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Abstract: In this paper, a distributed state estimation method based on moving horizon estimation
(MHE) is proposed for the large-scale power system state estimation. The proposed method partitions
the power systems into several local areas with non-overlapping states. Unlike the centralized
approach where all measurements are sent to a processing center, the proposed method distributes
the state estimation task to the local processing centers where local measurements are collected.
Inspired by the partitioned moving horizon estimation (PMHE) algorithm, each local area solves
a smaller optimization problem to estimate its own local states by using local measurements and
estimated results from its neighboring areas. In contrast with PMHE, the error from the process
model is ignored in our method. The proposed modified PMHE (mPMHE) approach can also take
constraints on states into account during the optimization process such that the influence of the
outliers can be further mitigated. Simulation results on the IEEE 14-bus and 118-bus systems verify
that our method achieves comparable state estimation accuracy but with a significant reduction in
the overall computation load.

Keywords: distributed state estimation; moving horizon estimation; wide-area monitoring; sensor
measurement; power systems; outliers

1. Introduction

Power system state estimation (PSSE) plays an indispensable part in the power industry [1].
One common centralized approach named the weighted least squares (WLS) has been widely used
for PSSE, employing a nonlinear measurement model. In recent years, phasor measurement units
(PMUs) have drawn much attention because they can provide voltage and current phasors and the
measurement model becomes linear [2,3]. The computation complexity will become simpler.

Even though PMUs can result in measurements with higher accuracy, the PSSE still constitutes
a major challenge due to the presence of bad data or outliers [3–5]. Such outliers that are far away
from the expected measuring data create the potential risk of misleading the estimated result [6].
The WLS, primarily based on a single snap shot of measurements, is not a robust method and it may
lead to a biased estimated result even when a single bad measurement occurs [3,7]. One common
way to alleviate the influence of outliers is to use more snap shots of measurements. Moreover, in
order to reduce the influence of outliers further, the largest normalized residuals (LNR) test [8] is
usually used in WLS to deal with bad data. Many other centralized algorithms based on the WLS
have been proposed in [9–11]. Due to the increasing number of PMUs installed in substations, it is
reasonable to assume that the power systems will be only measured by PMUs in the near future [12].
The authors in [13] use an adaptive approach in updating the accuracies of the PMUs while employing
local decision metrics and an Internet of Things (IoT) paradigm. It allows considering adaptive values
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of the accuracies of different measurement devices in the estimation process. However, the algorithm
is basically solving a centralized state estimation problem for the distribution system. In [3,4], the
least absolute value (LAV) has been proposed to handle the outliers where the measurements are
collected from PMUs. However, the algorithms described so far are mostly based on the measurement
model only. A robust estimator via the moving horizon strategy has been developed for PSSE in [14].
The re-weighted moving horizon estimation (MHE) aims to solve an optimization problem at each
time instant by using a limited amount of the most recent information, and the objective function of
re-weighted MHE includes the measurement model error, the process model error and the error in
the state estimate at the beginning of the window. Moreover, the constraints on states have also been
exploited. By having these constraints in the optimization process, it is more robust to the outliers.
The price to pay is an increased complexity since the computational load will increase. A modified
MHE (mMHE) has been developed in [15]. In this reference, the objective function of the mMHE
consists only of the sensor model error and the error from the prior estimate. The state at the beginning
of the window is obtained in the optimization, instead of all states in the window under the scheme of
MHE. Therefore, the mMHE will have a higher computing speed than the MHE. The tradeoff is the
estimated accuracy of mMHE is a little smaller than that of MHE, but their difference is insignificant.

Due to the fact that power systems become larger and increase in complexity, the centralized
estimators that process the measurements from the whole grid may no longer be feasible [16,17].
Based on the rapid growth of usage of the wide-area monitoring systems for modern power grids,
many approaches on distributed state estimation are proposed. A fully distributed state estimation
approach is presented whereby each local area solves the system-wide states [18]. The authors in [9]
propose a fully decentralized adaptive re-weighted state estimation algorithm for hybrid PSSE, where
both measurements from the supervisory control and data acquisition (SCADA) system and PMUs are
used. However, for the two algorithms mentioned above, a large amount of iterations are required
when the power systems are large. A distributed state estimation for power systems with linear
models has been proposed and the alternating direction method of multipliers (ADMM) is used to
solve the optimization problem [19]. A distributed robust bilinear state estimation method is proposed
to multi-area power systems with nonlinear measurements where interregional communication is
required but a central coordinator is not necessary [20]. One drawback of the distributed algorithms
described so far is that they are largely based on just the measurement model and fall into the WLS
category. The authors in [21] propose a new distributed framework where the process model is used.
The average consensus algorithm is applied such that the substations can maintain the global state
through information exchange with neighbors. However, for all the approaches mentioned above,
the constraints on states are not considered during the optimization process. This may lead to a
suboptimal solution. A distributed moving horizon estimation (DMHE) for power systems has been
proposed in [22]. It is suitable for advanced applications such as wide-area monitoring and control
that require the system-wide states to be available to all the regional transmission organizations
(RTOs) [23]. However, the computational load for each local area is still heavy. The authors in [24]
propose a distributed state estimation method for linear systems, and it is known as the partitioned
moving horizon estimation (PMHE). The PMHE is more reasonable and suitable for large-scale systems
monitoring because each local area (or subsystem) solves for the local states via a smaller optimization
problem and the computational load is smaller whereby measurements are only sent to the local
estimator but not to the centralized estimator, so a large amount of communication burden would be
saved. Meanwhile, information is exchanged among neighboring areas only so the communication
load is also small.

