization noise, Bias instability noise, Rate random walk noise
and Rate lamp noise. Applying this noise model to the Kalman filter may improve the performance of
the Kalman filter greatly, which we will discuss in the next section.

4. DAVAR Aided Kalman Filter

There are two types of continuous aiding observations which can be fused into the MWD
surveying system [1]. The first one is the position information that can be obtained from the continuous
measurement of the drill pipe length. The second one is the velocity which can be derived from pipe
length and time. Therefore, position/velocity loose coupled navigation approach for MWDs is chosen
in this paper.

4.1. Kalman Filter Model

The state equation is expressed as follows:

Xk = Fk,k−1Xk−1 + Gk−1Wk−1 (9)

Xk−1 = [ δL δλ δh δVe δVn δVu δI δT δA aBx aBy aBz gBx gBy gBz ]
T (10)

Wk−1 = [01×3 wT
a wT

g 01×6]
T

(11)

where Xk is the error states vector. δL is the latitude error, δλ is longitude error, and δh are height error.
δVe is the east velocity errors, δVn is the north velocity error, and δVu is up velocity error. δI is the
inclination error, δT is the toolface angle error and δA is azimuth error. aBx, aBy and aBz are the bias
errors of accelerometers along the X axis, Y axis and Z axis, respectively. gBx, gBy and gBz are the bias
errors of gyroscope along with the X axis, Y axis and Z axis, respectively. Fk,k−1 is the dynamic matrix
relating Xk−1 to Xk. Gk−1 is the noise coefficient matrix, and Wk−1 is the system noise vector which has
the normal distribution with the variance matrix Qk−1. wa is the noise model of accelerometers and wg

is the noise model of gyroscopes.
The measurement equation is

Zk = Hk · Xk + Vk (12)

Zk = [ Lins − Lupdate λins − λupdate hins − hupdate Ve
ins −Ve

update Vn
ins −Vn

update Vu
ins −Vu

update ]
T

(13)

Zk is external measurements or observations, Hk is the observation matrix. Vk is the random noise

vector for the observations. Vk is random noise model of the observations.
[

Ve
ins Vn

ins Vu
ins

]T
is

the velocity obtained from the INS.
[

Ve
update Vn

update Vu
update

]T
is the drill bit rate of penetration.[

Lins λins hins

]T
is the position calculated by the INS.

[
Lupdate λupdate hupdate

]T
is the

position calculated by the drilling pipe length.
Traditionally, the observation random noise vector Vk and the system measurement noise Wk

are both assumed to be white sequence and not correlated with each other. The characteristics and
relationship of Wk and Vk are expressed as

E[Wk] = 0, Cov
[
Wk, Wj

]
= E

[
WkWj

T
]
= Qkδkj (14)

E[Vk] = 0, Cov
[
Vk, Vj

]
= E

[
VkVj

T
]
= Rkδkj (15)

Cov
[
Wk, Vj

]
= E

[
WkVj

T
]
= 0 (16)
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δkj =

{
0, k 6= j
1, k = j

(17)

At time tk, the estimation X̂k of the error state vector Xk could be obtained by KF. Thus, the error
covariance matrix of the estimation is described as Equation (19)

E
[(

X̂k − Xk
)(

X̂k − Xk
)T
]
= Pk (18)

On the diagonal of the error covariance matrix Pk, it is the mean square estimation error (MSEE)
of each error state which represents the estimation accuracy.

The estimation process starts by providing the prediction X̂k/k−1 of the state vector as follows

X̂k/k−1 = Φk,k−1X̂k−1 (19)

Secondly, we should predict the value of the error covariance matrix Pk/k−1

Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γk−1Qk−1ΓT

k−1 (20)

Thirdly, with the error covariance matrix Pk/k−1, the Kalman gain matrix Kk is computed by
Equation (21).

