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Abstract: Camera parameters can’t be estimated accurately using traditional calibration methods
if the camera is substantially defocused. To tackle this problem, an improved approach based on
three phase-shifting circular grating (PCG) arrays is proposed in this paper. Rather than encoding
the feature points into the intensity, the proposed method encodes the feature points into the phase
distribution, which can be recovered precisely using phase-shifting methods. The PCG centers are
extracted as feature points, which can be located accurately even if the images are severely blurred.
Unlike the previous method which just uses a single circle, the proposed method uses a concentric
circle to estimate the PCG center, such that the center can be located precisely. This paper also
presents a sorting algorithm for the detected feature points automatically. Experiments with both
synthetic and real images were carried out to validate the performance of the method. And the
results show that the superiority of PCG arrays compared with the concentric circle array even under
severe defocus.
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1. Introduction

Camera calibration is always the first and irreplaceable process in vision systems such as
three-dimensional (3D) measurement, microscopy and robot navigation [1–3]. Since the calibration
accuracy directly influences the performance of the systems, numerous calibration methods have been
put forward and various targets have been designed during recent decades. These calibration methods
can be roughly divided into two categories: object-based calibration and self-calibration. Also there are
three types of objects according to their dimensionalities, namely 3D target [4], 2D target [5,6], and 1D
target [7]. Self-calibration does not need any designed targets, yet its accuracy is limited in presence of
noise [8].

To our knowledge, 2D targets have been employed widely due to their ease to manufacture
and flexibility to use. There are two common patterns of 2D target: grids [9,10] and circles [11–16].
By comparison, the circle pattern has been becoming the research hotspot due to its rich geometric
properties and high recognition. The earliest idea directly used the center of projection ellipse as the
center of a spatial circle. However, as we know, the idea is improper under general perspective [15].
To estimate the real projected centers of circle patterns precisely, Kim et al. [17] proposed a simple
method based on concentric circles, with known radii information. After that, many researchers have
concentrated on finding various geometric or algebraic constraints of concentric circles to estimate
the camera parameters. Zhang et al. [18] presented a solution to efficiently recover the projections of
the circle center from the concentric images. The problem is formulated into a first order polynomial

Sensors 2017, 17, 2361; doi:10.3390/s17102361 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17102361
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2361 2 of 14

eigenvalue problem by considering the pole-polar relationship. Subsequently, Chen et al. [19] suggested
a method of calibration based on a planar pattern containing concentric circle array. The imaged centers
of concentric circles are located using the principles of the cross-ratio and the pole-polar. To generally
improve the computational efficiency, Yang et al. [20] introduced a method only using four intersections
and two cross-ratio equations to solve the imaged centers with the concentric circle array.

These calibration methods are primarily developed for short-range vision systems [21].
The accurate calibration requires the well-focused pattern images. However, if the targets are applied
in the long-range vision systems, the camera is usual out-of-focus. Thus, the calibration result is not
reliable. In this scene, if the systems require highly accurate calibration results, the targets should
be large enough to ensure that the captured images are sharp enough [22]. Evidently, it is a great
challenge for long-range systems since fabricate large targets are becoming difficult in terms of accuracy,
feasibility, and cost.

To tackle the problem, researchers have designed the targets whose feature points are encoded
into the phase domain. With these targets, accurate calibration results can be achieved even if the
images are blurred. Schmalz et al. [23] performed camera calibrations with horizontal and vertical
phase-shift sequences whose phase distribution was robust against defocusing. Huang et al. [24]
employed eight-frame phase-shifted fringe patterns as active targets and further improved calibration
accuracy. Bell et al. [21] utilized a set of horizontal and vertical phase-shift fringe patterns to calibrate
an out-of-focus camera and An et al. [22] used Bell’s method to calibrate a large-range structured
light system. Definitely, the above methods often required that multiple images should be captured
at each camera pose and demanded more human interaction, which are laborious and inefficient.
In our previous works [25,26], we proposed a method to calibrate the camera with defocused images,
but directly used the center of projection ellipse as the real center of a phase-shift circular grating,
which can be improved. Since the projective of a circle is not invariant, the circle center which is
recovered directly from the center of the projection ellipse is not the real projection [15].