In this paper, considering the high speed of mMHE, the accuracy of MHE, and the advantage of
PMHE to implement the MHE in a distributed way, a distributed state estimation method named the
modified PMHE (mPMHE) is proposed and implemented for PSSE. Under the scheme of mPMHE,
the error from the process model is ignored in the objective function. The proposed mPMHE has the
following advantages:
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• Instead of all the states in the window estimated by PMHE, the mPMHE only estimates the state
vector at the beginning of the window so it is faster than PMHE. The estimated precision of
mPMHE is slightly lower than that of PMHE, but their difference is insignificant. The mPMHE
achieves comparable state estimation accuracy but with a significant reduction in the overall
computation load.

• It is a distributed algorithm and is suitable for large-scale PSSE. Each local area solves for its own
local states by using the local measurements and the estimated results from neighboring areas,
so the computation load is small. In addition, the communication load is also small because the
information is exchanged among neighboring areas only.

• Constraints are taken into account during the optimization process and it is robust to outliers.
Hence, good estimated results could be obtained.

This paper is organized as follows. The centralized state estimation is briefed in Section 2 and the
mPMHE approach is proposed in Section 3. The simulations on the IEEE 14-bus and 118-bus systems
are shown in Section 4 and conclusions are made in Section 5 respectively.

2. Centralized State Estimation

2.1. Measurement Model and State Equation

The linear measurement model based on the PMUs [3] is given as

zk = Hxk + vk, (1)

where H is the measurement matrix and k is the time step. This paper uses rectangular coordinates.
z ∈ Rm is the measurement vector composed of the real and imaginary components of the bus voltage
(or the line current) phasors. The state vector x ∈ Rn includes the real and imaginary parts of the
voltage phasors. v ∈ Rm is assumed to be noise with covariance R. The standard deviation of i-th
measurement noise is denoted as σi. In this paper, the following assumption is held:

Assumption 1. The power system is observable so the matrix G = HT H is full rank.

The following simplified process model is considered for the state estimation [25,26]:

xk+1 = Axk + wk, (2)

where A is assumed to be an identity matrix according to [26] and wk represents the zero-mean
disturbance with covariance Q.

2.2. Weighted Least Squares (WLS)

The WLS is an iterative algorithm that is applied to measurements including the power injections
and power flows are usually collected from the SCADA system. However, the iterations are not
necessary when PMUs are used. A traditional power system may be considered as a quasi-static
system [25] because load demands change slowly and hence the state changes slowly. The sampling
time of PMU measurements is usually in the order of milliseconds while the estimates are usually
updated once every few minutes if the measurements are collected from SCADA [27]. In order to
alleviate the influence of bad measurements, a total horizon length of N + 1 PMU measurements are
used. During this interval, it is assumed that the system state is constant. The state xt can be estimated
by solving the following cost function:

min
x̂t

J = min
x̂t

m

∑
i=1

t

∑
k=t−N

ρ(ei,k) = min
x̂t

m

∑
i=1

t

∑
k=t−N

(ei,k)
2

2σ2
i

(3)
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where ei,k is the i-th measurement residual at time step k,

ei,k = zi,k − Hi x̂k (4)

Equation (4) gives ∂ei,t
∂x̂t

= −(Hi)
T . Differentiating the above cost function (3) with respect to x̂t,

∂J
∂x̂t

=
∂J

∂ei,t

∂ei,t

∂x̂t
=

m

∑
i=1

t

∑
k=t−N

∂ρ(ei,k)

∂ei,k

1
ei,k

ei,k
∂ei,k

∂x̂t

= −
m

∑
i=1

t

∑
k=t−N

Wi,kei,k HT
i (5)

where
Wi,k =

1
σ2

i

Using (4), Equation (5) can be written as

∂J
∂x̂t

= −
m

∑
i=1

t

∑
k=t−N

Wi,k(zi,k − Hi x̂t)HT
i

= −H̄TW(Z− H̄x̂t) (6)

= −H̄TWE

, Ψ(E)

where

H̄ =
[

HT · · ·HT
]T
∈ R((N+1)m)×n

Z =
[

zT
t−N · · · zT

t

]T
∈ R((N+1)m)

E =
[

eT
t−N · · · eT

t−N

]T
∈ R((N+1)m)

W = diag

(
1
σ2

1
, . . . ,

1
σ2

m
, . . . ,

1
σ2

1
, . . . ,

1
σ2

m

)
∈ R((N+1)m)×((N+1)m)

Under Assumption 1, the matrix H̄TWH̄ is also full rank and is an invertible matrix. Next, set
Ψ(E) = 0, then from (6) the estimation of xt is given by

x̂t = (H̄TWH̄)−1H̄TWZ (7)

Note that the WLS is not a robust estimator and the largest normalized residuals (LNR) method [8]
is usually used in WLS to deal with bad data. The normalized residuals are calculated as follows:

R̄ = diag(σ2
1 , . . . , σ2

m, . . . , σ2
1 , . . . , σ2

m)

Ḡ = H̄T R̄−1H̄

Ω̄ = R̄− H̄Ḡ−1H̄T

enorm
i,k =

|ei,k|√
Ω̄ii

The normalized residuals enorm
i,k are calculated according to the residual covariance matrix Ω̄ and

measurement residual ei,k. If the normalized residuals enorm
i,k are larger than a pre-determined threshold,
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the largest one will correspond to the bad measurement Zbad
i . Once the largest normalized residual is

found, the corresponding measurement is updated:

Znew
i = Zbad

i − R̄ii

Ω̄ii
ebad

i,k

The states will then be recalculated based on the updated measurements Znew
i . Several iterations

may be needed in order to make sure that all normalized residuals are less than the pre-determined
threshold, for example, 3.0 [3].

2.3. Moving Horizon Estimation (MHE)

The common WLS estimator for power system state estimation has been discussed in previous
subsection. However, the constraints on the states are not considered and this may lead to suboptimal
estimates. In this subsection, the MHE algorithm in [28] is applied to the PSSE problem.

