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Abstract: Finger-vein recognition, a new and advanced biometrics recognition method, is attracting
the attention of researchers because of its advantages such as high recognition performance and
lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However,
as reported by previous researchers, it is possible to attack a finger-vein recognition system by using
presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation
attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish
PAD methods primarily focused on designing feature extractors by hand (handcrafted feature
extractor) based on the observations of the researchers about the difference between real (live) and
presentation attack finger-vein images. Therefore, the detection performance was limited. Recently,
the deep learning framework has been successfully applied in computer vision and delivered superior
results compared to traditional handcrafted methods on various computer vision applications
such as image-based face recognition, gender recognition and image classification. In this paper,
we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system
using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted
methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than
the other handcrafted methods using a training procedure. We further process the extracted image
features to enhance the presentation attack finger-vein image detection ability of the CNN method
using principal component analysis method (PCA) for dimensionality reduction of feature space and
support vector machine (SVM) for classification. Through extensive experimental results, we confirm
that our proposed method is adequate for presentation attack finger-vein image detection and
it can deliver superior detection results compared to CNN-based methods and other previous
handcrafted methods.

Keywords: NIR camera-based finger-vein recognition; spoof detection; presentation attack detection;
convolutional neural network; transfer learning

1. Introduction

With the ubiquity of digital systems, applications today need enhanced security to protect
sensitive user information. In some smart systems such as the immigration management system
at the airport and/or the management systems in companies, the correct identification of individuals
play an important role in management operations [1–3]. For this requirement, many traditional
methods have been proposed by researchers, which can be classified into two main categories:
token-based methods and knowledge-based methods [1]. However, these methods have several
limitations such as inconvenience, hard to remember (complex password) and easy to be stolen.
To overcome the limitations of the token-based and knowledge-based methods, biometric-based
methods are increasingly being used as an alternative using the information from several physical
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and/or behavioral characteristics of people as the key (or password) to protect the personal
information [1]. Many biometric features have been used in applications such as fingerprint [4,5],
face [6,7], finger-vein [8–10], palm-vein [11,12] and iris [13–15]. The use of biometric features offers
several advantages over the token-based and knowledge-based methods. Firstly, since the users’
physical features serve as the key (or password) to access their individual information resources,
they do not need to carry the keys (cards) or remember the passwords. Secondly, it is difficult to
steal biometric information because biometric features belong to body of each individual (fingerprint,
finger-vein or iris pattern).

Although the biometric-based methods have proven efficient for authentication with high
recognition rate [4–15], they still have their limitations. There are two main problems with a biometric
system: the effect of image capturing condition and the potential for spoofing attacks. As proven
in previous studies, the image capturing condition has a strong impact on recognition performance.
For example, the performance of a face recognition system is degraded by the non-uniformity of
illumination at the place where the image is being captured [16]. Similarly, the fingerprint recognition
system can be affected by poor quality or resolution of fingerprint images [17], etc. Finger-vein
recognition systems can also suffer due to the misalignment of input images [18]. Fortunately,
these negative effects are now limited following extensive research. However, the problem of spoofing
attacks persists, with various studies indicating that it is possible to attack a biometric system using
presentation attack (fake) images [19–22].

Recently, finger-vein recognition has been developed and proven to be an efficient biometric
authentication feature. Unlike other biometric features, the finger-vein biometric authentication
procedure uses the pattern of blood vessels that is underneath the skin of the fingers to establish
an individual’s identity. Therefore, skin condition has little impact on the process and it can be very
difficult to steal finger-vein features because a near-infrared light (NIR) source is required to capture
the blood vessel structure. However, it is still possible to spoof the finger-vein recognition system by
using a stolen finger-vein image. As proven in previous research [23–28], the spoofing-attack can be
done by printing the stolen finger-vein image on certain materials (such as paper or film) using carbon
ink and attaching it on a real (live) finger during the image acquisition. Therefore, spoof detection
methods, named as presentation attack detection (PAD) methods, for finger-vein biometric systems
are necessary to protect the finger-vein recognition system from spoofing attacks.

Over time, many researchers have proposed various methods for PAD for finger-vein recognition
system [23–28]. One of the earliest studies conducted by Qin et al. [28] used the dynamic information
from successive images to detect the real finger-vein images. This research is based on the observation
that the size of the vein pattern (blood vessels) changes minutely based on the heart rate. However,
this method requires processing of successive images. Nguyen et al. [24] analyzed the finger-vein
images in both frequency and spatial domain using the Fourier and wavelet transform methods.
As indicated by this research, the frequency information can be used for detecting presentation attack
on finger-vein images. In recent research by Tome et al. [23], several approaches were proposed
for presentation attack finger-vein image detection including the use of average vertical energy
of the Fourier spectrum, the use of binarized statistical image features (BSIF) and support vector
machine (SVM), the use of the advantage of monogenic scale space based global descriptor, and the
use of local binary pattern (LBP). Most recently, Tirunagari et al. [26] and Raghavendra et al. [27]
proposed methods for presentation attack finger-vein image detection using windowed dynamic mode
decomposition (DMD) and steerable pyramid feature, respectively. The researcher claimed that the
steerable pyramid feature can outperform all previous research such as BSIF or LBP methods for the
detection of presentation attack finger-vein images. Finally, the windowed DMD method has been
proposed as an alternative method for presentation attack finger-vein image detection.

Although the aforementioned proposed methods have been demonstrated to be efficient for
presentation attack finger-vein image detection, they have a limitation in terms of the feature
extraction methods. In all these works, the authors designed the feature extractors according to



Sensors 2017, 17, 2261 3 of 34

the observation of the difference between real and presentation attack finger-vein images (handcrafted
feature extractor). As a result, the extracted image features just reflect the characteristics of the
real and presentation attack images in several aspects such as the difference in spatial and/or
frequency domain. Therefore, the detection accuracy is limited. Recently, the learning-based method
such as convolutional neural network (CNN) has been successfully applied for feature extraction
for image-based recognition/classification systems and delivered superior results than traditional
handcrafted feature extraction methods. Therefore, in this paper, we propose a new PAD method for
finger-vein biometric system based on the convolutional neural network. Our proposed method is
novel in the following four ways as compared to previous methods:

• To the best of our knowledge, this is the first approach for presentation attack detection using the
deep learning framework for finger-vein biometric system. For this purpose, we apply the deep
learning framework based on the CNN method for the PAD problem to overcome the limitation
of previous methods that used the handcrafted methods for image feature extraction. By using
a training procedure, we can learn a more suitable feature extractor for finger-vein PAD than the
traditional handcrafted methods.

• Since the CNN method has a drawback of over-fitting problem caused by the huge amount of
network parameters, we apply the transfer learning method instead of traditional training method
for the network training procedure to minimize the over-fitting problem. By using the transfer
learning method, we can utilize the optimal parameters of the existing network that were obtained
using another problem. In our experiments, we used two successful CNNs, the Alex network and
Visual Geometry Group (VGG) network, which were trained using ImageNet database as our
preferred models for applying the transfer learning method.

• We extract image features using pre-trained CNN models to represent the input images. To reduce
the effect of noise and the problem of high-dimensional features, we apply the principal
component analysis (PCA) method on the extracted image features. Finally, the classification of
real and presentation attack finger-vein image is done by using support vector machine (SVM).

• We collected our database of real and presentation attack finger-vein images, namely ISPR
database, in which the number of images and kinds of presentation attacks are larger than those
in open database. We made our database and algorithm including trained CNN model available
to other researchers to compare the performance with our database and algorithm including
CNN model.

In Table 1, we summarize the previous studies on the PAD for finger-vein recognition systems.
The remainder of our paper is organized as follows. In Section 2, we will provide a detailed

explanation of the CNN method and propose a method for PAD based on the CNN method with
transfer learning for over-fitting reduction. In Section 3, we will describe the various experiments
conducted on PAD using the conventional CNN-based method as well as our method proposed in
Section 2 using two different databases: ISPR database [24] and Istituto Dalle Molle di Intelligenza
Artificiale Percettiva (Idiap) database [23] to demonstrate the superiority of our proposed method.
Finally, we will conclude with explanations and discussions on experimental results in Section 4.
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Table 1. A summary of previous studies on presentation attack detection (PAD) methods and our proposed method.

Categories Methods Strength Weakness Accuracy (Database)

PAD methods using
handcrafted methods

Uses a series of images to check the
variation of vein patterns based on heart

rate [28]
Easy to implement Requires high processing time for capturing

and processing successive images Not available

Uses the combination of features in both
spatial and frequency domain through

Fourier and wavelet transform [24]

Uses information from both spatial
and frequency domain for fake image

detection. Fair detection accuracy

More complex than the method in [28].
Detection accuracy is limited due to the uses

of handcrafted image feature extractor.

Equal error rate (EER) = 2.874%
(Using ISPR Database)

Uses average vertical energy of the
Fourier spectrum; BSIF feature;

monogenic scale space based global
descriptor; and local binary pattern on

residual image [23].

Fair detection accuracy

Detection accuracy is limited due to the use
of handcrafted image feature extractor.

Half total error rate (HTER) = 0.00%
(Using Idiap Database)

Uses the windowed DMD as
micro-texture descriptor for fake
finger-vein image detection [26]

Results comparable to previous
methods

EER = 1.59%
(Idiap Cropped Database)

EER = 0.08% (Using Idiap Full
Database)

Uses steerable pyramids decomposition
for image feature extraction [27]

Improved detection accuracy
compared to some other previous

proposed methods.

Average classification error rate
(ACER) = about 3.0%

(A collected database consists of 300
unique finger-vein instance)

PAD method using
learning-based method

(Proposed Method)

Uses CNN to learn the suitable image
feature extractor

Post-processing by PCA and SVM to
enhance the detection performance

Suitable image feature extractor is
obtained using CNN-based method.

Produces very high detection
accuracy compared to previous

methods.

Requires a large amount of computation
operations and is more complex than

previous methods.