In this paper, in consideration of the accuracy of real center location and the application of the
target in long-vision system, we propose an efficient approach utilizing the phase-shifting circular
grating arrays to calibrate the camera even with the defocused images. We formulate the feature
extraction as a concentric circle issue to estimate real imaged centers of PCGs rather than directly
using the centers of projection ellipse as the real centers. Thus, the imaged center can be located
accurately. Instead of a set of phase-shift patterns, we just need three frames at each pose, which can
reduce the workload and improve the efficiency. The wrapped phases are calculated by the three-step
phase-shift algorithm [27]. Zero-phase points are roughly detected by Canny algorithm and optimized
for sub-pixel precision. We evaluate the performance of the proposed method on synthetic and real
data. Moreover, in the contrast experiment with concentric circle array pattern, the proposed method
shows its superiority of high accuracy and insensitivity to image defocusing.

Section 2 explains the related works of the proposed camera calibration method, including the
camera model, the circle projection model, the pole-polar relationship and the real imaged center
estimation. In Section 3, the proposed method is presented. Experimental results on synthetic and real
data groups are showed in Section 4. Lastly, Section 5 gives a brief conclusion.

2. Related Works

2.1. Camera Model

The camera model is a set of mathematical equations that describe the relationship between
a 3D world point and its projection onto the camera images plane. For a 3D point P = (XW YW ZW),
its corresponding image point is p = (u v). P̃ and p̃ denote their homogenous coordinates. The imaging
process can be simplified as:
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sp̃ = K[R t]P̃ (1)

here R and t, called the extrinsic parameters, represent the rotation and translation matrix from the
world coordinate system to the camera coordinate system, respectively; s is a scale factor; and k is the
intrinsic matrix that can be denoted as:

K =

 fu β u0

0 fv v0

0 0 1

 (2)

where fu and fv are the focal lengths of the camera along u and v directions, respectively; β is the
aspect factor, and (u0, v0) is the principal point. If the camera lens is nonlinear, the distortion
coefficients can be modeled as D = [K1 K2 p1 p2 K3]

T , where k1, k2 and k3 are the radial distortion
coefficients, p1 and p2 represent the tangential distortion coefficients. For simplicity, the radial distortion
coefficients k1 and k2 are considered, since the distortion function is mainly dominated by the radial
components [5,6].

2.2. Circle Projection Model

The common expression of a spatial circle is (x− x0)
2 + (y− y0)

2 = r2, which can be expressed
in matrix from as:

[x y 1]C[x y 1]T = 0 with C =

 1 0 −x0

0 1 −y0

−x0 −y0 x2
0 + y2

0 − r2

 (3)

where (x, y) is the point on the circle; (x0, y0) is the circle center; r is the radii. Similarly, a 2D ellipse
curves ax2 + by2 + cxy + dx + ey + f = 0 can be presented in equivalent matrix form as:

[x y 1]E[x y 1]T = 0 with E =

 a c/2 d/2
c/2 b e/2
d/2 e/2 f

 (4)

Obviously, the spatial circle C is in world space, but its circumference distributes on x-y plane
(z = 0). The ellipse curves as the projections of the spatial circle are on the image plane. So the matrix
from of them can be written as:

P̃
T

CP̃ = 0 (5)

p̃TEp̃ = 0 (6)

Combining Equations (1), (5) and (6), the transformation relationship between the spatial circle
and its projection ellipse curves can be obtained:

sE = (K[R t])−TC(K[R t])−1 (7)

2.3. Pole-Polar Relationship

For a spatial circle C, in the same plane, there exists a relationship between a point p and a line
l:l = Cp. The point p is the pole of l with respect to C, and the line l is the polar of p. Furthermore, if p
is the projection of the circle center, and l is the intersection line (vanishing line) of the supporting
plane with the plane at infinity. In the image plane, E is the projection conic of a spatial circle. Then the
formula can be obtained as followed [28]

l = λEp (8)
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where λ is a constant factor.