Θ∗t = min
x̂t−N ,...,x̂t

Ψt(x̂t−N , . . . , x̂t) (8)

subject to

x̂k+1 = Ax̂k + ŵk, k = t− N, . . . , t− 1

zk = Hx̂k + v̂k, k = t− N, . . . , t

x̂k ∈ X

where X is a set of constraints defined by linear inequalities. In the following, the notation
t− N|t− N − 1 refers to the time step for prediction from step t − N − 1 to t − N. Denote ‖ · ‖
as the Euclidean norm of a vector and ‖ · ‖2

S as the square of the weighted Euclidean norm of a vector,
‖x‖2

S = xTSx, where S is a positive definite matrix.
The objective function of MHE in (8) at time step t is given by

Ψt(x̂t−N , . . . , x̂t) =
1
2

t

∑
k=t−N

‖v̂k‖2
R−1 +

1
2

t−1

∑
k=t−N

‖ŵk‖2
Q−1 + Φt−N (9)

where the arrival cost Φt−N is given as

Φt−N =
1
2
‖x̂t−N − x̂t−N|t−N−1‖2

P−1
t−N|t−N−1

(10)

For the arrival cost (10), we calculate Pt−N|t−N−1 from Pt−N−1|t−N−2 using the equation derived
in [29]:

Pt−N|t−N−1 = APt−N−1|t−N−2 AT − APt−N−1|t−N−2HT(R + HPt−N−1|t−N−2HT)−1

×HPt−N−1|t−N−2 AT + Q (11)

The objective function of MHE includes three error terms: (i) the error between the measurement
and sensor model prediction by (2); (ii) the error between the estimated state and its process model
prediction by (1); (iii) and the error between the initial state x̂t−N in the horizon and the a priori state
estimate x̂t−N|t−N−1.

2.4. Modified Moving Horizon Estimation (mMHE)

In this subsection, we briefly review the mMHE method presented in [15]. The mMHE is
an approach that compromises between the computational complexity and the estimated accuracy.
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The objective function for mMHE includes two terms, a prior term given in (10) and the measurement
error term given in (3),

Θ∗t = min
x̂t−N

Ψt(x̂t−N) (12)

where

Ψt(x̂t−N) =
1
2

t

∑
k=t−N

‖v̂k‖2
(R)−1 +

1
2
‖x̂t−N − x̂t−N|t−N−1‖2

P−1
t−N|t−N−1

(13)

Note that the MHE approach needs to solve the problem with a higher dimension (N + 1)n and
also acquires all the states in the current window, x̂t−N , . . . , x̂t. The objective function of WLS given in
(3) only includes the first error term of MHE and its dimension is n. The mMHE solves a problem with
the same dimension as (3) so the computational time is also faster than MHE. Even though the errors
from the process model are not included in the objective function of mMHE, there still exists some
uncertainty and Q should be combined in (11).

Driven by the increasing demand of wide-area system monitoring and the high speed of mMHE, a
distributed approach named the modified partitioned MHE (mPMHE) is proposed in the next section.

3. Modified Partitioned Moving Horizon Estimation (mPMHE)

In the previous section, the WLS, MHE and mMHE are implemented under the centralized setup,
where all PMU measurements are collected and then sent to a control center. However, it may not be
feasible in practice when a power grid is large-scale. In this section, on the basis of PMHE proposed
in [24], we develop a distributed state estimation approach named the modified PMHE (mPMHE)
for large-scale power system monitoring, where each local area estimates its local states based on
local measurements and information exchanges among the neighboring areas. Moreover, the mPMHE
takes less time than PMHE. The tradeoff is a decrease in the estimated accuracy. The convergence of
mPMHE follows that of PMHE presented in [24].

3.1. mPMHE Problem Formulation

Let models (1) and (2) be partitioned into ` control areas with non-overlapping states [24]:

x[i]t+1 = A[i]x[i]t + Ã[i]xt + w[i]
t (14)

z[i]t = H[i]x[i]t + H̃[i]xt + v[i]t (15)

where x[i]t ∈ Rni is the local states in area i, z[i]t ∈ Rmi represents the local measurements, H[i] ∈ Rmi×ni

is the local measurement matrix, w[i]
t ∈ Rni and v[i]t ∈ Rmi are the noise with covariance Q[i] and

R[i] = diag(σ2
1 , . . . , σ2

mi
), respectively. Matrices Ã and H̃ have structures in the form of

Ã = A− A∗ = [(Ã[1])T . . . (Ã[`])T ]T (16)

H̃ = H − H∗ = [(H̃[1])T . . . (H̃[`])T ]T (17)

in which A∗ = diag(A[1], . . . , A[`]) and H∗ = diag(H[1], . . . , H[`]). The global vectors are

xt =
[
(x[1]t )T . . . (x[`]t )T

]T
and zt =

[
(z[1]t )T . . . (z[`]t )T

]T
.

We assume that the power system partitioning is based on the following assumption:

Assumption 2. The pair (A[i], H[i]) is locally observable, for i = 1, . . . , `.
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Denote x̂[i]k|t−1 as the estimation of x[i]k performed at time step t− 1. we approximate the covariance

of (xk|t−1 − x̂k|t−1) as Πk|t−1 = diag(Π[1]
k|t−1, . . . , Π[`]

k|t−1).
In this paper, the proposed mPMHE-i at time t is defined as:

Θ∗[i]t = min
x̂[i]t−N

Ψt(x̂[i]t−N) (18)

subject to

x̂[i]k+1 = A[i] x̂[i]k + ŵ[i]
k , k = t− N, . . . , t− 1

z[i]k = H[i] x̂[i]k + H̃[i] x̂k|t−1 + v̂[i]k , k = t− N, . . . , t

x̂[i]k ∈ Xi

where Xi is the constraint set.
The local cost function in (18) is given by

Ψt(x̂[i]t−N) =
1
2

t

∑
k=t−N

‖v̂[i]k ‖
2
(R[i]

k|t−1)
−1

+
1
2
‖x̂[i]t−N − x̂[i]t−N|t−1‖

2
(Π[i]

t−N|t−1)
−1

(19)

in which

R[i]
k|t−1 = R[i] + H̃[i]Πk|t−1(H̃[i])T (20)

where H̃ is quite sparse and the second term on the right-hand side of (20) depends only on the
neighboring areas.