HTER = 0.00%
(Using Idiap database)

HTER = 0.031%
(Using ISPR database)
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2. Proposed Method for PAD Based on CNN with Transfer Learning, PCA and SVM

2.1. Overview of the Proposed Method

Although the finger-vein recognition method has been used as an alternative for traditional
methods, it is still vulnerable to attackers [23–28]. To protect the finger-vein recognition from attackers,
we propose a new PAD method for the finger-vein recognition system based on feature extraction by
CNN and post-processing by PCA and SVM methods for dimensionality reduction of feature space
and classification, respectively. In Figure 1, we depict the flowchart of a typical finger-vein recognition
system to which our proposed method can be applied. In this figure, our proposed method is depicted
inside the rectangular box with the dotted lines. As shown in this figure, our proposed method
is the first processing block and it is responsible for detecting the presentation attack finger-vein
images before they can be input into the finger-vein recognition system. To detect the presentation
attack finger-vein images, our proposed method contains several processing blocks, including the
preprocessing steps, image feature extraction, feature selection, and classification, as shown in Figure 1.
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Figure 1. The overall structure of the proposed PAD method, and its position in finger-vein recognition systems.

Normally, the captured finger-vein images contain two parts: the vein region and the background
region as shown as “Input Finger-vein Image” block in Figure 1. Therefore, we first perform a preprocessing
step to extract the vein region and normalize the vein region into a rectangular region. For implementation,
we used the method developed by Kang et al. [29]. As a result, we can obtain a finger-vein region
image from an input captured finger-vein image. In addition to size normalization, we also apply the
illumination normalization by using the zero-mean normalization to reduce the impact of the change
in illumination while the finger-vein image is being captured. We term this image as “Normalized
Image” for convenience, as shown in Figure 1. With this image, we perform feature extraction by
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using CNN-based method. Further details about CNN such as its structure and its applications will be
provided in Section 2.2.

As the next step of our proposed method, we select the appropriate image features from the
extracted CNN-based image features using the PCA method. The image features extracted using
CNN have very high dimensions (more than 4000 components). As a result, it can increase processing
time and noise for the next step of classification based on SVM. Therefore, we use the PCA method to
perform the dimensionality reduction of feature space before classifying the input feature into classes
of real and presentation attack finger-vein images. As a result, the dimension of extracted features is
significantly reduced and the process of classifying live and fake images using SVM method becomes
simpler and more efficient. The number of principal components is decided by which the best detection
accuracy of our proposed method can be reached.

2.2. Convolutional Neural Network and Its Applications

In the recent past, deep learning frameworks have demonstrated results that are superior
to traditional methods in the field of computer vision research. For example, deep learning has
been successfully applied to various image-based application systems such as face recognition [30],
image classification [31,32], hand-writing digit recognition [33], person re-identification [34–36],
gaze estimation [37], lane road detection [38], eye tracking [39] and face detection [40]. As indicated
in these studies, the CNN-based deep learning method outperformed handcrafted methods by
demonstrating more accurate recognition results. In Figure 2, we show the general structure of
a CNN. As shown in this figure, the CNN comprises of two key parts: the convolution layers and the
fully-connected layers. The convolution layers perform the image manipulation processes using the
convolution operations to manipulate and extract the image features. Each convolution layer can be
followed by a cross-channel normalization layer and/or a rectified linear unit (ReLU) and/or a pooling
layer to transform the results of the convolution operation. As a result, we can extract an image
feature vector X = {X1, X2, . . . , Xn} as shown in Figure 2. Using this extracted image feature vector,
the CNN uses a neural network (fully-connected layers in Figure 2) to classify the input image into
pre-defined categories.
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Although the CNN method has proven efficient for many image-based systems, it has several
drawbacks. The two most significant drawbacks are the long processing time and the over-fitting
problem. Due to the long processing time required, it is difficult to implement a CNN on a single
general-purpose computer with limited central processing units (CPU). Fortunately, with the
development of technology, this problem has been solved with the use of graphical processing unit
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(GPU) [31]. Using the GPUs, the CNN can be applied in real-time systems by using a large number of
CPUs in parallel.

Another problem associated with a CNN is the over-fitting problem. As described in previous
studies [31,41], the CNN is constructed by learning millions of trainable parameters. Hence, the CNN-based
system usually requires a huge volume of training data. Although there are several methods that have
been used to reduce this problem, such as data augmentation and dropout, the amount of training
data is still significant in such CNN systems. In recent years, the transfer learning method is being
used to resolve this problem [42–46]. Using the transfer learning method, we can apply a CNN that
was trained using sufficient training data for a specific problem to address a different problem [42].
This approach has been proven to be efficient for several problems, especially when large training data
is scarce such as medical images [46]. In Figure 3, we show the description of the transfer learning
methodology in comparison with the traditional machine learning method. As shown in this figure,
the transfer learning method uses two sources to learn the system knowledge: the specific problem to
be addressed (“Target Task” in Figure 3b) and the knowledge (model) obtained from another machine
learning problem. In the traditional machine learning system (as depicted in Figure 3a), the system
model is only learnt using the data from a single source for a given task. The use of the transfer
learning method allows reusability of a CNN and transfers it to another problem. In detail, the transfer
learning is defined as follows [42]:

Definition of Transfer Learning [42]: Given a source domain DS and a learning task TS, a target
domain DT and learning task TT , transfer learning aims to help improve the learning of the target
predictive function fT(.) in DT using the knowledge in DS and TS, where DS 6= DT , or TS 6= TT .

For the experiments conducted for this study, we used two CNNs, Alex network [31] and VGG-16
network [32], for establishing the CNN architecture. For the application of the transfer learning method,
the two networks are pre-trained using the ImageNet image database. The subsequent sections provide
the details of these two networks: the Alex network in Sections 2.2.1 and 2.2.2, and VGG-16 network in
the Sections 2.2.3 and 2.2.4.
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and (b) transfer learning technique.

To apply the transfer learning technique to these modified CNN models, we use the weights of
corresponding pre-trained model to initialize the weights of the modified model. In the simplest cases
of the Alex and VGG-16 architectures as described in Sections 2.2.1 and 2.2.3, the difference between
the structure of pre-trained models and corresponding modified models is not much. The difference is
only at the last fully-connected layer where we replaced the number of output classes by 2. The transfer
learning technique is applied by copying all the weights of a layer in the pre-trained model to the
corresponding layer of the modified model. For the last fully-connected layer, the weights are randomly
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initialized using normal distribution of zero mean and 0.001 of standard deviation. For the customized
Alex and VGG-16 architectures in Sections 2.2.2 and 2.2.4, we carefully designed the customized
models by using the same parameters as the corresponding pre-trained model structure such as filter
size and stride of convolution layers. We only modified the size of input images, the number of filters
in convolution layers and the number of neurons in fully-connected layers. As a result, we can use
a portion of weights in pre-trained models to initialize the weights in the modified model. For more
detail, we provide our code to perform transfer learning on both conventional Alex and VGG-16
networks (as described in Sections 2.2.1 and 2.2.3) and the customized Alex and customized VGG-16
networks (as described in Sections 2.2.2 and 2.2.4) through our laboratory website [47].

2.2.1. CNN Architecture Based on Alex Network for PAD

The Alex network is one of the most popular CNNs proposed by Krizhevsky et al. [31]. This network
is designed to classify images using ImageNet, a challenge that requires classifying images into 1000
different classes such as mushroom, cherry, leopard, etc. The details of the Alex network architecture
used in our research are given in Table 2. In this architecture, the CNN contains five convolution layers
and three fully connected layers that deliver training using two GPUs. Originally, the Alex network
was used to classify the images into 1000 classes. However, for our study of PAD for finger-vein
biometric system, we have only two image classes: real and presentation attack finger-vein image.
Therefore, the number of neurons in the last fully-connected layer is replaced by 2 (as depicted in
Table 2) instead of 1000 in the original architecture.

Table 2. Description of CNN structure based on Alex network for PAD problem.

Layer Name Number of
Filters Filter Size Stride

Size
Padding

Size
Dropout
Value Output Size

Input Layer n/a n/a n/a n/a n/a 227 × 227 × 3
Convolution Layer 1 (conv1) 96 11 × 11 × 3 4 × 4 0 n/a 55 × 55 × 96
Rectified Linear Unit (relu1) n/a n/a n/a n/a n/a 55 × 55 × 96

Normalization Layer (norm1) n/a n/a n/a n/a n/a 55 × 55 × 96
MAX Pooling Layer 1 (pool1) 1 3 × 3 2 × 2 0 n/a 27 × 27 × 96
Convolution Layer 2 (conv2) 256 5 × 5 × 48 1 × 1 2 × 2 n/a 27 × 27 × 256
Rectified Linear Unit (relu2) n/a n/a n/a n/a n/a 27 × 27 × 256

Normalization Layer (norm2) n/a n/a n/a n/a n/a 27 × 27 × 256
MAX Pooling Layer 2 (pool2) 1 3 × 3 2 × 2 0 n/a 13 × 13 × 256
Convolution Layer 3 (conv3) 384 3 × 3 × 256 1 × 1 1 × 1 n/a 13 × 13× 384
Rectified Linear Unit (relu3) n/a n/a n/a n/a n/a 13 × 13 × 384
Convolution Layer 4 (conv4) 384 3 × 3 × 192 1 × 1 1 × 1 n/a 13 × 13 × 384
Rectified Linear Unit (relu4) n/a n/a n/a n/a n/a 13 × 13 × 384
Convolution Layer 5 (conv5) 256 3 × 3 × 192 1 × 1 1 × 1 n/a 13 × 13 × 256
Rectified Linear Unit (relu5) n/a n/a n/a n/a n/a 13 × 13 × 256

MAX Pooling Layer 5 (pool5) 1 3 × 3 2 × 2 0 n/a 6 × 6 × 256
Fully Connected Layer 1 (fc6) n/a n/a n/a n/a n/a 4096

Dropout Layer (drop6) n/a n/a n/a n/a 0.50 4096
Rectified Linear Unit (relu6) n/a n/a n/a n/a n/a 4096

Fully Connected Layer 2 (fc7) n/a n/a n/a n/a n/a 4096
Rectified Linear Unit (relu7) n/a n/a n/a n/a n/a 4096

Dropout Layer (drop7) n/a n/a n/a n/a 0.50 4096
Output Layer (fc8) n/a n/a n/a n/a n/a 2

Softmax Layer (prob) n/a n/a n/a n/a n/a 2
Classification Layer (output) n/a n/a n/a n/a n/a 2

2.2.2. Customized CNN Architecture Based on Alex Network for PAD

We observed during our study that the finger-vein images are normally not in square shape.
Instead, the finger-vein images appear in rectangular shape with the width being about double the
height because of the natural shape of human finger. In addition, the height of the finger-vein image is
smaller than 227 pixel(s), which is used as the size of the input image in original Alex network. We can
even scale the finger-vein images to the size of 227 × 227 pixels and use them as the input for the Alex
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network. This scheme requires a long processing time to process larger input images. In addition,
since our research works on only two image classes (real and presentation attack finger-vein image)
instead of 1000 classes, the use of the original Alex network requires more hardware resources. Based on
this observation, we designed a new CNN structure based on the main structure of Alex network
as shown in Table 3. We called this network as customized Alex network for convenience. In our
design, the size of the input image is 87× 151 pixels (height×width) instead of 227 × 227 pixels in the
original Alex network. The use of this image size can reduce the processing time required by the CNN
system. In addition, we use a reduced number of filters and neurons in all the layers of the networks
(convolution layers and fully-connected layers). Using the lesser number of filters and number of
neurons in the fully connected layer can reduce the complexity of the CNN. Consequently, the number
of parameters in the network is reduced, which is beneficial for system training and testing. Using the
original structure of the Alex network as depicted in Table 2, the training process must learn over
56 million network parameters using training data. However, the volume of the network parameters
is reduced to about 12 million using the customized Alex network. In our experiments, we will
evaluate and compare the PAD performances of both the networks (Alex network and customized
Alex network).