2.4. Circle Center Estimation

As we know, the circle center cannot be recovered directly from the image for its projective is
not invariant. Therefore, the way treating the centers of projected ellipses as the real imaged centers
is unreliable. In the literature, the real imaged center could be computed from geometric, algebraic
as well as the pole-polar relationship constraints on the projection of concentric circles [18–20,29].
Here, we estimate the real imaged center from three PCG images based on the theory mentioned above.

Assuming that C1 and C2 are the two spatial concentric circles, their projections conic can be E1

and E2. From Equation (7), we know the transformation relationship between the spatial circles and its
projection ellipse curves. So we can obtain the equations as follows

s1E1 = Q−TC1Q−1 (9)

s2E2 = Q−TC2Q−1 (10)

where Q = K[R t] ; s1 and s2 are the non-zero scale factors. Subtracting the equations in (9) and (10),
we get

s1E1 − s2E2 = Q−TC1Q−1 −Q−TC2Q−1 = Q−T

 0 0 0
0 0 0
0 0 r2

2 − r2
1

Q−1 (11)

The radius of two concentric circles is exactly different, so r2
2 − r2

1 is a non-zero. The property of
similarity transformation notified that the matrix in Equation (11) has a pair of identical eigenvalues,
which are different from the third one.

Apparently, the conclusion provides a clue to improve the computational efficiency of solving
the circle center. For the concentric circles, assuming its imaged center o and the vanishing line l,
From Equation (8), we have

l = λ1E1o (12)

l = λ2E2o (13)

where λ1 and λ2 are the non-zero scale factors. Subtracting the equations in (12) and (13), we get

(sE2 − E1)o = 0, with s = λ2/λ1 (14)

For Equation (14), it is another equivalent form of Equation (11). We can use the MATLAB
to solve it by the function polyeig(). There are three eigenvalues obtained since the matrix size is
3 × 3. According to the conclusion, two of them are identical and are different from the third one.
The corresponding eigenvector of the third eigenvalue is the circle center [18].

3. Proposed Method

3.1. Phase-Shifting Pattern

Here we present the phase-shifting circular grating (PCG) patterns that encode the feature point
into the intensity to calibrate the camera. While, for phase-shifting circular gratings, the images Id

k(x, y)
are displayed on a monitor that can be expressed as [30]:

Id
k(x, y) = a + b cos

(
Φd(x, y) +

2π(k− 1)
K

)
(15)

where k = 1, 2, . . . , k; Φ(x, y) = 2πr(x, y)/T denotes the unwrapped phase; T denotes the period of

the phase-shifting circular gratings; radius r(x, y) =
√
(x− x0)

2 + (y− y0)
2 is the Euclidean distance
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between points (x, y) of the phase-shifting circular grating and its center (x0, y0); a and b can adjust the
intensity of the patterns; Then, once they are captured by a camera and can be described as

Ic
k(u, v) = A(u, v) + B(u, v) cos

(
φc(u, v) +

2π(k− 1)
K

)
(16)

where A(u, v) is the average intensity, and B(u, v) is the intensity modulation of the phase-shifting
patterns. When K ≥ 3, A(u, v), B(u, v) and φc(u, v) can be obtained by the following,

A(u, v) =
1
K

K

∑
k=1

Ic
k(u, v) (17)

B(u, v) =
2
K

√√√√[ K

∑
k=1

Ic
k(u, v) sin

(
2πk

K

)]2

+

[
K

∑
k=1

Ic
k(u, v) cos

(
2πk

K

)]2

(18)

φc(u, v) = arctan
−∑K

k=1 Ic
k(u, v) sin 2πk/K

∑K
k=1 Ic

k(u, v) cos 2πk/K
(19)

With the phase-shifting patterns captured by the camera, the wrapped phase can be computed by
Equation (19).