3.2. Update Matrices Π[i]
t−N|t−1

Denote the local observability matrix as O
[i]
N = [(H[i])T . . . (H[i](A[i])N−1)T ]T and 0 as the matrix

of zero elements. We follow the method given by [24] to update Π[i]
t−N|t−1 via the following equation:

Π[i]
t−N|t−1 = A[i]Π̄[i]

t−N−1|t−2(A[i])T + Q[i]
t−N−1|t−2 − A[i]Π̄[i]

t−N−1|t−2(O
[i]
N )T

×(O [i]
N Π̄[i]

t−N−1|t−2(O
[i]
N )T + R̃[i]

N|t−2)
−1O

[i]
N Π̄[i]

t−N−1|t−2(A[i])T

where

Π̄[i]
t−N−1|t−2 = ((Π[i]

t−N−1|t−2)
−1 + (H[i])T(R[i]

t−N−1|t−2)
−1H[i])−1,

R̃[i]
N|t−2 = R[i]

N|t−2 +L
[i]

w,NQ[i]
N−1|t−2(L

[i]
w,N)

T ,

R[i]
N|t−2 = diag(R[i]

t−N|t−2, . . . , R[i]
t−1|t−2),

Q[i]
N−1|t−2 = diag(Q[i]

t−N|t−2, . . . , Q[i]
t−2|t−2),

L
[i]

w,N =


0 0 . . . 0

H[i] 0 . . . 0
...

...
. . .

...
H[i](A[i])N−2 H[i](A[i])N−3 . . . H[i]

 .



Sensors 2017, 17, 2310 8 of 21

4. Simulation Results

In this section, simulations on the IEEE 14-bus and 118-bus systems using the mMHE and mPMHE
algorithms will be presented. We also illustrate the effect of the number of PMUs installed in the power
systems and consider two scenarios: one with redundant observations on selected buses and one with
a minimum number of PMUs for full topological observation.

4.1. Simulations on the IEEE 14-Bus System

4.1.1. Redundant Observations

In this example, the IEEE 14-bus system is shown in Figure 1 where the PMUs are placed
according to [26]. Fifty-eight measurements, zi, i = 1, . . . , 58, consisting of 12 voltages (i = 1, . . . , 12)
and 46 currents (i = 13, . . . , 58) are taken at each time instant k. When the horizon length N + 1
increases, the computation load of MHE and PMHE will also increase due to the increasing dimension
of the optimization problem arising from MHE and PMHE. However, the level of estimation accuracy
will be higher when the horizon increases. It should be noted that the horizon length can be chosen
according to the required estimation accuracy. In this paper, for simplicity, the measurements with
horizon length 3, i.e., k = t− 2, t− 1, t are used to give one set of estimates. According to [1], the
WLS estimator usually uses one snap shot of measurements (the horizon length is 1) to estimate, in
this paper we also show the result for comparison and it is represented by “WLS(1)” in the following
figures. The measurement matrix H is calculated according to the parameters in [30]. There are
n = 28 states in the vector x =

[
Vr

1 Vr
2 · · ·Vr

14 Vim
1 · · ·Vim

14
]T of (1) in which Vr

i and Vim
i (j = 1, . . . , n

2 )
are the real and imaginary parts of the bus voltage phasors, respectively. A is simplified as an identity
matrix according to [25,26]. The IEEE 14-bus system is partitioned into four non-overlapping areas
where each local area is locally observable. Due to the partitioned type, information is only exchanged
with its immediate neighbors and the communication scheme is given in Figure 2. The measurements
allocated for each area are given in Table 1, where Ir

i,j and Iim
i,j define the real and imaginary components

of current phasors from bus i to bus j respectively.

Figure 1. IEEE 14-bus system with phasor measurement units (PMUs) .

Figure 2. Communication scheme related to the partitioned type.
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Define the Mean Square Error (MSE) in local area i for the estimation results at time step k as [3]

MSE[i]
k =

√
1
ni
‖x̂[i]k|k − x[i]k ‖2, i = 1, . . . , `

and denote the Average of Mean Square Error (AMSE) in local area i for k ∈ [tc, t] to evaluate the
estimation accuracy:

AMSE[i] =
1

t− tc + 1

t

∑
k=tc

√
1
ni
‖x̂[i]k|k − x[i]k ‖2

where tc is the converging time step.

Table 1. Local measurements at time k allocated for each local area in the IEEE 14-bus system.

Area Number of Local Measurements Measurements

1 10 Vr
2 , Vim

2 , Ir
1,2, Ir

2,3, Ir
2,4, Ir

2,5,
Iim
1,2, Iim

2,3, Iim
2,4, Iim

2,5

2 20
Vr

4 , Vr
7 , Vim

4 , Vim
7 , Ir

4,2, Ir
4,3

Ir
4,5, Ir

4,7, Ir
4,9, Ir

7,4, Ir
7,8, Ir

7,9
Iim
4,2, Iim

4,3, Iim
4,5, Iim

4,7, Iim
4,9, Iim

7,4, Iim
7,8, Iim

7,9

3 20
Vr

6 , Vr
9 , Vim

6 , Vim
9 , Ir

6,5, Ir
6,11,

Ir
6,12, Ir

6,13, Ir
9,4, Ir

9,7, Ir
9,10, Ir

9,14
Iim
6,5, Iim

6,11, Iim
6,12, Iim

6,13, Iim
9,4, Iim

9,7, Iim
9,10, Iim

9,14

4 8 Vr
13, Vim

13 , Ir
13,6, Ir

13,12, Ir
13,14,

Iim
13,6, Iim

13,12, Iim
13,14

An n-dimensional column vector comprising of all ones (or zeros) is denoted as 1n (or 0n). In

denotes an n × n identity matrix. The initialization parameters of mPMHE algorithm are listed
as follows:

• The initial state vectors x[1]0 = x[4]0 =
[
1T

3 , 0T
3

]T
; x[2]0 = x[3]0 =

[
1T

4 , 0T
4

]T
.