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

(21)

Next, the estimation X̂k could be obtained as follows:

X̂k = X̂k/k−1 + Kk(Zk − HkX̂k/k−1) (22)

Finally, the error covariance matrix Pk of the estimate X̂k could be calculated by the following
equation:

Pk = (I − Kk Hk)Pk/k−1 (23)

Based on the above equations, it can be seen that the Kalman gain matrix Kk is the major
contributor to MSEE. Kk is directly proportional to the estimate error covariance Pk/k−1 and inversely
proportional to the variance of the measurement noise Rk. According to Equation (20), Pk/k−1 is directly
proportional to the system noise variance Qk. In conclusion, the Kk is also proportional to the system
noise Qk. Therefore, the Kalman gain Kk presents a ratio of the uncertainty in the state estimate to
the uncertainty in observations. Therefore, the accuracy of the measurement noise model Rk and the
system noise model Qk could influence the estimation results of the KF. Because the measurement
information is always the outer information, we don’t know it very accurately. The only way to
improve the accuracy of the KF is to establish an accurate system noise model for the inertial sensors.

4.2. Noise Model Based on DAVAR

The system noise vector Qk is always assumed to be white noise whose covariance given by
the manufacturer or by the datasheet. However, the noise of the inertial sensors isn’t simple white
noise. Especially in the vibration, it contains a lot of color noise. For the sake of providing an optimal
estimation of the error states as mentioned above, we established a precise model for the sensors using
the DAVAR. On the basis of Equation (6), the variance of the noise at each time in the X axis gyro,
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Y axis gyro and Z axis gyro could be obtained. The variance of the noise at time t can be expressed as
follows:

Qk(t) =



03×3 03×3 03×3 03×6

03×3 Qa
3×3 03×3 03×6

03×3 03×3

σgx(t) 0 0
0 σgy(t) 0
0 0 σgz(t)

03×6

06×3 06×3 06×3 06×6


(24)

Qa
3×3 is the constant variance of the noise in the accelerometers which can be got from the

manufacture. σgx(t), σgy(t) and σgz(t) is the DAVAR of the X axis gyro, Y axis gyro and Z axis gyro,
respectively. Instead of a constant system noise model, the DAVAR noise model is dynamic model
which changes with time and varies with different motion. Moreover, it contains not only the white
noise, but also the color noise. Applying the DAVAR noise model to the Kalman filter will improve the
accurate and performance of the Kalman filter estimation.

5. Experiments

In order to validate that the proposed noise model based on DAVAR outperforms the conventional
one, two vibration experiments were done in the laboratory located in Beijing, China whose latitude is
39.9778◦ and longitude is 116.3448◦. The FOGs-based MWD system was mounted on the horizontal
vibration platform as Figure 1 was shown. The vibration table was a 5T vibrating table produced by
the American Ling Company, Model 1216VH, No. 219. It is a linear vibration table. The accuracy of the
FOG in the MWD under test is 0.5◦/h (1σ) and its total length of the optic fiber in the fiber coil is 600 m.
The first one was a sine vibration test with a fixed frequency 25 Hz and fixed vibration acceleration
5 g which imitated the low frequency vibration existing in the drilling process. As the Standards of
the petroleum and natural gas industry of the People’s Republic of China requires [26], the MWD
should perform such a vibration for more than 1 hour to test its reliability before putting the MWD
instrument into practice. The second one was random vibration whose vibration PSD was reported in
Figure 2. Figure 2a is the demand vibration PSD. The Figure 2b is the output of the vibration table.
The Root-mean-square of the whole vibration magnitude is 13.12 g. While drilling, a vibration sensor
was mounted on the MWD and collected the vibration information down hole. This vibration PSD was
the FFT result of the vibration sensor data. Therefore, it can simulate strong vibration while drilling.
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Figure 2. power spectral density (PSD) of the random vibration. (a) PSD of the vibration; (b) the output
of the vibration table.