The pattern employed in this method consists of several identical circular gratings as shown in
Figure 1a–c and we set k = 3 and a = b = 0.5. Since there is a linear relationship between the unwrapped
phase and r(x, y), the points with same phase are distributed on a same circle. As zero-phase detection
has the highest precision, we used a phase-shift technique to detect zero-phase points [31]. Especially,
the zero-phase points are distributed on a circle with r(x, y) = mT, m = 1, 2, 3 . . . In the literature,
the points with Φ = 2nπ, n = 1, 2, 3 . . . are also called zero-phase points. Figure 1d shows that the
zero-phase points are distributed on the blue and the green circle, of which the radius are T and 2T
respectively. Meanwhile, they have one common circle center. rmax which determines that the size of
PCG is the maximum value of r(x, y). In order to ensure two complete PCG periods, a suitable rmax

should be chosen.
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Wrapped phase of single PCG. 

PCG arrays are utilized to gain more circle centers as feature points for camera calibration due 
to one PCG only has one center. The array with M rows and N columns filled with uniform PCGs. 
The spaces between adjacent centers along the horizontal and vertical directions are equal, and their 
values are known. Let the space be Ds. To avoid interference between adjacent PCGs, we let Ds ≥ 2 
rmax. Through the above analysis, for a M × N PCG array, the zero-phase points distribute on M × N 
concentric circles and there are M × N feature points for calibration. According to perspective 
projection, the projection of the circle is ellipse [32]. Therefore, the imaged zero-phase points 
distribute on 2 × M × N ellipses.  

3.2. Feature Detection 

As mentioned above, the imaged zero-phase points are distributed on 2 × M × N ellipses that 
are the projections of M × N concentric circles. Thus those ellipses curves would be computed 
accurately to locate the PCG centers which are used as the feature points. To start with, we provide 

Figure 1. The phase-shifting circular patterns. (a–c) Images of the 4 × 4 PCG array patterns;
(d) Wrapped phase of single PCG.

PCG arrays are utilized to gain more circle centers as feature points for camera calibration
due to one PCG only has one center. The array with M rows and N columns filled with uniform
PCGs. The spaces between adjacent centers along the horizontal and vertical directions are equal,
and their values are known. Let the space be Ds. To avoid interference between adjacent PCGs, we let
Ds ≥ 2 rmax. Through the above analysis, for a M × N PCG array, the zero-phase points distribute on
M × N concentric circles and there are M × N feature points for calibration. According to perspective
projection, the projection of the circle is ellipse [32]. Therefore, the imaged zero-phase points distribute
on 2 ×M × N ellipses.
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3.2. Feature Detection

As mentioned above, the imaged zero-phase points are distributed on 2 ×M × N ellipses that are
the projections of M × N concentric circles. Thus those ellipses curves would be computed accurately
to locate the PCG centers which are used as the feature points. To start with, we provide a solution
to separate the PCG from the array. A suitable threshold can be chosen to gain the binary mask Ω

via the Equation (20). The Ω for the PCG array can be divided into M × N sub-masks for single PCG
using the connected component labeling operation. The sub-image of each PCG therefore can be
treated individually.

Ω =

{
1, i f (Ic

1(u, v) + Ic
2(u, v) + Ic

3(u, v)) > threshold
0, otherwise

(20)

According to Equation (19), the wrapped phase ϕ(u, v) of the proposed patterns can be
computed as

ϕ(u, v) = arctan
(√

3
Ic

3(u, v)− Ic
2(u, v)

2Ic
1(u, v)− Ic

2(u, v)− Ic
3(u, v)

)
(21)

Then, the zero-phase points can be detected via the conventional Canny edge-detection algorithm
because of 2π discontinuities. After that, the zero-phase points of each PCG are used to compute two
ellipse curves by the least-squares ellipse-fitting algorithm [33]. A sub-mask can identify the wrapped
phase of its corresponding PCG. The rough location of the imaged PCG center can be obtained as shown
in Section 2.4. Since the edge detection operation could only extract the pixel ellipse, the zero-phase
points should be refined to achieve sub-pixel accuracy. By using the constraint between the zero-phase
and the radius [26], zero-phase point refinement easily achieves sub-pixel accuracy.