• The initial covariance matrices: P1|0 = 103I28, Π[1]
0 = Π[4]

0 = 103I6, Π[2]
0 = Π[3]

0 = 103I8.

• The noise covariances: Q[1]
0 = Q[4]

0 = 10−6I6, Q[2]
0 = Q[3]

0 = 10−6I8;

R[i]
0 = diag(σ2

1 , . . . , σ2
mi
), i = 1, . . . , 4;

• The horizon length: N + 1 = 3.
• State constraints: 0.9 ≤ V̂r

i ≤ 1.2, −0.35 ≤ V̂im
i ≤ 0.01, where i = 1, . . . , 14.

Two different cases which consider the measurements including Gaussian and non-Gaussian
noises are presented as follows:

Case 1: Measurements with Gaussian noise
In this case, the measurement noises are assumed to be Gaussian. The standard deviation of the

voltage phasor measurement is arbitrary chosen as σi = 0.005, i = 1, . . . , 12 and that of the current
phasor measurements is set as σi = 0.01, i = 13, . . . , 58, according to [31].

The simulations are performed using MATLAB version R2012b on a Windows 10 computer
configured with Intel R© CoreTM, CPU i7-4500U, 1.80 GHz and 8 GB RAM, where the quadratic
program problems arising from mMHE and mPMHE are solved by the alternating direction method of
multipliers (ADMM), following the method presented in [14]. The constraints on the state variables
are taken into account both in the MHE, mMHE, the PMHE in [24] and the proposed mPMHE to
handle outliers. The comparison of AMSE values obtained from different estimators are given under
the “Gaussian” column in Table 2. Even though the WLS (with horizon length 1) spends the least time,
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0.3 ms, its AMSE value however is the largest. That is because the WLS estimator does not need to
perform any iteration to obtain the estimated results. However, the WLS is not a robust estimator.
When the horizon length is set as 3, the WLS takes more time, 1.6 ms, to obtain the estimated results.
The AMSE value of WLS with LNR is 1.6× 10−3 and it takes 7.7 ms. The LAV estimator is built up
according to the method provided by [3] and is conducted based on the matlab subfunction provided
in GUROBI example. The AMSE value of LAV is equal to that of WLS with LNR, but the LAV spends
more time than WLS with LNR in this case. It is significant to note that the MHE gets the highest
accuracy (i.e., having the smallest AMSE 1.2× 10−3 ), compared with that of the WLS and WLS with
LNR. The AMSE of mMHE with constraints is 1.3× 10−3, which is quite close to the result of MHE.
However, the mMHE with constraints only takes 6.6 ms while the MHE with constraints takes 11.8 ms.
The mMHE takes 44% less time than that of MHE. The traditional PMHE gets better results than the
mPMHE, but the mPMHE takes 2.6 ms and it is faster than PMHE, 4.9 ms. The time taken by the has
a decreased percentage of 47% compared with PMHE, and a reduction of 60% compared with the
centralized mMHE. Even though the mPMHE sacrifices slight estimated accuracy, its computation
reduction is significant compared with that of PMHE. Figure 3 shows the convergence of mPMHE
with constraints and the converging time step is around 20 time steps. The mPMHE and PMHE finally
converges to the centralized results respectively. The convergence rate of mPMHE is quite close to
that of PMHE but the computation load reduction of mPMHE is significant. Moreover, the estimated
results of some buses from time step 10 to 80 are highlighted in Figure 4 in order to see the difference
among different estimators.

Table 2. The Average of Mean Square Error (AMSE) and average computation time (per step) with
different estimators in the IEEE 14-bus system with redundant observations.

Noise Gaussian Non-Gaussian

Estimator Horizon Length AMSE Average Time AMSE Average Time
(×10−3) (ms) (×10−3) (ms)

WLS
1 2.4 0.3 3.7 0.4

3 1.6 1.6 2.1 1.9

WLS with LNR 3 1.6 7.7 1.8 14.0

LAV 3 1.6 11.3 1.8 12.0

MHE 3 1.2 11.8 1.7 15.9

mMHE 3 1.3 6.6 1.8 7.3

PMHE in [24] (area 1)

3 1.2 4.9 1.7 6.5PMHE in [24] (area 2)
PMHE in [24] (area 3)
PMHE in [24] (area 4)

mPMHE (area 1)

3 1.3 2.6 1.8 3.7mPMHE (area 2)
mPMHE (area 3)
mPMHE (area 4)

Remark: The moving horizon estimation (MHE), modified MHE (mMHE), partitioned moving horizon estimation
(PMHE) and modified PMHE (mPMHE) take constraints into account during the optimization process.

In order to test the proposed estimator affected by the high-magnitude outliers, suppose the
outliers occur in the real part of current measurement Ir

43 at time steps 40 and 50, as shown in Figure 5a.
From Figure 5b, we can see that the WLS is seriously affected by the outliers, while the MHE, mMHE,
PMHE and mPMHE can deal with the bad data and can still get good estimated results.
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Figure 3. The Mean Square Error (MSE) of WLS(1) (the horizon length of measurements 1), MHE,
mMHE, PMHE and mPMHE with constraints, under the assumption of Gaussian noise.