Table 3. Description of customized Alex network for PAD problem.

Layer Name Number of
Filters Filter Size Stride

Size
Padding

Size
Dropout
Value Output Size

Input Layer n/a n/a n/a n/a n/a 87 × 151 × 3
Convolution Layer 1 (conv1) 96 11 × 11 × 3 2 × 2 0 n/a 39 × 71 × 96
Rectified Linear Unit (relu1) n/a n/a n/a n/a n/a 39 × 71 × 96

Normalization Layer (norm1) n/a n/a n/a n/a n/a 39 × 71 × 96
MAX Pooling Layer 1 (pool1) 1 3 × 3 2 × 2 0 n/a 19 × 35 × 96
Convolution Layer 2 (conv2) 128 5 × 5 × 96 1 × 1 2 × 2 n/a 19 × 35 × 128
Rectified Linear Unit (relu2) n/a n/a n/a n/a n/a 19 × 35 × 128

Normalization Layer (norm2) n/a n/a n/a n/a n/a 19 × 35 × 128
MAX Pooling Layer 2 (pool2) 1 3 × 3 2 × 2 0 n/a 9 × 17 × 128
Convolution Layer 3 (conv3) 192 3 × 3 × 128 1 × 1 1 × 1 n/a 9 × 17 × 192
Rectified Linear Unit (relu3) n/a n/a n/a n/a n/a 9 × 17 × 192
Convolution Layer 4 (conv4) 192 3 × 3 × 192 1 × 1 1 × 1 n/a 9 × 17 × 192
Rectified Linear Unit (relu4) n/a n/a n/a n/a n/a 9 × 17 × 192
Convolution Layer 5 (conv5) 128 3 × 3 × 192 1 × 1 1 × 1 n/a 9 × 17 × 128
Rectified Linear Unit (relu5) n/a n/a n/a n/a n/a 9 × 17 × 128

MAX Pooling Layer 5 (pool5) 1 3 × 3 2 × 2 0 n/a 4 × 8 × 128
Fully Connected Layer 1 (fc6) n/a n/a n/a n/a n/a 2048

Dropout Layer (drop6) n/a n/a n/a n/a 0.50 2048
Rectified Linear Unit (relu6) n/a n/a n/a n/a n/a 2048

Fully Connected Layer 2 (fc7) n/a n/a n/a n/a n/a 1024
Rectified Linear Unit (relu7) n/a n/a n/a n/a n/a 1024

Dropout Layer (drop7) n/a n/a n/a n/a 0.50 1024
Output Layer (fc8) n/a n/a n/a n/a n/a 2

Softmax Layer (prob) n/a n/a n/a n/a n/a 2
Classification Layer (output) n/a n/a n/a n/a n/a 2

2.2.3. CNN Architecture Based on VGG Network for PAD

As demonstrated by a research by Simonyan et al. [32], the depth (the number of layers) plays an
important role in the performance of a CNN-based method. In their research, they proposed two CNN
architectures called VGG-16 that contains 16 layers in depth (convolution layers and fully-connected
layers) and VGG-19 that contains 19 layers in depth, termed as VGG networks in our paper for
convenience. These architectures are much more complex than the architecture of the Alex network
described in Sections 2.2.1 and 2.2.2. Through experiments using the ImageNet database, they proved
that these CNN architectures outperform other architectures by delivering the up-to-date classification
results. To investigate the performance of the PAD according to the depth of CNN, we also use the
VGG network and its simpler version in our experiments. In our study, we use the VGG-16 network
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architecture as the reference CNN architecture. The detailed description of the VGG-16 network in our
research is provided in Table 4.

Table 4. Description of CNN structure based on VGG-16 network for PAD problem.

Layer Name Number of
Filters Filter Size Stride

Size
Padding

Size
Dropout
Value Output Size

Input Layer n/a n/a n/a n/a n/a 224 × 224 × 3
Convolution Layer (conv1_1) 64 3 × 3 × 3 1 × 1 1 × 1 n/a 224 × 224 × 64

Rectified Linear Unit 1 (relu1_1) n/a n/a n/a n/a n/a 224 × 224 × 64
Convolution Layer (conv1_2) 64 3 × 3 × 64 1 × 1 1 × 1 n/a 224 × 224 × 64
Rectified Linear Unit (relu1_2) n/a n/a n/a n/a n/a 224 × 224 × 64

MAX Pooling Layer (pool1) 1 2 × 2 2 × 2 0 n/a 112 × 112 × 64
Convolution Layer (conv2-1) 128 3 × 3 × 64 1 × 1 1 × 1 n/a 112 × 112 × 128

Rectified Linear Unit (relu2_1) n/a n/a n/a n/a n/a 112 × 112 × 128
Convolution Layer (conv2_2) 128 3 × 3 × 128 1 × 1 1 × 1 n/a 112 × 112 × 128
Rectified Linear Unit (relu2_2) n/a n/a n/a n/a n/a 112 × 112 × 128

MAX Pooling Layer (pool2) 1 2 × 2 2 × 2 0 n/a 56 × 56 × 128
Convolution Layer (conv3_1) 256 3 × 3 × 128 1 × 1 1 × 1 n/a 56 × 56 × 256
Rectified Linear Unit (relu3_1) n/a n/a n/a n/a n/a 56 × 56 × 256
Convolution Layer (conv3_2) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 56 × 56 × 256
Rectified Linear Unit (relu3_2) n/a n/a n/a n/a n/a 56 × 56 × 256
Convolution Layer (conv3_3) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 56 × 56 × 256
Rectified Linear Unit (relu3_3) n/a n/a n/a n/a n/a 56 × 56 × 256

MAX Pooling Layer (pool3) 1 2 × 2 2 × 2 0 n/a 28 × 28 × 256
Convolution Layer (conv4_1) 512 3 × 3 × 256 1 × 1 1 × 1 n/a 28 × 28 × 512
Rectified Linear Unit (relu4_1) n/a n/a n/a n/a n/a 28 × 28 × 512
Convolution Layer (conv4_2) 512 3 × 3 × 512 1 × 1 1 × 1 n/a 28 × 28 × 512
Rectified Linear Unit (relu4_2) n/a n/a n/a n/a n/a 28 × 28 × 512
Convolution Layer (conv4_3) 512 3 × 3 × 512 1 × 1 1 × 1 n/a 28 × 28 × 512
Rectified Linear Unit (relu4_3) n/a n/a n/a n/a n/a 28 × 28 × 512

MAX Pooling Layer (pool4) 1 2 × 2 2 × 2 0 n/a 14 × 14 × 512
Convolution Layer (conv5_1) 512 3 × 3 × 512 1 × 1 1 × 1 n/a 14 × 14 × 512
Rectified Linear Unit (relu5_1) n/a n/a n/a n/a n/a 14 × 14 × 512
Convolution Layer (conv5_2) 512 3 × 3 × 512 1 × 1 1 × 1 n/a 14 × 14 × 512
Rectified Linear Unit (relu5_2) n/a n/a n/a n/a n/a 14 × 14 × 512
Convolution Layer (conv5_3) 512 3 × 3 × 512 1 × 1 1 × 1 n/a 14 × 14 × 512
Rectified Linear Unit (relu5_3) n/a n/a n/a n/a n/a 14 × 14 × 512

MAX Pooling Layer (pool5) 1 2 × 2 2 × 2 0 n/a 7 × 7 × 512
Fully Connected Layer (fc6) n/a n/a n/a n/a n/a 4096
Rectified Linear Unit (relu6) n/a n/a n/a n/a n/a 4096

Dropout Layer (drop6) n/a n/a n/a n/a 0.50 4096
Fully Connected Layer (fc7) n/a n/a n/a n/a n/a 4096
Rectified Linear Unit (relu7) n/a n/a n/a n/a n/a 4096

Dropout Layer (drop7) n/a n/a n/a n/a 0.50 4096
Output Layer (fc8) n/a n/a n/a n/a n/a 2

Softmax Layer (prob) n/a n/a n/a n/a n/a 2
Classification Layer (output) n/a n/a n/a n/a n/a 2

2.2.4. Customized CNN Architecture Based on VGG Network for PAD

Similar to our approach with the Alex network, we also customize the structure of the VGG-16
network to reduce the complexity of the network by reducing the size of the input image and
the number of filters and neurons in convolution layers and fully-connected layers, respectively,
while keeping the number of layers the same as the original VGG-16 network. As a result, we created
a new VGG-16-based network that has lower complexity than the original VGG-16 network, and termed
it as the customized VGG-16 network for convenience. The detailed description of the customized
VGG-16 network is given in Table 5. In this CNN architecture, the size of the input finger-vein images
is 128 × 256, which is smaller than the 224 × 224 size used in the original VGG-16 network. By using
the customized VGG-16 architectures, the number of parameters in the network is reduced from
over 134 million in the original VGG-16 network to approximately 23 million in the customized
VGG-16 network, which helps reduce the processing time for training and testing the network. In our
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experiments, we perform PAD tasks using both the networks (VGG-16 and customized VGG-16
network) and compare the detection performance.