Once the zero-phase point sub-pixel optimization is solved, the high accuracy ellipse curves can
be obtained by fitting ellipse with the least-squares method again. Repeating the step of circle center
estimation, the real imaged center of PCG can be finally located. The whole map of feature detection
of the proposed method is shown in Figure 2.
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3.3. Sorting Feature Points

Though the feature points are detected, the camera calibration should be conducted with them in
a meaningful order. This section is therefore a crucial step for calibration, since it provides a solution
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to automatically label the feature points. Then a sorting algorithm is put forward to solve this problem
and can be summarized as follows:

1. First of all, the centroid Z of those feature points is computed and the Euclidean distance between
Z and the feature points can be used to identify one vertex. Meanwhile, the feature point whose
distance is the longest can be regarded as the vertex, let it be A. Using point A and Z as the inputs,
we can obtain a straight line l0 : a0u + b0v + c0 = 0 (a0 > 0).

2. We define D0 = a0u0 + b0v0 + c0, and (u0, v0) is the coordinate of the feature point. The coordinate
of each feature point is substituted into the equation to compute D0. The D0 is a signed float value,
thus its maximum and minimum can be directly determined which point is B and D, respectively.

3. We can obtain another straight line l1 : a1u + b1v + c1 = 0 (a1 > 0) connecting point B and D.
Repeating the step 2, D1 = a1u0 + b1v0 + c1 can be calculated to locate the point C. Once the
four vertexes are determined, we compute the sum of the row and column of each vertex.
The minimum and maximum of the sum represent the upper-left point A and the down-right
point C respectively. Then, the order of the vertexes can be refined.

4. Since the size of PCG array is known, the planar constraints can be used to order the feature
points [34]. Finally, the calibration can be performed using the one-to-one mapping. The scheme
of the sorting algorithm is presented in Figure 3.
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4. Experiments and Results

In this section, we performed experiments with simulated and real images to verify the
effectiveness and accuracy of the presented approach. All the experiments were conducted on a same
computer, and the imaged centers of different targets were recovered in the same way as described in
this paper.

4.1. Experiment on Simulated Images

In the computer simulation, the simulated images generated based on the principle of the
ideal pinhole model are 1920 × 1280 resolution, where the distance between adjacent PCG centers
Ds = 375 pixels. However, the array size of virtual PCG array varied with the different simulations.
The intrinsic parameters of the simulated camera are

K =

 2000 0 960
0 2000 640
0 0 1

 (22)
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In the following simulations, we studied the impact of the PCG period and the number of PCGs
on calibration accuracy and investigated the performance of PCG array against different noise levels.
All the PCG array images used in the simulations are viewed by the simulated camera at 6 orientations.
For each experiment, the process was repeated in 20 trials and the result was used to compute the
error. The root-mean-square re-projection error (RMSE) was also computed to judge the influence of
the above aspects to calibration.

Influence of the number of PCGs. In general, to increase the number of feature points is one of
the way to improve the accuracy of calibration. This experiment is designed to study how the number
of PCG of the proposed pattern impacts the calibration accuracy. Let the row and column of the PCG
array be equal. The dimension of the PCG array is varied from 3 to 8 to change the number of feature
points. The period of PCG is 45 pixels. For each number, the images were used to finish calibration
with independent Gaussian noises with mean 0 and standard deviation 0.1 pixel. The errors were
computed by comparing with the ground truth.

As shown in Figure 4, the mean values of the errors and the RMSEs decrease as the number of
PCGs increases. Thus sufficient feature points are essential in our method. Particularly, since the
number of feature point was over 6 × 6, the RMSEs and the absolute errors in principal point are
almost stable.
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Influence of PCG period. As mentioned above, the radius of zero-phase circles is relevant to
the PCG period. To change the PCG period is to change its radius of zero-phase circles. To figure
out the influence of PCG period to our method and select a suitable PCG period for the real scene,
the experiment with different PCG periods was conducted. The virtual PCG arrays contained 5 × 5
uniform PCGs with T = 25, 30, 35, 40, 45, 50, 55, and 60 pixels. Meanwhile, Gaussian noise with
zero-mean and standard deviation 0.1 pixel was added to the simulated images.