10 20 30 40 50 60 70 80

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Time step

R
ea

l v
ol

ta
ge

 o
f B

us
 3

 

 

WLS(1)
WLS with LNR
MHE
mMHE
PMHE, area 1
mPMHE, area 1
True

(a)

10 20 30 40 50 60 70 80
−0.175

−0.17

−0.165

−0.16

−0.155

−0.15

−0.145

−0.14

−0.135

−0.13

Time step

Im
ag

e 
vo

lta
ge

 o
f B

us
 5

 

 
WLS(1)
WLS with LNR
MHE
mMHE
PMHE, area 2
mPMHE, area 2
True

(b)

Figure 4. The estimated results of different estimators under Gaussian noise assumption. “WLS(1)”
represents the results when the WLS estimator uses the measurements with horizon length 1. (a) the
real part of Bus 3 voltage phasor. (b) the imaginary part of Bus 5 voltage phasor.
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Figure 5. (a):The raw current measurement Ir
43 affected by high-magnitude outliers at time steps 40

and 50. (b) The estimated result V̂r
3 when outliers occur to measurement Ir

43. “WLS(1)” represents the
results when the WLS estimator uses the measurements with horizon length 1.
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Case 2: Measurements with non-Gaussian noise
In order to verify that the proposed estimator can also deal with more outliers, the measurement

noises are assumed to be non-Gaussian. For the voltage measurements zi,k, i = 1, . . . , 12, the noise vi is
associated with the probability density function as follows:

fi(vi) =
0.97√
2πσ2

i

exp

(
−

v2
i

2σ2
i

)
+

0.03√
2π(10σi)2

exp

(
−

v2
i

2(10σi)2

)
(21)

where σi = 0.005. The first term accounted for 97% in fi(vi) and the second term having a larger
standard deviation is assumed to be the outliers [32].

For the current measurements zi,k, i = 13, . . . , 58, the noise vi is associated with the probability
density function as follows [33]

fi(vi) =


0.97√
2πσ2

i
exp

(
− v2

i
2σ2

i

)
+ 0.03

2×10σi
|vi| ≤ 10σj

0.97√
2πσ2

i
exp

(
− v2

i
2σ2

i

)
otherwise

(22)

where σi = 0.01. The 3% of uniform distribution in (22) is useful for modeling initial conditions,
disturbances and measurement errors that are equally likely to occur anywhere within a given interval.

According to the results shown in Figure 6, both PMHE and mPMHE also converge to the
centralized results. However, the MSE is a little larger and it is not as smooth as that shown in Figure 3.
That is because many outliers have been included in the measurements. The convergence time seems
slightly longer and it is around 30 time steps according to Figure 7. Referring to the AMSE and average
time under the “non-Gaussian” column in Table 2, the AMSE values are larger than those under
Gaussian assumption, due to the occurrence of outliers. The WLS is not a robust estimator so its
AMSE is the highest, 3.7× 10−3. The WLS with LNR can detect the bad data, updated the relevant
measurements and then the weights of the outliers can be mitigated. More iteration steps are needed
for the WLS with LNR so the time increases to 14.0 ms. The AMSE of WLS with LNR is 1.8× 10−3.
With the inclusion of the constraints, the MHE can handle the outliers and gets the minimum value,
1.7× 10−3. The AMSE of the mMHE with constraints is 1.8× 10−3, while it only takes 7.3 ms but
the MHE takes 15.9 ms to get one set of estimated results. The decreasing percentage of mMHE
with constraints is 54%. The AMSE obtained from the distributed approaches finally converge to the
centralized results, i.e., 1.7× 10−3 for the PMHE with constraints and 1.8× 10−3 for the mPMHE with
constraints. Their convergence rates are still quite similar. The estimated error of mPMHE is slightly
larger than that of PMHE but their difference is insignificant. However, the average computation
time of the distributed approach (mPMHE with constraints) is reduced further, 3.7 ms, and it has a
reduction of 43% compared with the PMHE with constraints (6.5 ms). The mPMHE with constraints
has much bigger reduction percentages, 74% and 69%, compared with the common methods, WLS
with LNR (14.0 ms) and LAV (12.0 ms), respectively.
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Figure 6. The Mean Square Error (MSE) of WLS(1) (the horizon length of measurements is 1), MHE,
mMHE, PMHE and mPMHE with constraints, under the non-Gaussian noise assumption.
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Figure 7. The estimated results of different estimators under non-Gaussian noise assumption. “WLS(1)”
represents the results when the WLS estimator uses the measurements with horizon length 1. (a) the
real part of Bus 3 voltage phasor. (b) the imaginary part of Bus 5 voltage phasor.

4.1.2. Full Observation with Minimum Number of PMUs

In this example, the IEEE 14-bus system has been installed with minimum number of PMUs.
If the PMUs are only installed at Buses 2, 6, 7 and 9 according to [26], Assumption 2 is not guaranteed
when the local areas is partitioned as the one shown in Figure 1. A new partitioned type is required, as
shown in Figure 8a and the relevant communication scheme is shown in Figure 8b.