Table 5. Description of customized VGG-16 network for PAD problem.

Layer Name Number of
Filters Filter Size Stride

Size
Padding

Size
Dropout
Value Output Size

Input Layer n/a n/a n/a n/a n/a 128 × 256 × 3
Convolution Layer (conv1_1) 32 3 × 3 × 3 1 × 1 1 × 1 n/a 128 × 256 × 32

Rectified Linear Unit 1 (relu1_1) n/a n/a n/a n/a n/a 128 × 256 × 32
Convolution Layer (conv1_2) 32 3 × 3 × 32 1 × 1 1 × 1 n/a 128 × 256 × 32
Rectified Linear Unit (relu1_2) n/a n/a n/a n/a n/a 128 × 256 × 32

MAX Pooling Layer (pool1) 1 2 × 2 2 × 2 0 n/a 64 × 128 × 32
Convolution Layer (conv2-1) 64 3 × 3 × 32 1 × 1 1 × 1 n/a 64 × 128 × 64

Rectified Linear Unit (relu2_1) n/a n/a n/a n/a n/a 64 × 128 × 64
Convolution Layer (conv2_2) 64 3 × 3 × 64 1 × 1 1 × 1 n/a 64 × 128 × 64
Rectified Linear Unit (relu2_2) n/a n/a n/a n/a n/a 64 × 128 × 64

MAX Pooling Layer (pool2) 1 2 × 2 2 × 2 0 n/a 32 × 64 × 64
Convolution Layer (conv3_1) 128 3 × 3 × 64 1 × 1 1 × 1 n/a 32 × 64 × 128
Rectified Linear Unit (relu3_1) n/a n/a n/a n/a n/a 32 × 64 × 128
Convolution Layer (conv3_2) 128 3 × 3 × 128 1 × 1 1 × 1 n/a 32 × 64 × 128
Rectified Linear Unit (relu3_2) n/a n/a n/a n/a n/a 32 × 64 × 128
Convolution Layer (conv3_3) 128 3 × 3 × 128 1 × 1 1 × 1 n/a 32 × 64 × 128
Rectified Linear Unit (relu3_3) n/a n/a n/a n/a n/a 32 × 64 × 128

MAX Pooling Layer (pool3) 1 2 × 2 2 × 2 0 n/a 16 × 32 × 128
Convolution Layer (conv4_1) 256 3 × 3 × 128 1 × 1 1 × 1 n/a 16 × 32 × 256
Rectified Linear Unit (relu4_1) n/a n/a n/a n/a n/a 16 × 32 × 256
Convolution Layer (conv4_2) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 16 × 32 × 256
Rectified Linear Unit (relu4_2) n/a n/a n/a n/a n/a 16 × 32 × 256
Convolution Layer (conv4_3) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 16 × 32 × 256
Rectified Linear Unit (relu4_3) n/a n/a n/a n/a n/a 16 × 32 × 256

MAX Pooling Layer (pool4) 1 2 × 2 2 × 2 0 n/a 8 × 16 × 256
Convolution Layer (conv5_1) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 8 × 16 × 256
Rectified Linear Unit (relu5_1) n/a n/a n/a n/a n/a 8 × 16 × 256
Convolution Layer (conv5_2) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 8 × 16 × 256
Rectified Linear Unit (relu5_2) n/a n/a n/a n/a n/a 8 × 16 × 256
Convolution Layer (conv5_3) 256 3 × 3 × 256 1 × 1 1 × 1 n/a 8 × 16 × 256
Rectified Linear Unit (relu5_3) n/a n/a n/a n/a n/a 8 × 16 × 256

MAX Pooling Layer (pool5) 1 2 × 2 2 × 2 0 n/a 4 × 8 × 256
Fully Connected Layer (fc6) n/a n/a n/a n/a n/a 2048
Rectified Linear Unit (relu6) n/a n/a n/a n/a n/a 2048

Dropout Layer (drop6) n/a n/a n/a n/a 0.50 2048
Fully Connected Layer (fc7) n/a n/a n/a n/a n/a 1024
Rectified Linear Unit (relu7) n/a n/a n/a n/a n/a 1024

Dropout Layer (drop7) n/a n/a n/a n/a 0.50 1024
Output Layer (fc8) n/a n/a n/a n/a n/a 2

Softmax Layer (prob) n/a n/a n/a n/a n/a 2
Classification Layer (output) n/a n/a n/a n/a n/a 2

2.3. Image Feature Extraction and Presentation Attack Image Detection Using PCA and SVM

As described in Section 2.1, our proposed method uses a pre-trained CNN model obtained from
the training process of the CNN architecture described in Section 2.2 for the image feature extraction.
In contrast to handcrafted feature extraction methods used in the past such as LBP [23], BSIF [23],
windowed DMD [26], pyramid decomposition [27], Fourier descriptor [23] and wavelet descriptor [24],
the CNN model was obtained by a training process using a large amount of real and presentation
attack finger-vein images. Therefore, the CNN model can serve as a more suitable feature extractor
than the other handcrafted methods. As explained in Section 2.2, we use four CNN models with
different sizes (number of filters) and depths (number of layers) based on two popular successful
CNNs: Alex network [31] and VGG-16 network [32]. Using the original structures of Alex and VGG-16
networks, we can extract a feature vector of 4096-component (4096-dimensional feature vector) for
each input finger-vein image using the output at the second fully-connected layer (fc7) as shown in
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Tables 2 and 4. Using the same procedure, we can extract a feature vector of 1024-component using
the customized CNN structures of Alex and VGG-16 networks as shown in Tables 3 and 5. Although
we can directly use these features as the inputs of SVM to classify the real and presentation attack
finger-vein images, it is not the appropriate option since the dimensions of the input feature vectors
are very high. The use of high-dimensional feature vectors increases the processing time of SVM and
makes the SVM classifier become complex. To overcome this problem, we propose the use of the PCA
method for dimensionality reduction of feature space before using the SVM for classification [48].

As the final step of our proposed method, we use the SVM for classifying the input images into
two classes: real and presentation attack classes. The SVM method tries to classify the original data by
transforming them into a higher dimensional space in which the data of each class is separated from
the other classes using kernel functions. For our problem of real and presentation attack finger-vein
image classification, the class label of test images will be identified by evaluating the sign function of
Equation (1). In our experiments, we will use three different kinds of SVM kernel functions, including
the linear kernel, radial basic function (RBF) and polynomial function as shown in Equations (2)–(4).
In addition, we use the MATLAB environment for implementing the CNN, PCA and SVM algorithms
and for measuring the performances of the detection systems [49].

f (x) = sign(
k

∑
i=1

aiyiK(x, xi) + b) (1)

Linear kernel : K
(

xi, xj
)
= xi

Txj (2)

RBF kernel : K
(
xi, xj

)
= e−γ‖xi−xj‖2

(3)

Polynomial kernel : K
(

xi, xj
)
=

(
γxi

Txj + coe f
)degree

(4)

3. Experimental Results

3.1. Experimental Setup

To evaluate the PAD performance of our proposed method, we use two databases: ISPR database [24]
and Idiap database [23]. The ISPR database consists of 3300 and 7560 images for real and presentation
attack finger-vein images, respectively. The real finger-vein database was collected by capturing
finger-vein images from 33 people. All 10 fingers of every individual were used and 10 trials were
captured for each finger. Consequently, the real finger-vein database contains 3300 (33 people ×
10 fingers × 10 trials) images. From the 3300 real finger-vein images, we selected 56 images of
seven users that displayed a clear vein pattern for making the presentation attack finger-vein images.
The presentation attack finger-vein image database was collected by re-capturing the printed versions
of the 56 selected real finger-vein images on three different printing materials: A4 paper, MAT paper
and OHP film. In addition, we used three different printing resolutions: low resolution (300 dpi),
middle resolution (1200 dpi) and high resolution (2400 dpi). By using this scheme, we collected
presentation attack finger-vein images that contained various characteristics specific to printing
materials and printing resolution. Finally, to simulate the attack process, we captured presentation
attack finger-vein images at three z-distances (the distance between the camera and the finger-vein
sample) by slightly changing the z-distance during image acquisition and conducting five trials
for each z-distance. As a result, a presentation attack finger-vein image database of 7560 images
(56 real image × 3 printing materials × 3 printing resolutions × 3 z-distances × 5 trials) was collected.
We made the ISPR database and algorithm including trained CNN model available to other researchers
through the website [47] to compare the performance with this database and algorithm. In Figure 4,
we show some examples of live finger-vein images and the corresponding fake finger-vein images.
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In our experiments, to exploit the detection performance of our proposed method based on
the kind of printing materials and printing resolution, we divided the entire ISRP database into
several sub-databases according to printing materials (printed on A4 paper, printed on MAT paper,
and printed on OHP film), and printing resolution (printed using 300 DPI resolution printer (Fuji Xerox
DocuCentre IV C2265, Tokyo, Japan), printed using 1200 DPI resolution printer (HP LaserJet 1022,
Palo Alto, CA, USA), and printed using 2400 DPI resolution printer (Samsung CLP-360 series, Seoul,
South Korea)). In addition, the entire ISPR database is used for the experiment to evaluate the detection
performance of our proposed method in general. For our experiments, we perform a two-fold
cross-validation procedure to evaluate the performance of our proposed method. For this purpose,
we divided a working database into training and testing databases twice, by which half of the real
and presentation attack finger-vein images are assigned to the training database and the other half to
the testing database. Using the training databases, we can learn the CNN models for image feature
extraction as well as the PCA transformation matrix and SVM classifier for real and presentation
attack finger-vein image classification. With these trained models of CNN, PCA and SVM, the PAD
performance is measured using the testing databases. The detailed descriptions of the ISPR database
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as well as its sub-databases are shown in Table 6. For convenience, we named the ISPR and its
sub-databases as ISPR-DB and ISPR-DB1–ISPR-DB6 as shown in Table 6.

Table 6. Description of ISPR presentation attack finger-vein image database.