Because the MWD vibrated in the fixed place, its position didn’t change and was always the same
as the initial position. Its velocity could be assumed as zeros with random noise. Therefore the aiding
source for the vibration experiment is the initial position and the velocity. The measurement vector in
Equation (12) can be described as follows;

Zk = [ Lins − Linitial λins − λinitial hins − hinitial Ve
ins − 0 Vn

ins − 0 Vu
ins − 0 ]

T
(25)

5.1. Fixed-Frequency Vibration

This vibration test was performed as the steps below. First, the vibration table was in static for
about 5 min. Then the vibration table started to vibrate. After vibrating for about 1.5 h, the vibration
table returned to static. Next, the vibration table started to vibrate again and vibrated for about 15 min.
The vibration direction was along the X axis of the MWD. This experiment with different motions can
motivate the FOG noise. The raw date of the three FOGs was represented in Figure 3. It can be seen
that during the vibration, the noise existing in the FOG data became very large. It was different from
the noise in the static, so modeling the FOG noise during vibration as the stationary white noise was
not corrected.

Then the noise modeling approach based on DAVAR has been used to analyze the vibration data.
Its results are obtained with a truncation window whose length is NW = 50, 000 samples, and step
width is 5000 samples.

Figure 4 is the DAVAR results. The surface of the DAVAR is stationary both in the static and in
vibration. But when the motion status of the FOG is changing, the surface of the DAVAR appears to
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have big crests which can be seen clearly at t = 300 s, t = 6000 s and 7800s. The DAVAR results are
consistent with the raw data of the FOGs in Figure 3. Fitting the bi-logarithm graph σ2(t, τ)− τ at
each analysis time t, the coefficients of each noise terms can be acquired as Figure 4b,d,f is showing.
At time points t = 300 s, t = 6000 s and 7800s, all the noise terms are very large. During the vibration
(t = 300 s to 6000 s), the magnitude of the noise coefficients is as small as that in the static, except for
the Quantization noise. Though the Quantization noise is larger, its value doesn’t change greatly in
vibration. So we can conclude that the noise terms excepting Quantization noise were not motivated
by the fixed frequency vibration. The reason is that the fixed-frequency vibration is a stable and
disciplinary motion without extreme changing. The Quantization noise has been motivated because
any dynamic motion will make the Quantization error larger than that in the stationary. But when
MWD began to vibrate and when it was back to static, all the noise items of MWD became bigger.
Therefore, the DAVAR could track and reveal the instability of the noise items in the FOGs data.
With the DAVAR results, we can establish a precise model for the vibration noise. The noise model
based on DAVAR is showed in Figure 5.
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Figure 3. Raw data of the Fiber Optic Gyroscopes (FOGs) in the fixed frequency vibration.
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Figure 4. Dynamic Allan variance (DAVAR) and the noise term of the fixed-frequency vibration test.
(a) The DAVAR of the FOG along X axis; (b) The coefficients of noise terms in the FOG along X axis;
(c) The DAVAR of the FOG along Y axis; (d) The coefficients of noise terms in the FOG along Y axis;
(e) The DAVAR of the FOG along Z axis; (f) The coefficients of noise terms in the FOG along Z axis.
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Figure 5. The noise model based on DAVAR.

Figure 5 shows the variance of FOGs noise derived from DAVAR. It can be seen clearly that the
noise in different motions is different. While the motion of the gyro is changing from static to vibration,
the variance of the noise is the largest in the whole experiment. During the vibration, the variance
of the noise is bigger than that in the static. Table 2 lists the variance of the noise at different time
epochs. In static, the noise is the smallest. In vibration, the noise becomes much bigger. When the
state of the motion is changing, the noise in the FOG is the biggest. Therefore, In the KF, if the system
noise is modeled as a stationary white noise with a constant variance, it must result in degrading the
performance and the accuracy of the KF.

Table 2. The variance of the noise.