A total number of 38 measurements, consisting of eight voltages and 30 currents are taken at each
time and the measurements with horizon length 3 are used to give one set of estimates. The standard
deviations of the voltage and current measurement noises follow those given in the previous subsection,
and the MSE of different estimators under Gaussian and non-Gaussian assumptions are shown
in Figure 9a,b respectively. It is significant that the converging time of mPMHE and PMHE with
constraints is around 35 time steps. The AMSE and average time are given in Table 3. Due to the
smaller number of measurements, the AMSE values are larger than those in Table 2, while the average
time is less than those in Table 2. No matter under the Gaussian or non-Gaussian noise assumption,
the AMSE values of mPMHE is equal to that of mMHE and a little larger than that of MHE, but the
average computation time is much smaller than those for LAV, MHE and mMHE. For example, under
the non-Gaussian noise assumption, the average computation time of mPMHE is 2.8 ms, and it has
reduction percentages of 47% and 35%, compared with the centralized estimator (LAV, 5.3 ms) and the
distributed state estimation method (PMHE, 4.3 ms).
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(a) (b)

Figure 8. (a) The IEEE 14-bus system installed with minimum number of PMUs. (b) The communication
scheme related to the partitioned type.
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Figure 9. The Mean Square Error (MSE) of different estimators. “WLS(1)” represents the results when
the WLS estimator uses the measurements with horizon length 1. (a) under Gaussian assumption.
(b) under non-Gaussian assumption.

Table 3. The AMSE and average computation time (per step) with different estimators in the IEEE
14-bus system installed with minimum number of PMUs.

Noise Gaussian Non-Gaussian

Estimator Horizon Length AMSE Average Time AMSE Average Time
(×10−3) (ms) (×10−3) (ms)

WLS
1 3.2 0.2 5.1 0.2

3 2.0 0.6 4.1 0.7

WLS with LNR 3 2.0 2.3 2.4 3.9

LAV 3 2.0 4.4 2.4 5.3

MHE 3 1.7 5.3 2.1 7.4

mMHE 3 1.8 3.7 2.3 4.9
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Table 3. Cont.

Noise Gaussian Non-Gaussian

Estimator Horizon Length AMSE Average Time AMSE Average Time
(×10−3) (ms) (×10−3) (ms)

PMHE in [24] (area 1)

3 3.3 3.3 2.1 4.3PMHE in [24] (area 2)
PMHE in [24] (area 3)
PMHE in [24] (area 4)

mPMHE (area 1)

3 1.8 2.3 2.3 2.8mPMHE (area 2)
mPMHE (area 3)
mPMHE (area 4)

Remark: The moving horizon estimation (MHE), modified MHE (mMHE), partitioned moving horizon estimation
(PMHE) and modified PMHE (mPMHE) take constraints into account during the optimization process.

4.2. The IEEE 118-Bus System with Non-Gaussian Noise

4.2.1. Redundant Observations

In order to verify that the proposed algorithm is also effective in large-scale system, the IEEE
118-bus system is used and is partitioned into six local areas (subsystems) as shown in Figure 10.
The relevant communication scheme is simplified as shown in Figure 11. The PMUs are placed
according to [26] where 54 PMUs are used. A total number of 108 voltage measurements with the noise
pdf in (21) with σi = 0.005, i = 1, . . . , 108 and 366 current measurements with the noise pdf in (22) with
σi = 0.01, i = 109, . . . , 474 are considered. Area 1 has 46 measurements, Area 2 has 78 measurements,
Area 3 has 76 measurements, both Area 4 and 5 have 110 measurements respectively, and Area 6 has
54 measurements. Every local area is locally observable. The initialization parameters of mPMHE
algorithm in the IEEE 118-bus system are listed as follows:

• The initial state vectors x[1]0 =
[
1T

15, 0T
15

]T
; x[2]0 =

[
1T

21, 0T
21

]T
; x[3]0 =

[
1T

17, 0T
17

]T
; x[4]0 =

[
1T

25, 0T
25

]T
;

x[5]0 =
[
1T

27, 0T
27

]T
; x[6]0 =

[
1T

13, 0T
13

]T
.

• The initial covariance matrices: Π[1]
0 = 103 I30, Π[2]

0 = 103 I42, Π[3]
0 = 103 I34, Π[4]

0 = 103 I50,

Π[5]
0 = 103 I54, Π[6]

0 = 103 I26.
• The noise covariances: Q[1]

0 = 10−6 I30, Q[2]
0 = 10−6 I42, Q[3]

0 = 10−6 I34, Q[4]
0 = 10−6 I50,

Q[5]
0 = 10−6 I54, Q[6]

0 = 10−6 I26. R[i]
0 = diag(σ2

1 , . . . , σ2
mi
), i = 1, . . . , 6;

• The horizon length: N + 1 = 3.
• State constraints: 0.85 ≤ Vr

i ≤ 1.1, −0.4 ≤ Vim
i ≤ 0.4, where i = 1, . . . , 118.

According to the MSE result shown in Figure 12 and the estimated results shown in Figure 13, it
is clear that the estimated results of PMHE and mPMHE converge to the centralized results obtained
from MHE and mMHE. The convergence rate of mPMHE is still quite close to that of PMHE and the
convergence cannot be expected in fewer than 400 time-steps. The AMSE and average computation
time (per step) are given in Table 4. The mMHE still takes less time than that of MHE. The mPMHE
with constraints can still get good estimated result and it takes the least time, 32 ms, compared with
other robust estimators. The mPMHE reduces about 95% execution time compared with the centralized
method (mMHE). Moreover, the mPMHE with constraints has a percentage decrease of 42% compared
with that of PMHE (55 ms).
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Figure 10. The IEEE 118-bus system installed with 54 PMUs is separated into 6 local areas
(subsystems) [34].

Figure 11. The communication scheme related to the partitioned IEEE 118-bus system.
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Figure 12. The Mean Square Error (MSE) of WLS(1) (the horizon length of measurements is 1), RLS,
MHE, mMHE, PMHE and mPMHE with constraints in the IEEE 118-bus system with redundant
observations. (a) The MSE from step 1 to 800. (b) The details of MSE from step 700 to 750.
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Figure 13. The estimated results of different estimators under non-Gaussian noise assumption.
“WLS(1)” represents the results when the WLS estimator uses the measurements with horizon length 1.
(a) The real part of Bus 1 voltage phasor. (b) The imaginary part of Bus 112 voltage phasor.