Image Making Protocol Real Access Presentation Attack Access

Train Set Test Set Total Train Set Test Set Total

Material
Printed on A4 Paper (ISPR-DB1) 1700 1600 3300 1440 1080 2520

Printed on MAT Paper (ISPR-DB2) 1700 1600 3300 1440 1080 2520
Printed on OHP Film (ISPR-DB3) 1700 1600 3300 1440 1080 2520

Printer
Resolution

Printed Using 300 DPI Resolution
Printer (ISPR-DB4) 1700 1600 3300 1440 1080 2520

Printed Using 1200 DPI Resolution
Printer (ISPR-DB5) 1700 1600 3300 1440 1080 2520

Printed Using 2400 DPI Resolution
Printer (ISPR-DB6) 1700 1600 3300 1440 1080 2520

Entire Database (ISPR-DB) 1700 1600 3300 4320 3120 7560

The Idiap presentation attack finger-vein database (called Idiap database for convenience) is
a public and famous database used for presentation attack finger-vein image detection research [23].
The Idiap database contains 440 index finger images obtained from 110 clients. From 440 real images,
the authors made an additional 440 presentation attack finger-vein images by printing and recapturing
method. Consequently, the Idiap database contains 880 real and presentation attack finger-vein images.
For the presentation attack finger-vein image detection, the Idiap database is provided in two protocols
of full image database and cropped image database. The full image database contains finger-vein
images with rough boundary detection. Unlike the full image database, the cropped image database
was made by localizing the finger-vein regions and removing the background regions carefully.
Therefore, the images in the cropped image database contain only finger-vein regions. The use of the
two protocols allows us to evaluate the effects of the background region on the performance of the
detection method. In our experiment, we call the full image database as “Idiap Full-DB”, and the
cropped image database as “Idiap Cropped-DB” for convenience. Figure 5 demonstrates some real
and presentation attack finger-vein images in the Idiap database. In addition, the detailed description
of this database with the two protocols is given in Table 7.

Sensors 2017, 17, 2261 14 of 33 

Sensors 2017, 17, 2261; doi: 10.3390/s17102261 www.mdpi.com/journal/sensors 

Table 6. Description of ISPR presentation attack finger-vein image database. 

Image Making Protocol 
Real Access Presentation Attack Access

Train Set Test Set Total Train Set Test Set Total

Material 
Printed on A4 Paper (ISPR-DB1) 1700 1600 3300 1440 1080 2520 

Printed on MAT Paper (ISPR-DB2) 1700 1600 3300 1440 1080 2520 
Printed on OHP Film (ISPR-DB3) 1700 1600 3300 1440 1080 2520 

Printer 
Resolution 

Printed Using 300 DPI Resolution 
Printer (ISPR-DB4) 

1700 1600 3300 1440 1080 2520 

Printed Using 1200 DPI Resolution 
Printer (ISPR-DB5) 

1700 1600 3300 1440 1080 2520 

Printed Using 2400 DPI Resolution 
Printer (ISPR-DB6) 

1700 1600 3300 1440 1080 2520 

Entire Database (ISPR-DB) 1700 1600 3300 4320 3120 7560 

The Idiap presentation attack finger-vein database (called Idiap database for convenience) is a 
public and famous database used for presentation attack finger-vein image detection research [23]. 
The Idiap database contains 440 index finger images obtained from 110 clients. From 440 real images, 
the authors made an additional 440 presentation attack finger-vein images by printing and 
recapturing method. Consequently, the Idiap database contains 880 real and presentation attack 
finger-vein images. For the presentation attack finger-vein image detection, the Idiap database is 
provided in two protocols of full image database and cropped image database. The full image 
database contains finger-vein images with rough boundary detection. Unlike the full image database, 
the cropped image database was made by localizing the finger-vein regions and removing the 
background regions carefully. Therefore, the images in the cropped image database contain only 
finger-vein regions. The use of the two protocols allows us to evaluate the effects of the background 
region on the performance of the detection method. In our experiment, we call the full image database 
as “Idiap Full-DB”, and the cropped image database as “Idiap Cropped-DB” for convenience. Figure 
5 demonstrates some real and presentation attack finger-vein images in the Idiap database. In 
addition, the detailed description of this database with the two protocols is given in Table 7. 

 
(a) 

 
(b) 

Figure 5. Example of real and presentation attack finger-vein images in Idiap database: (a) real and 
presentation attack finger-vein images from full image database (Idiap Full-DB); and (b) real and 
presentation attack finger-vein images from cropped image database (Idiap Cropped-DB). 

Figure 5. Cont.



Sensors 2017, 17, 2261 15 of 34

Sensors 2017, 17, 2261 14 of 33 

Sensors 2017, 17, 2261; doi: 10.3390/s17102261 www.mdpi.com/journal/sensors 

Table 6. Description of ISPR presentation attack finger-vein image database. 

Image Making Protocol 
Real Access Presentation Attack Access

Train Set Test Set Total Train Set Test Set Total

Material 
Printed on A4 Paper (ISPR-DB1) 1700 1600 3300 1440 1080 2520 

Printed on MAT Paper (ISPR-DB2) 1700 1600 3300 1440 1080 2520 
Printed on OHP Film (ISPR-DB3) 1700 1600 3300 1440 1080 2520 

Printer 
Resolution 

Printed Using 300 DPI Resolution 
Printer (ISPR-DB4) 

1700 1600 3300 1440 1080 2520 

Printed Using 1200 DPI Resolution 
Printer (ISPR-DB5) 

1700 1600 3300 1440 1080 2520 

Printed Using 2400 DPI Resolution 
Printer (ISPR-DB6) 

1700 1600 3300 1440 1080 2520 

Entire Database (ISPR-DB) 1700 1600 3300 4320 3120 7560 

The Idiap presentation attack finger-vein database (called Idiap database for convenience) is a 
public and famous database used for presentation attack finger-vein image detection research [23]. 
The Idiap database contains 440 index finger images obtained from 110 clients. From 440 real images, 
the authors made an additional 440 presentation attack finger-vein images by printing and 
recapturing method. Consequently, the Idiap database contains 880 real and presentation attack 
finger-vein images. For the presentation attack finger-vein image detection, the Idiap database is 
provided in two protocols of full image database and cropped image database. The full image 
database contains finger-vein images with rough boundary detection. Unlike the full image database, 
the cropped image database was made by localizing the finger-vein regions and removing the 
background regions carefully. Therefore, the images in the cropped image database contain only 
finger-vein regions. The use of the two protocols allows us to evaluate the effects of the background 
region on the performance of the detection method. In our experiment, we call the full image database 
as “Idiap Full-DB”, and the cropped image database as “Idiap Cropped-DB” for convenience. Figure 
5 demonstrates some real and presentation attack finger-vein images in the Idiap database. In 
addition, the detailed description of this database with the two protocols is given in Table 7. 

 
(a) 

 

 
(b) 

Figure 5. Example of real and presentation attack finger-vein images in Idiap database: (a) real and
presentation attack finger-vein images from full image database (Idiap Full-DB); and (b) real and
presentation attack finger-vein images from cropped image database (Idiap Cropped-DB).

Table 7. Description of and Istituto Dalle Molle di Intelligenza Artificiale Percettiva (Idiap) presentation
attack finger-vein image database with two protocols of full and cropped images.

Image Making Protocol
Real Access Presentation Attack Access

Train Set Test Set Validation Set Train Set Test Set Validation Set

Full Image Database
(Idiap Full-DB) 120 200 120 120 200 120

Cropped Image Database
(Idiap Cropped-DB) 120 200 120 120 200 120

Based on suggestions by previous researchers [31,41], we applied two methods to reduce the
over-fitting problem: dropout method and data augmentation method. For the dropout method,
we applied the dropout layer in the CNN architecture, as shown in Tables 2 and 3 for the Alex-based
CNNs and Tables 4 and 5 for the VGG-16-based CNNs. For the data augmentation approach,
we artificially created the augmented database from the original training databases for both the
ISPR and Idiap databases. For this purpose, we artificially made several images from each original
image using shifting and cropping methods. The descriptions of the augmented databases for Idiap
databases and ISPR database are given in Tables 8 and 9, respectively. Finally, we use these augmented
databases for training and evaluating the performance of our proposed method in comparison with
previous methods. For the six sub-databases created from ISPR database, i.e., ISPR-DB1–ISPR-DB6,
we generated 22 images from each real finger-vein image and 26 images from each presentation
attack finger-vein image. For the ISPR-DB database, we generated 33 images for each real finger-vein
image and 13 images for each presentation attack finger-vein image. For the Idiap database, we made
61 artificial images for each real or presentation attack finger-vein image. As shown in Tables 8 and 9,
we only perform the data augmentation on the training databases, not on testing and validation
databases. Hence, the over-fitting problem is only affected by the training databases. In addition,
the testing and validation databases should be retained as they were to make comparisons with
previous methods on the same database. Using the data augmentation method, we can enlarge the
training database and generalize the results to reduce the effect of over-fitting problem.

Table 8. Description of the augmented database derived from Idiap databases.

Database
Real Access Presentation Attack Access

Train Set Test Set Validation Set Train Set Test Set Validation Set

Idiap Full-DB 7440 (120 × 62) 200 120 7440 (120 × 62) 200 120
Idiap Cropped-DB 7440 (120 × 62) 200 120 7440 (120 × 62) 200 120
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Table 9. Description of the augmented database derived from ISPR database and its sub-databases
(ISPR-DB1–ISPR-DB6).