As it can be seen in Figure 5a,b, the accuracy changes slowly and the maximum differences of
relative error in all the parameters are less than 0.05%. Theoretically, we can choose the period as large
as we can to ensure the accuracy of center location. However, the size of monitor increases as the PCG
period increases. The number of PCG must be reduced simultaneously, which could impact the final
result. As shown in Figure 5c, though the RMSEs changed slightly with different period, there is still
a suitable period to get higher accuracy. In the real condition, the PCG period is set at 35 pixels to
ensure more PCGs displayed on the 1920 × 1080 Liquid Crystal Display (LCD).
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Influence of noises. This experiment examined the influence of noises to the accuracy of location.
The 5 × 5 PCG arrays with T = 45 pixels were employed to calibrate the simulated camera from six
poses. The standard deviation of the Gaussian noises varied from 0 pixels to 0.7 pixels during the
experiment. It can be seen from Figure 6a that the relative errors for focal length increase nonlinearly
with the noises. When the noises are below 0.45 pixels, our method could show its robustness,
but when the image noises are over 0.45 pixels, the errors decrease sometimes. Figure 6b,c shows that
the absolute errors and RMSEs increased without regularity as the noise level increased and it cannot
indicate the robustness of the proposed method to noise. So, it requires the higher precision of feature
point extraction.
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4.2. Experiment on Real Images

To verify the performance of our method in real scene, a typical calibration system was set up as
shown in Figure 7. The orientation and position of the camera can be adjusted by the device which
consists of a turntable and a lift. The images were taken by a Canon EOS-M2 camera with a zoom
lens, the resolution of the camera is 1920 × 1280. A LCD of Admiral Oversea Corporation with
1920 × 1080 resolution as the target to display the calibration patterns. To start with, the target was
placed at a suitable distance from the camera, and the optical axis of the camera is perpendicular to
the screen. The camera was fixed on the device, and a focal length was chosen to capture the sharp
image of the pattern. Furthermore, the camera was controlled by a smartphone and the images can be
obtained remotely.
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Then, two experiments were designed and performed to verify the accuracy of the center location
used in our method and the robustness to the defocus of the proposed method respectively. We used
the same algorithm as in the simulations for camera calibration. All the operations were performed in
the MATLAB.

4.2.1. Accuracy Verification Experiment

The center of projection ellipse is directly regarded as the center of a spatial circle, which is
improper under general perspective [15]. In the proposed method, the real imaged center of PCG
was formulated as a concentric circle issue to solve, rather than directly using the center of projection
ellipse. When the problem was treated as a concentric circle, the real projection can be computed using
the method described in Section 2.4 and to verify the accuracy of the center estimation in our method,
an experiment with our pattern was designed and performed. During the verification experiment,
the rotation angle was changed by the turntable as shown in Figure 7, and the turntable was turned
from 0 to 45◦, and the images were captured every 15◦.

The experiment was carried out with one PCG patterns whose T = 200 pixels. Meanwhile,
we made a spot on the PCG center (the white ‘+’ in Figure 8a–c). The captured images with 15◦,
30◦ and 45◦ were shown in Figure 8a–c. For each position, the centers of inner (the blue ‘×’) and
outer (the green ‘×’) ellipses were computed respectively as well as the imaged center located by
our method (the red ‘×’). We enlarge the PCG center region in same magnification in Figure 8d–f,
and the one-to-one match between the images and the center region is a–d, b–e and c–f. As it can be
seen in Figure 8d,f, the centers of ellipses were farther from the real centers as the angle increased but
the projection located by our method coincided well with the real projection. Then, we can conclude
that the location accuracy of the method is more accurate than the method used in our previous
work [25,26]. Thus, the result of this experiment verified the precision of our method and partly
illustrated that our work is valuable and a contribution. The method is more suitable in the scene
whose rotation angle is large.
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and 45◦ respectively.