Motion FOGX Noise FOGY Noise FOGY Noise

During vibration (3000 s) 3.404 2.689 3.379
Static (6500 s) 0.023 0.012 0.009

Static to vibration (6800) 6.248 6.058 8.959
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We applied the proposed noise model to the KF, namely DAVAR KF. In order to prove that the
proposed noise model based on DAVAR can improve the performance of the KF, it was compared with
the classic KF with a white noise model. We labelled it as the classic KF. The variance of the white
noise model was set to 0.02◦/h since the nominal accuracy of the FOG is 0.02◦/h. While the white
noise model only includes white noise, the noise model based on DAVAR has taken all the possible
stochastic noise in inertial sensors into consideration. Thus, with this new model, the KF can estimate
the inertial sensors drifts more accurately. Figure 6 represented the estimate value of FOGs drifts and
Accelerometers drifts.Sensors 2017, 17, 2367 12 of 18 
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Figure 6. Estimate of FOGs drifts and Accelerometers drifts.

In the Kalman Filtering, the drifts of the inertial sensors (gyros and accelerometers) are estimated
and compensated consecutively. That is, in every filtering cycle, the residual drifts are estimated and
compensated. Hence, if the KF works normally, after the consecutive compensation, the estimated
drifts should converge to zero gradually. In Figure 6, it can be noted that the maximum absolute
amplitude of the sensor drifts estimated using the classical noise model is much larger than that
using the proposed noise model. With the proposed model, the estimated value for the sensor drifts
converged to smaller values which were almost zero, not only for the bias error of the gyros, but also
for the bias error of the accelerometers. With this developed method, the whole performance of the KF
had become better and the sensor’s drift can be estimated and compensated more accurately with the
DAVAR noise modeling approach.

Before vibration, we have 5 min to alignment. The alignment results are that the inclination angle
is −0.089◦, toolface angle is −0.028◦ and the Azimuth is 186.780◦. The navigation results based on
these two noised models are compared in Figure 7.
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Figure 7. Navigation results of the fixed-frequency vibration.
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Because the MWD didn’t move in this experiment, the position results and velocity results are
also the navigation errors. It can be noted that the longitude is 0.42 m using the conventional noise
model, while it becomes 0.069 m using the proposed noise model. The longitude error is decreased by
83.6%. The height is also reduced from 0.4 m to 0.13 m. The fluctuation range of the inclination error
is repressed by the DAVAR noise model. The toolface error computed by the classic KF is divergent
with time. While using the DAVAR KF, it is converged to 0.02◦. Because the FOG based MWD is
vibrating, the velocity is fluctuating around zero. It can be seen that the fluctuation range of the
velocity calculated by DAVAR KF is smaller than the classical KF. Hence, the accuracy of the DAVAR
KF is higher than the classic KF.

5.2. Random-Frequency Vibration

This random vibration test was implemented as the steps below. Firstly, the vibration table was
stationary for about 10 min. Then the vibration platform began to vibrate and kept vibrating for about
10 min. Finally the vibration platform returned to static and kept static for about 10 min. The vibration
direction of the MWD system was along the X axis. The raw data of the three FOGs is represented in
Figure 8. During the vibration, the noise existing in the FOG data is very big. The magnitude of the
noise is about 2◦/s in the vibration.
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Figure 8. Raw data of the FOGs in the random vibration.

Then the DAVAR noise modeling approach has been utilized to model this vibration error.
The DAVAR was computed by a truncation window of length NW = 50, 000 samples, and a step of
width 5000 samples.

Figure 9 shows the DAVAR results. DAVAR surface was stationary when the vibration table was
static. Then a big crest which started at t = 600 s and stopped at t = 1200 s was appearing. At the end of
the test, the DAVAR came back to the stationary. Fitting the bi-logarithmic curve σ2(t, τ)− τ, the noise
items can be obtained as Figure 9b,d,f was shown. Before vibration (t < 600 s), each coefficient was
small and they didn’t have obvious change. While the vibration table began to vibrate (t = 600 s), each
noise term changed sharply. During vibration the noise items change obviously, which is different
to the noise items in the fixed frequency vibration. After vibration, coefficients of noise terms were
all back to the small value, similar to the value in static. In conclusion, the noise in the FOGs is not
always unchangeable and the DAVAR could identify and reveal the highly dynamic instability in the
FOG’s data.
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Figure 9. DAVAR and the noise terms in the random vibration test. (a) The DAVAR of the FOGX;
(b) The coefficients of noise terms in FOGX; (c) The DAVAR of the FOGY; (d) The coefficients of noise
terms in FOGY; (e) The DAVAR of the FOGZ; (f) The coefficients of noise terms in FOGZ.