Database
Real Access Presentation Attack Access

Train Set Test Set Train Set Test Set

Material

Printed on A4 Paper
(ISPR-DB1) 37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Printed on MAT Paper
(ISPR-DB2) 37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Printed on OHP Film
(ISPR-DB3) 37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Printer
Resolution

Printed Using 300 DPI
Resolution Printer

(ISPR-DB4)
37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Printed Using 1200 DPI
Resolution Printer

(ISPR-DB5)
37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Printed Using 2400 DPI
Resolution Printer

(ISPR-DB6)
37,400 (1700 × 22) 1600 37,440 (1440 × 26) 1080

Entire Database (ISPR-DB) 56,100 (1700 × 33) 1600 56,160 (4320 × 13) 3240

For a PAD system, we refer to the ISO/IEC-30107 standard (international organization for
standardization (ISO) and the international electro-technical commission (IEC)) [27,50] and apply
the criteria used in this standard for performance measurement of detection systems. We use two
metrics for the PAD system performance measurement: the attack presentation classification error rate
(APCER) and bona fide presentation classification error rate (BPCER). BPCER can as also be referred to
as normal presentation classification error rate (NPCER). APCER indicates the proportion of attack
presentations using the same presentation attack instrument (PAI) species incorrectly classified as bona
fide presentations in the PAD subsystem in a specific scenario. BPCER indicates the proportion of
bona fide presentations incorrectly classified as presentation attacks in the PAD subsystem in a specific
scenario. APCER and BPCER for a given PAI are measured using Equations (5) and (6) as follows:

APCER = 1−
(

1
NPA

) NPA

∑
i=1

(RESi) (5)

BPCER =
∑NBF

i=1 RESi

NBF
(6)

ACER =
APCER + BPCER

2
(7)

In these equations, NPA indicates the number of attack presentations for the given presentation
attack instrument species, NBF indicates the number of bona fide presentations, and RESi takes the
value of 1 if the ith presentation is classified as an attack presentation and a value of 0 if it is classified
as a bona fide presentation. As shown in these equations, lower values of APCER and BPCER indicate
better detection performance of the PAD method. In our study, we use the average classification error
rate (ACER) that is calculated using Equation (7) to measure the average error of the detection system.
The Idiap database is a public database which was created by Idiap research institute in Martigny,
Switzerland. In this database, the training and testing sub-databases were pre-determined by the
provider of database so that images of same client (user) are only included in either training or testing
dataset. For fair comparison with other researcher’s methods using this database, we followed this
division scheme of training and testing sub-databases.
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In our experiments with the ISPR database, we perform a two-fold cross-validation procedure
for measuring the presentation detection accuracy of the detection system. In detail, in the first fold
validation, we assigned the images of four users randomly selected among seven users as the training
dataset, and the images of the other three users are assigned as the testing dataset. In the second fold
validation, the images of the three users (used for testing in the first fold validation) with those of
additional one user are used as the training dataset, and the images of the remained three users are
used for testing. As a result, the images of same finger and same user are only included in either
training or testing dataset. By conclusion, we performed tests on separated groups of users for the
training and testing sets to properly demonstrate the generalization capability of our method.

Therefore, we measure the APCER, BPCER and ACER values for each trials of cross-validation.
Finally, the presentation detection accuracies of the system (APCER, BPCER and ACER) are measured
by taking the average value of the two corresponding values of the two trials. There are several
differences between the images of two different databases (ISPR and Idiap databases) used in our
experiments such as the capturing device, capturing environment, capturing procedure, etc. Therefore,
the characteristics of images in each database are a little different as shown in Figures 4 and 5.
Considering this, we performed training and testing process on each database in order to ensure the
detection performance.

3.2. Experiment Results

3.2.1. PAD Accuracy Assessment Using CNN-Based Method

In our initial experiments, we investigated the PAD performance of systems that use only
CNN-based method for classifying images into real and presentation attack classes. For this purpose,
we use two CNNs including Alex network and VGG-16 network, which were described in Sections 2.2.1
and 2.2.2, to detect the presentation attack finger-vein images directly by removing the post-processing
steps by PCA and SVM shown in Figure 1. As a result, the overall procedure for the PAD method
in Figure 1 is changed and the modified procedure is depicted in Figure 6. In addition, we also
perform the experiments using two CNN architectures in two training modes: with and without
applying the transfer learning method. For the experiments without applying the transfer learning
method, the model parameters are randomly initialized using Gaussian distribution with zero-mean
and a standard deviation of 0.001.

As shown in Section 3.1, we use two databases for evaluating the detection performance of
PAD system: ISPR database and Idiap database. Although there are several sub-databases which
were derived from ISPR database based on the printing material and printing resolution as shown
in Tables 6 and 9, we only use the entire ISPR database (ISPR-DB database) in the experiments
in this section because it is the largest database that contains all other sub-databases. The other
sub-databases (ISPR-DB1–ISPR-DB6) will be used in our subsequent experiments to investigate the
detection performance of our proposed method based on printing materials and printing resolution.
The detailed experimental results of the use of CNN architectures based on Alex network and VGG-16
network are demonstrated in Tables 10 and 11, respectively.
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Table 10. PAD errors of CNN-based method with and without applying the transfer learning technique
using Alex network architecture depicted in Table 2 (unit: %).

Database
Without Transfer Learning With Transfer Learning

APCER BPCER ACER APCER BPCER ACER

ISPR-DB 2.5000 0.8073 1.6536 0.2018 0.1863 0.1940
Idiap Full-DB 0.000 1.5000 0.7500 0.0000 0.0000 0.0000

Idiap Cropped-DB 2.5000 2.5000 2.500 0.0000 0.0000 0.0000

Table 11. PAD errors of CNN-based method with and without applying the transfer learning technique
using VGG-16 network architecture in Table 4 (unit: %).

Database
Without Transfer Learning With Transfer Learning

APCER BPCER ACER APCER BPCER ACER

ISPR-DB 0.0000 100.00 50.00 0.0000 0.1240 0.0620
Idiap (Full-DB) 0.0000 100.00 50.00 0.0000 0.0000 0.0000

Idiap (Cropped-DB) 0.0000 100.00 50.00 0.0000 1.0000 0.5000

In Table 10, we show the experimental results using the CNN architecture based on Alex network.
Using the ISPR-DB, we obtained the APCER of 2.50% and the corresponding BPCER of 0.8073%.
On an average, we obtained an ACER value of about 1.6536% when the transfer learning technique
was not applied. Applying the transfer learning method on the Alex network reduced the error
significantly. APCER reduced from 2.50 to 0.2018% and BPCER reduced from 0.8073 to 0.1863%.
As a result, the ACER is reduced from 1.6536 to 0.194%. Similarly, when using the Idiap databases,
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we obtained the ACER value of 0.75% and 2.5% using Alex network without transfer learning on Idiap
Full-DB and Idiap Cropped-DB databases respectively. These errors are then reduced to 0.00% using
Alex network with the transfer learning method. These results demonstrate that the CNN architecture
based on the Alex network was successfully used to detect the presentation attack finger-vein images.
In addition, the transfer learning method outperforms the conventional CNN method using CNN
architecture based on Alex network.

In Figure 7, we depicted the change in APCER according to BPCER values of these above
experiments. In this figure, we draw the graph of APCER versus BPAR, where BPAR indicates the bona
fide acceptance rate and is calculated as: 100 (%)–BPCER (%). BPAR is defined as the proportion of the
bona fide images that were correctly classified as bona fide images. We term this figure as the detection
error tradeoff (DET) curve in our research. As shown in Table 10, the detection errors of the Idiap
databases (Idiap Full-DB and Idiap Cropped-DB database) were reduced to zero using the transfer
learning method. Therefore, DET curves of these experiments are identical, as shown in Figure 7,
which indicates that transfer learning is more suitable for training and convergence of CNN than the
conventional training method of CNN. In addition, this figure also demonstrates the ability of Alex
network in detecting the presentation attack finger-vein images by producing small detection errors.
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Figure 7. The DET curves of PAD method based on Alex network using three different databases:
ISPR-DB, Idiap Full-DB and Idiap Cropped-DB database; and two training modes: with and without
applying the transfer learning method.

Similar to Table 10 and Figure 7 but using the VGG-16 network for PAD systems, Table 11 and
Figure 8 show the experimental results and DET curves using ISPR-DB and Idiap databases. As shown
in Table 11, the VGG-16 network works poorly on all three databases of ISPR-DB, Idiap Full-DB and
Idiap Cropped-DB databases when the transfer learning method is not applied. However, using the
transfer learning method on VGG-16 network, the detection accuracies became much better. The ACER
of ISPR-DB is reduced from 50.00% using VGG-16 network without transfer learning method to 0.062%
using VGG-16 network with transfer learning method. In the case of Idiap database, the ACER is
reduced from 50.00% to 0.00% for the cases of using the Idiap Full-DB database and 0.50% for the case
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of using Idiap Cropped-DB database. As shown in Table 11, the detection accuracies for CNN-based
method without transfer learning were 50%. As a result, the DET curves of these experiments are
identical as shown in Figure 8. Through these experiments, we conclude that the CNN-based method
could be sufficient for the PAD problem in finger-vein biometric system. In addition, the detection
performance can be enhanced significantly using the transfer learning method in which the system
parameters are manually initialized using the pre-trained parameters from another problem.Sensors 2017, 17, 2261 20 of 33 
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databases: ISPR-DB, Idiap Full-DB and Idiap Cropped-DB database; and two training modes: with and
without applying the transfer learning method.

There are several reasons for the poor detection results of VGG-16 network when the transfer
learning method is not applied. Firstly, as explained in Section 2.2.2, the VGG-16 network described in
Table 4 contains over 134 million parameters. This large volume of parameters causes the over-fitting
problem when the training database is not large enough. Secondly, as shown in Tables 8 and 9,
the volume of training data in our experiment is smaller than the size of the ImageNet database.
Therefore, the training process without careful initialization of parameters is not successfully done
using our databases. In contrast, applying the transfer learning method on the VGG-16 network
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produces sufficient accurate detection results, as shown in the right part of Table 11. This is because
we used the parameters of pre-trained model as the initial parameters of the model in our problem.
Consequently, the filter’s coefficients are suitable for extracting the image features and the weights in
fully-connected layers are good for classification. These results again confirm the relative effectiveness
of the transfer learning method on the PAD problem for finger-vein biometric system over the
traditional CNN methods.

3.2.2. PAD Accuracy Assessment Using Our Proposed Method Based on Alex and VGG-16 Network
CNN Architectures

As a result of the experiments in Section 3.2.1, we can see that the CNN-based method is
sufficient for PAD in finger-vein recognition system. However, as explained in Section 2.2, the CNNs
contain a huge number of parameters. Because of this problem, the classification by using the
fully-connected layers can cause over-fitting problem, which, in turn, reduces the presentation attack
detection performance. In this section, we will evaluate the detection performance of our proposed
method using ISPR-DB and Idiap databases (Full-DB and Cropped-DB database). As depicted in
Figure 1, our proposed method performs the post-processing steps to enhance the detection accuracy
of conventional CNN-based method using PCA and SVM methods. The method uses the pre-trained
CNN models obtained by the experiments in Section 3.2.1 to extract the finger-vein image features. With
the extracted image features, we continue performing the PCA method to reduce the dimensionality of
feature space and use SVM to classify the real and presentation attack finger-vein images. As explained
in Section 2.3, we used three kinds of SVM kernel for experiments: linear, RBF and polynomial.