4.2.2. Contrast Experiment with the Concentric Circle Array

In this experiment, we took the concentric circle array pattern and the PCG arrays for contrast
experiments to illustrate the superiority of the later. Both of them contain 6 × 6 feature points, and
their centers have same locations. The parameters of PCG arrays are: a = 0.5, b = 0.5, T = 35 pixels
and Ds = 180 pixels. Thus the radius of two concentric circles is 35 pixels and 70 pixels respectively.
We properly adjust the focal length and the aperture of the camera to capture the images with
three different defocus degrees. For each defocus degree group, we took images of the two targets
from fifteen different orientations. The center of PCG and concentric circle is regarded as feature
point. Meanwhile, the method to estimate the real imaged center of the two patterns is presented in
Section 2.4. However, the sub-pixel ellipse extraction of a concentric circle is extracted by an optimized
interpolation algorithm [20].

Figure 9 shows three sets of pattern images of different defocus degrees, and the first set images
were captured almost in focus. Another two groups were slight and severe defocusing images
respectively. As shown in Figure 10, the images of wrapped phase of PCG with detected feature points,
and the red crosses denoted the imaged centers. We estimated the camera intrinsic parameters using
the standard calibration method [34]. RMSE of feature points was used to evaluate calibration accuracy.
The calibration results of three trials are listed in Table 1. As mentioned above, the first trial is to
calibrate the camera using well-focused images. The RMSE in the presented method is a little smaller
than concentric circle array. However, the difference between the two methods changed significantly
as the defocus degree was severe. Calibration results show that the RMSE of the concentric circle array
increased rapidly, but that of PCG was not. Such results indicate that our method can calibrate the
camera with high accuracy even in the out-of-focus scene.
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Table 1. Calibration result for real images using two patterns.

Pattern fu fv u0 v0 k1 k2 RMSE

Trial 1
PCG arrays 2748.012 2747.892 982.443 616.473 −0.010 0.099 0.045

Concentric circle array 2745.681 2745.370 982.433 615.732 −0.012 0.103 0.054

Trial 2
PCG arrays 2732.675 2732.785 980.751 615.591 −0.012 0.105 0.048

Concentric circle array 2721.353 2720.358 972.573 609.420 −0.041 0.182 0.136

Trial 3
PCG arrays 2674.015 2674.918 974.139 614.406 −0.047 0.174 0.057
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Figure 10. Wrapped phase with the calculated imaged centers of different defocus degrees. (a–c) The 
wrapped phase of Figure 9a–c respectively. 

5. Conclusions 

This paper has presented an accurate camera calibration method that is robust to defocus. By 
using the insensitivity to image defocusing of fringes, the proposed patterns for display are designed 
to be three phase-shifted circular grating arrays. The centers of PCGs are used as feature points. 
Since zero-phase points are distributed on concentric circles, the feature location problem is treated 
as a concentric circle issue. We estimate feature locations by the pole-polar relationship and 
algebraic operations rather than using the center of projection ellipse directly, such that the center 
can be located precisely. Our study gives a solution to the conventional troubles in using defocused 
images for camera calibration. We also present a sample sorting algorithm to label the feature points. 
Moreover, it requires just three frames at the same pose comparing with the other fringes patterns. 
The effectiveness of the proposed method has been validated by experiments with simulated and 
real images. The superiority allows the calibration using blurred images with a handheld camera. 
Thus, it is valuable for calibration of long-range vision systems. 
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5. Conclusions

This paper has presented an accurate camera calibration method that is robust to defocus. By using
the insensitivity to image defocusing of fringes, the proposed patterns for display are designed
to be three phase-shifted circular grating arrays. The centers of PCGs are used as feature points.
Since zero-phase points are distributed on concentric circles, the feature location problem is treated as
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a concentric circle issue. We estimate feature locations by the pole-polar relationship and algebraic
operations rather than using the center of projection ellipse directly, such that the center can be located
precisely. Our study gives a solution to the conventional troubles in using defocused images for camera
calibration. We also present a sample sorting algorithm to label the feature points. Moreover, it requires
just three frames at the same pose comparing with the other fringes patterns. The effectiveness of the
proposed method has been validated by experiments with simulated and real images. The superiority
allows the calibration using blurred images with a handheld camera. Thus, it is valuable for calibration
of long-range vision systems.
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