Based on the Equation (6), the noise model based on DAVAR could be obtained. Figure 10 shows
the variance of FOGs noise derived from the DAVAR. It can be seen clearly that the noise in the random
vibration is very big. The variance of the noise in the vibration is 4◦/h, while it is only 0.03◦/h in the
static state. Then this proposal noise model was applied to the KF. Figure 11 represents the estimate
drifts of the FOGs and ACCs.
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Figure 10. Noise model based on DAVAR.
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Figure 11. Estimate drifts of FOGs and ACCs.

Using the proposed model, the maximum absolute amplitude of estimation value of the gyros’
drifts was much smaller than that by the conventional method. Though the fluctuation amplitude
for the Y axis FOG and Z axis FOG is a littler bigger, they converge to a smaller value after 1000 s.
It proved that, compared to the classical KF, the sensor’s drift can be estimated and compensated more
accurately with the proposed approach.

The navigation results based on the DAVAR noise model and the classical white noise model are
reported in Figure 12.
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Figure 12. Navigation results of the random vibration.

Using the classic KF, the position diverges with time. After 20 min random vibration, the latitude,
the longitude and the height are all increased to 10 m. On the contrary, using the DAVAR noise model,
the position is limited to 0.27 m, 0.697 m and 0.741 m, respectively. So the position error is reduced
more than 90% by the DAVAR KF. Comparing the attitude to the alignment result (inclination angle is
−0.735◦, the toolface angle is−90.278◦ and the azimuth is 182.633◦), the attitude error from the DAVAR
model displays a smaller drift than the classical one. We can see that the toolface angle obtained
by the classic KF drifts to −0.78◦while the DAVAR KF drifts only 0.02◦. Using the classical KF, the
maximum fluctuation range of the azimuth is 1◦. While using the DAVAR KF, the maximum fluctuation
range of the azimuth is 0.5◦. For the velocity, when using the classical noise model, the maximum
absolute amplitude error of the velocity is 0.5 m/s. However, when using the DAVAR noise model, the
maximum fluctuation range of velocity is only 0.2 m/s. Table 3 listed the navigation error obtained
from both of the classic KF and the DAVAR KF. It can be seen that each kind of navigation error is
decreased dramatically. The position error was reduced more than 90%. The velocity error was reduced
more than 60%. The attitude error was reduced by 30% at least. Therefore, the navigation results
obtained using the DAVAR noise model are much more accurate than using the conventional one.

Table 3. The navigation error.

Parameter Classic KF DAVAR KF Optimized

Latitude error (m) 8.562 0.257 96.99%
Longitude error (m) 7.962 0.697 91.25%

Height error (m) 10.129 0.741 92.68%
Inclination error (deg) 0.06 0.04 33.33%

toolface errer (deg) 0.78 0.02 97..45%
Azimuth error (deg) 1 0.5 50%

East velocity error (m/s) 0.3415 0.05 85.36%
North velocity error (m/s) 0.452 0.160 64.60%

up velocity error (m/s) 1.191 0.399 66.50%

6. Conclusions

This paper proposed a new noise modeling approach for vibration noise and applied this new
noise model to the Kalman filter. Firstly, the random noise items were identified and separated using
dynamic Allan variance. Then, the noise model including white noise and color noise was established
based on the results of DAVAR. Finally, this new noise model was applied to the Kalman filter to
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provide an accuracy model for the system noise. Two vibration experiments have been performed to
validate the new noise modeling approach. One was with fixed frequency vibration and another one
was with random vibration. Both the experiments’ results demonstrated that the proposed approach
could improve the performance and accuracy of the KF greatly, especially for the random vibration
experiment. For the random vibration experiment, using the DAVAR KF, the position error was
reduced more than 90%. The velocity error was reduced more than 60%. The attitude error was
reduced by 30% at least.
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