In the first experiment in this section, we use the pre-trained CNN models based on the Alex
network architecture to extract the image features for our proposed method. The detailed experiment
results of this experiment were shown in Table 12 using two training protocols (without and with
transfer learning). In addition, we also report the number of PCA coefficient corresponding to each
experimental result and denoted as “No. PC” in Tables 12–20. In Figure 9, we show the DET curves
of various system configurations corresponding to the results in Table 12. As shown in this table,
using the ISPR-DB database and CNN model without transfer learning, we obtained the best detection
error (ACER) of 1.1800% using polynomial kernel of SVM method. These error values are smaller than
the error of 1.6536% of the system that uses only the CNN-based method without applying the transfer
learning, as shown in Table 10. With transfer learning method, the error is further reduced to 0.0311%
using linear kernel of SVM method. Compared to the errors in Table 10, we see that these errors are
lesser than the 1.6536% error occurring as a result of using Alex network without transfer learning and
also lesser than the 0.1940% using Alex network with transfer learning. These results demonstrate that
our proposed method outperforms the CNN-based method for PAD using Alex network. In Figure 9a,
we show the DET curves of these experiments. This figure again demonstrates the advantage of our
proposed method over the conventional CNN-based method.

Table 12. Detection errors of our proposed method with and without applying the transfer learning
technique using Alex network architecture in Table 2 (unit: %).

Database
Without Transfer Learning With Transfer Learning

SVM Kernel
(No. PC) APCER BPCER ACER SVM Kernel

(No. PC) APCER BPCER ACER

ISPR-DB Polynomial Kernel
(No. PC = 60) 1.1875 1.1725 1.1800 Linear Kernel

(No. PC = 50) 0.0313 0.0310 0.0311

Idiap
(Full-DB)

RBF Kernel
(No. PC = 50) 0.0000 0.0000 0.0000 RBF Kernel (No.

PC = 95) 0.0000 0.0000 0.0000

Idiap
(Cropped-DB)

RBF Kernel
(No. PC = 150) 1.0000 1.0000 1.0000 Linear Kernel

(No. PC = 100) 0.0000 0.0000 0.0000
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Figure 9. DET curves of various system configurations using our proposed method based on Alex
network on two different databases of: (a) ISPR-DB database; and (b) Idiap Cropped-DB database.

Similar to the experiments with ISPR-DB, we continue measuring the detection performance
using Idiap databases (Full-DB and Cropped-DB database) and the results were shown in the later
part of Table 12. As shown in this table, we obtained the smallest error (ACER) of 0.0% RBF kernel of
SVM method on Idiap Full-DB database without applying the transfer learning method. With transfer
learning method, this error is also 0.0% using RBF kernel. Because the errors of both cases are 0.0%,
the DET curves of these experiments are the ideal curves (the horizontal curves at BPAR of 100%).
Therefore, we do not show them in Figure 9. Finally, using the Idiap Cropped-DB database, we obtained
the smallest error (ACER) of 1.0% using RBF kernel of SVM method. This result is reduced to 0.0% with
the application of transfer learning method and linear kernel. The DET curves of system configuration
in these experiments are shown in Figure 9b. In summary, we obtained the error of 0.00% using either
Idiap Full-DB or Idiap Cropped-DB database using our proposed method and the Alex network.

Similar to the above experiments, we performed our subsequent experiments using the VGG-16
network, which was described in Table 4. The detailed experimental results are shown in Table 13
and Figure 10. Using the ISPR-DB database, we obtained the smallest error (ACER) of 2.8494% using
RBF kernel of SVM method, without transfer learning method. In comparison, the results depicted in
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Table 12, which were obtained using Alex network, are lower. However, using the transfer learning
method, the error was reduced to 0.031% using linear kernel of SVM method. We can see that this error
is equal to that in Table 12, which were obtained using the Alex network with the same procedure
with this experiment on ISPR-DB. This phenomenon is a result of the complexity of CNN architecture.
As explained in Sections 2.2.1 and 2.2.3, the number of network parameters in the Alex network is
approximately 56 million, while this number in the VGG-16 network is approximately 134 million.
Therefore, without applying the transfer learning method, the over-fitting problem causes stronger
effects in VGG-16 network than the Alex network. However, by using the transfer learning method,
the detection performances were enhanced. This result again demonstrates the superiority of the
transfer learning method over the conventional CNN method. In Figure 10a, we show the DET curves
of these experiments to visually demonstrate the enhanced efficiency of the transfer learning method
over the conventional CNN method.
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In the last part of Table 13, we show the results of the experiments using Idiap Full-DB and Idiap
Cropped-DB databases. Using the Idiap Full-DB database, we obtained the smallest errors of 0.0%
in both the cases: with and without using transfer learning method. Thus, the DETs of experiments
using Idiap Full-DB database are ideal curves. Therefore, we do not draw them in Figure 10. Using the
Idiap Cropped-DB database, we obtained the smallest error 1.0% using RBF kernel of SVM method.
This error is reduced to 0.00% using the transfer learning method. Figure 10b shows the DET curves
of these experiments. Through the experiments described in Sections 3.2.1 and 3.2.2, we conclude
that the proposed method that used the CNN with transfer learning and post-processing by PCA
and SVM outperformed the conventional CNN-based method for PAD for finger-vein biometric
system. By comparing the PAD errors in Tables 10–13, we can see that the VGG-16 network delivered
a slight higher detection accuracy (high detection accuracy is indicated by low detection error) than
the Alex network. This result confirms the effects of the depth of CNN on the detection system.
In addition, it can be observed in Tables 12 and 13 that the best detection accuracy (the smallest error
value) of ISPR-DB database was 0.0311% using linear kernel of SVM method; and similarly, those of
Idiap Full-DB and Cropped-DB database were 0.00% using the linear or RBF kernel of SVM method.
We conclude that the linear kernel is more efficient than the other kernels (RBF and polynomial kernels)
in the proposed method for PAD problem.

Table 13. Detection errors of our proposed method with and without applying the transfer learning
technique using VGG-16 network architecture in Table 4 (unit: %).

Database

Without Transfer Learning With Transfer Learning

SVM Kernel
(No. PC) APCER BPCER ACER SVM Kernel

(No. PC) APCER BPCER ACER

ISPR-DB RBF Kernel
(No. PC = 200) 2.8438 2.8550 2.8494 Linear Kernel

(No. PC = 70) 0.0313 0.0310 0.0311

Idiap
(Full-DB)

RBF Kernel
(No. PC = 70) 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 60) 0.0000 0.0000 0.0000

Idiap
(Cropped-DB)

RBF Kernel
(No. PC = 105) 1.0000 1.0000 1.0000 RBF Kernel

(No. PC = 95) 0.0000 0.0000 0.0000

3.2.3. PAD Accuracy Assessment Using Our Proposed Method on ISPR Database Based on Printing
Resolution and Printing Materials

The experiments presented in Sections 3.2.1 and 3.2.2 were conducted using three databases:
ISPR-DB and the Idiap databases (Full-DB and Cropped-DB databases). These databases contain
the largest number of finger-vein images in each database without pre-classification based on some
special characteristic of presentation attack finger-vein images. Therefore, these databases are sufficient
for evaluating the PAD in general. However, the detection performance can vary depending on the
characteristics of presentation attack images such as printing material or printing resolution. In our
subsequent experiments, we used our proposed method (CNN-based method with transfer learning
and post-processing by PCA and SVM) to measure the performance of the detection method based on
the methods for creating the presentation attack images. As shown in Section 3.1, the Idiap databases
do not contain information of presentation attack images regarding the printing characteristics such as
the printing materials or printing resolution. Therefore, the Idiap databases cannot be used for our
experiment in this section. However, the ISPR-DB database was captured using different printing
materials (A4, MAT, and OHP film) and printing resolution (300 dpi, 1200 dpi, and 2400 dpi). For the
purpose of experiments in this section, we used the six sub-databases obtained from the ISPR-DB
database (ISPR-DB1–ISPR-DB6) by manually classifying the presentation attack images into six groups
according to printing materials and printing resolution, as shown in Tables 6 and 9.

For the first experiments in this section, we used our proposed method based on the Alex
network architecture to evaluate the detection performance based on the characteristics of presentation
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attack finger-vein images. The detailed experimental results are shown in Tables 14 and 15 for the
material-based and resolution-based presentation attack finger-vein databases, respectively. First,
we measured the detection errors of the ISPR-DB1–ISPR-DB3 to investigate the effects of different
printing materials on the detection performance and tabulated the results in Table 14. We obtained error
values (ACER) of 0.1865%, 0.0778% and 0.3725% using ISPR-DB1, ISPR-DB2 and ISPR-B3, respectively,
using CNN-based method with transfer learning. Using our proposed method, these errors are
significantly reduced to 0.0389%, 0.00%, and 0.0934% using ISPR-DB1–ISPR-DB3, respectively, using
the polynomial kernel of SVM method. These different errors demonstrated that the printing materials
have effects on presentation attack finger-vein image detection performance. Among the three kinds of
printing materials, the presentation attack finger-vein images that are made by printing on OHP film
are the most difficult to detect compared to the other two kinds of printing materials, i.e., A4 paper
and MAT paper.

Table 14. Detection errors of our proposed method using Alex network architecture in Table 2 on
sub-databases of ISPR-DB based on the printing materials (unit: %).