4.2.2. Full Observation with Minimum Number of PMUs

In this case, a minimum number of 32 PMUs are placed in the IEEE 118-bus system according
to [26], and the whole system is partitioned into six local areas (subsystems) as shown in Figure 10.
In order to make sure that every local area is locally observable, Bus 13 needs to be placed into Area
1 (Sub 1) and Buses 19 and 33 should be returned to Area 3 (Sub 3). The communication scheme is
the same as that shown in Figure 11. A total number of 64 voltage measurements with the noise pdf
in (21) with σi = 0.005, i = 1, . . . , 64 and 250 current measurements with the noise pdf in (22) with
σi = 0.01, i = 65, . . . , 314 are considered.

According to the MSE result shown in Figure 14, it is clear that the estimated results of PMHE and
mPMHE converge to the centralized results obtained from MHE and mMHE. The convergence rate of
mPMHE is still quite close to that of PMHE and it is faster than that shown in Figure 12. This verifies
that the structure of matrix H affects the convergence rate and the details of convergence property can
be found in [24]. Compared with those under the redundant observations, the larger AMSE values and
smaller average computation time (per step) will be obtained under the “Observation with minimum
number of PMUs” column in Table 4. The mPMHE with constraints can still get good estimated result
and it reduces about 62% execution time compared with the centralized method (LAV). Moreover, the
mPMHE with constraints has a percentage decrease of 36% compared with that of PMHE (33 ms).

According to the simulation results on the IEEE 14-bus and 118-bus systems, given in
Tables 2 and 4, it is clear that the average computation time of mPMHE increases, due to the dimension
of local optimization problem in the IEEE 118-bus system which is larger than the IEEE 14-bus
system. Therefore, the computation burden depends on the size of partitioned local areas and it
would be scalable even when the size of a power system is larger than the IEEE 118-bus system.
The computational load can be reduced if the larger power system is partitioned into more local areas
(subsystems) and the dimension of each local optimization problem is smaller than that in the IEEE
118-bus system.
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Figure 14. The Mean Square Error (MSE) of WLS(1) (the horizon length of measurements is 1), MHE,
mMHE, PMHE and mPMHE with constraints in the IEEE 118-bus system installed with minimum
number of PMUs.

Table 4. The Average of Mean Square Error (AMSE) and average computation time (per step) with
different estimators in the IEEE 118-bus system under two scenarios.

Scenarios Redundant Observations Observation with Minimum Number of PMUs

Number of PMUs 54 32

Estimator Horizon Length AMSE Average Time AMSE Average Time
(×10−3) (ms) (×10−3) (ms)

WLS
1 2.1 14 4.2 6.4

3 1.8 182 2.6 59

WLS with LNR 3 1.4 302 2.2 115

LAV 3 1.4 80 2.2 55

MHE 3 1.3 882 2.1 330

mMHE 3 1.4 669 2.2 264

PMHE in [24] (area 1)

3 1.3 55 2.1 33PMHE in [24] (area 2)
PMHE in [24] (area 3)
PMHE in [24] (area 4)

mPMHE (area 1)

3 1.4 32 2.2 21mPMHE (area 2)
mPMHE (area 3)
mPMHE (area 4)

Remark: The moving horizon estimation (MHE), modified MHE (mMHE), partitioned moving horizon estimation
(PMHE) and modified PMHE (mPMHE) take constraints into account during the optimization process.

5. Conclusions

Based on the wide-area monitoring systems, a fully distributed state estimation (mPMHE) based
on the moving horizon estimation is proposed for power system state estimation, where each local area
solves a smaller optimization problem to estimate its own local states by using the local measurements
and the estimated results from its neighboring areas. The computation load is reduced compared with
that of the centralized methods. In contrast with PMHE, the error from the process model is ignored in
our proposed method. The estimated precision of mPMHE is slightly lower than that of PMHE but
their difference is insignificant. The mPMHE achieves comparable state estimation accuracy but with a
significant reduction in the computation load.



Sensors 2017, 17, 2310 19 of 21

Acknowledgments: This work was supported by the Singapore National Research Foundation (NRF) under its
Campus for Research Excellence And Technological Enterprize (CREATE) programme, and Cambridge Centre for
Advanced Research in Energy Efficiency in Singapore (CARES), C4T project.

Author Contributions: Tengpeng Chen made substantial contributions in proposing the algorithm, running
simulations, analysing the data and manuscript preparation. Yi Shyh Eddy Foo and Xuebing Chen helped with
the editing of the writing, and analyzed the simulation tests. K.V. Ling supervised this research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

m Number of measurements at time step k
mi Number of local measurements at area i
n Number of states
ni Number of local states at area i
x True state vector, x ∈ Rn

x̂ Estimated state vector
x[i] True local states at area i, x[i] ∈ Rni

(x̂[i]t ) Local state vector estimated by the PMHE at time step t
Vr

i Real part of the voltage phasor at bus i
Vim

i Imaginary part of the voltage phasor at bus i
Ir
ij The real part of the current measurement Iij

Iim
ij The imaginary part of the current measurement Iij

wk Vector of process noise at time step k
w[i]

k Process noise at local area i in the PMHE algorithm, w[i]k ∈ Rni

z Measurements from Phasor Measurement Units
v Measurement noise
ei,k The i-th measurement residual at time step k
enorm

i,k The normalized measurement residual i at time step k
ρ(ei,k) Chosen function of ei,k
J Cost function
fi(vi) Probability density function of vi
H Measurement matrix

Wi,k Weighting factor for i-th measurement at time step k
Ψ Derivative of J wrt x̂
N + 1 Horizon length of measurements
t, k Time index
σi Standard deviation of measurement noise vi
Q Covariance matrix of process noise
R Covariance matrix of measurement noise
P State covariance matrix
X Constraint set for state x
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