Database
CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel
(No. PC) APCER BPCER ACER

Printed on A4
Paper (ISPR-DB1) 0.1875 0.1855 0.1865 Polynomial Kernel

(No. PC = 110) 0.0313 0.0465 0.0389

Printed on MAT
Paper (ISPR-DB2) 0.0625 0.0930 0.0778 Polynomial Kernel

(No. PC = 105) 0.0000 0.0000 0.0000

Printed on OHP
Film (ISPR-DB3) 0.3750 0.3700 0.3725 Polynomial Kernel

(No. PC = 90) 0.0938 0.0930 0.0934

For the subsequent experiments, we measured the detection performance for the other three
sub-databases of ISPR-DB4–ISPR-DB6 to investigate the effects of printing resolution on presentation
detection performance. The experimental results are shown in Table 15. Using the CNN-based method,
we obtained the errors of 0.132%, 0.00% and 0.2794% using the low resolution database (ISPR-DB4),
medium resolution database (ISPR-DB5), and high resolution database (ISPR-DB6), respectively.
These errors are reduced to 0.0389%, 0.00% and 0.0778% using our proposed method. These results
demonstrate that printing resolution can make a little impact on the PAD system.

Table 15. Detection errors of our proposed method using Alex network architecture in Table 2 on
sub-databases of ISPR-DB based on printing resolutions (unit: %).

Database
CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel
(No. PC) APCER BPCER ACER

Printed Using 300 DPI
Resolution Printer (ISPR-DB4) 0.1250 0.1390 0.1320 Linear Kernel

(No. PC = 90) 0.0313 0.0465 0.0389

Printed Using 1200 DPI
Resolution Printer (ISPR-DB5) 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 60) 0.0000 0.0000 0.0000

Printed Using 2400 DPI
Resolution Printer (ISPR-DB6) 0.2813 0.2775 0.2794 Polynomial Kernel

(No. PC = 135) 0.0625 0.0930 0.0778

For the second experiments in this section, we used our proposed method based on VGG-16
network instead of Alex network architecture in the above experiments. The experimental results of
using different printing materials are shown in Table 16. Table 17 demonstrates the corresponding
results of using different printing resolution. Compared to the similar results in Tables 14 and 15 using
Alex network, we can see that lower detection errors were obtained using our proposed method based
on VGG-16 network. This result is obtained because the VGG-16 network is much deeper than Alex
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network. From this result, we conclude that our proposed method is efficient for PAD in various
conditions for making the presentation attack finger-vein images.

Table 16. Detection errors of our proposed method using VGG-16 network architecture in Table 4 on
sub-databases of ISPR-DB based on the printing materials (unit: %).

Database

CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel
(No. PC) APCER BPCER ACER

Printed on A4 Paper
(ISPR-DB1) 0.0313 0.0465 0.0389 Polynomial Kernel

(No. PC = 50) 0.0313 0.0465 0.0389

Printed on MAT Paper
(ISPR-DB2) 0.0000 0.0000 0.0000 Polynomial Kernel

(No. PC = 70) 0.0000 0.0000 0.0000

Printed on OHP Film
(ISPR-DB3) 0.1250 0.1390 0.1320 Polynomial Kernel

(No. PC = 90) 0.0000 0.0000 0.0000

Table 17. Detection errors of our proposed method using VGG-16 network architecture in Table 4 on
sub-databases of ISPR-DB based on the printing resolution (unit: %).

Database

CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel
(No. PC) APCER BPCER ACER

Printed Using 300 DPI
Resolution Printer (ISPR-DB4) 0.0313 0.0465 0.0389 RBF Kernel

(No. PC = 145) 0.0000 0.0000 0.0000

Printed Using 1200 DPI
Resolution Printer (ISPR-DB5) 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 195) 0.0000 0.0000 0.0000

Printed Using 2400 DPI
Resolution Printer (ISPR-DB6) 0.0625 0.0465 0.0545 RBF Kernel

(No. PC = 140) 0.0313 0.0465 0.0389

3.2.4. PAD Accuracy Assessment Using Our Proposed Method Based on Customized Alex and
VGG-16 Networks

In the experiments in the above sections, we used the original structure of Alex network and
VGG-16 network as the referenced CNN architectures in our proposed method. As shown in the
experimental results above, the use of Alex network or VGG-16 network is sufficient for presentation
detection problem and our proposed method that combines the CNN-based method with transfer
learning and post-processing methods by PCA and SVM outperform the conventional CNN-based
method. In this section, we will investigate the PAD performance of our proposed method using the
two new CNN architectures including customized Alex network and customized VGG-16 network as
described in Sections 2.2.2 and 2.2.4, from which we can reach more concrete conclusions about the
performance of our proposed method.

In Tables 18 and 19, we show the experimental results using the customized Alex network
(described in Table 3) and the customized VGG-16 network (described in Table 5), respectively, on three
main databases: ISPR-DB, Idiap Full-DB and Idiap Cropped-DB databases. Using the customized
Alex network and ISPR-DB database, we obtained the error (ACER) of 0.6601% using the CNN-based
method, and the smallest error of 0.2563% using our proposed method with RBF kernel of SVM method.
These results are worse than the results obtained using the original Alex network in Tables 10 and 12
where the corresponding errors are 0.194% using only CNN-based method (with transfer learning) and
0.0311% using our proposed method. Similarly, we obtained the errors of 0.264% using CNN-based
method, and the smaller error of 0.2174% using our proposed method with linear kernel of SVM
method, using the customized VGG-16 network. These errors are higher than similar errors of 0.0620%
and 0.0311% in Tables 11 and 13, which were obtained using VGG-16 network on ISPR-DB database.
Using the Idiap Full-DB and Idiap Cropped-DB databases, we obtained the smallest error of 0.00%
that is same as those in Tables 12 and 13 when we used Alex and VGG-16 networks. From this result,
we can see that the complexity of CNN is also an important factor in the performance of PAD system.
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Table 18. Detection errors of CNN-based method and our proposed method using customized Alex
network in Table 3 (unit: %).

Database
CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel (No. PC) APCER BPCER ACER

ISPR-DB 0.6563 0.6640 0.6601 RBF Kernel
(No. PC = 70) 0.2500 0.2625 0.2563

Idiap
Full-DB 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 75) 0.0000 0.0000 0.0000

Idiap
Cropped-DB 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 55) 0.0000 0.0000 0.0000

Table 19. Detection errors of CNN-based method and our proposed method using customized VGG-16
network in Table 5 (unit: %).

Database
CNN-Based Method with Transfer Learning Our Proposed Method

APCER BPCER ACER SVM Kernel (No. PC) APCER BPCER ACER

ISPR-DB 0.2500 0.2780 0.2640 Linear Kernel
(No. PC = 105) 0.2188 0.2160 0.2174

Idiap
Full-DB 0.0000 0.5000 0.2500 Linear Kernel

(No. PC = 90) 0.0000 0.0000 0.0000

Idiap
Cropped-DB 1.0000 1.0000 1.0000 Linear Kernel

(No. PC = 80) 0.0000 0.0000 0.0000

However, as we show in Tables 12 and 13, and Tables 18 and 19, the difference between the errors
produced by original Alex network and customized Alex network on ISPR-DB database is about
0.2252% (0.2563–0.0311%) and the difference between error produced by original VGG-16 network and
customized VGG-16 network is about 0.1863% (0.2174–0.0311%). These differences are not too large.
Therefore, we believe that our proposed method can produce acceptable detection accuracy even if it
uses a simple CNN architecture.

For our final experiments, we measured the detection accuracy of our proposed method using
the customized Alex network and customized VGG-16 network on the sub-databases of ISPR-DB
database. The results of the experiment are given in Table 20. Compared to the detection errors in
Tables 14–17, we can see that the detection performances using the customized networks are also worse
than those of full Alex and VGG-16 network. With the ISPR-DB1 database, we obtained the smallest
error of 0.3339% using the customized Alex network and 0.2251% using the customized VGG-16
network. These errors are higher than those of 0.0389% using the original Alex network (described
in Tables 14 and 16). A similar situation is also encountered with other sub-databases of ISPR-DB
database (ISPR-DB2–ISPR-DB6). However, similar to the results in Tables 18 and 19, the differences
between the results from the customized network and the original network are not too significant.
For example, for the ISPR-DB1 database, the difference in errors is about 0.295% (0.3339–0.0389%) and
0.1862% (0.2251–0.0389%) using the customized Alex network and the customized VGG-16 network
respectively. Therefore, we again establish that our proposed method can produce acceptable detection
accuracy even if it uses a simple CNN structure.
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Table 20. Detection errors of our proposed method using customized Alex network and VGG-16
network on sub-databases of ISPR-DB database (unit: %).

Database

Using Customized Alex Network Using Customized VGG-16 Network

SVM Kernel APCER BPCER ACER SVM Kernel (No. PC) APCER BPCER ACER

Printed on A4 Paper
(ISPR-DB1)

RBF Kernel
(No. PC = 75) 0.3438 0.3240 0.3339 Polynomial Kernel

(No. PC = 115) 0.2188 0.2315 0.2251

Printed on MAT Paper
(ISPR-DB2)

Linear Kernel
(No. PC = 120) 0.1563 0.1855 0.1709 Linear Kernel

(No. PC = 75) 0.0313 0.0465 0.0389

Printed on OHP Film
(ISPR-DB3)

Polynomial Kernel
(No. PC = 120) 0.2188 0.2315 0.2251 Linear Kernel

(No. PC = 50) 0.5625 0.5560 0.5593

Printed Using 300 DPI
Resolution Printer

(ISPR-DB4)

Linear Kernel
(No. PC = 55) 0.3438 0.3705 0.3571 Linear Kernel

(No. PC = 75) 0.2188 0.2315 0.2251

Printed Using 1200 DPI
Resolution Printer

(ISPR-DB5)

Linear Kernel
(No. PC = 120) 0.0000 0.0000 0.0000 Linear Kernel

(No. PC = 200) 0.0313 0.0465 0.0389

Printed Using 2400 DPI
Resolution Printer

(ISPR-DB6)

Polynomial Kernel
(No. PC = 120) 0.5938 0.6015 0.5976 Linear Kernel

(No. PC = 60) 0.0938 0.0925 0.0931

3.2.5. Comparison with Various Methods

The ISPR and Idiap databases used in our experiments have been used by previous studies on
the PAD problem. To demonstrate the superiority of our proposed method over the various studies,
we summarized the PAD accuracies of our proposed method in comparison with those produced
by previous studies. In Table 21, we show the comparison of our proposed method with previous
methods adopted by Nguyen et al. [24] as well as the conventional CNN-based methods. As shown in
this table, our proposed method outperforms all previous methods using the ISPR-DB database and
its sub-databases of presentation attack based on printer material and resolution by producing the
smallest error (ACERs) values.

Table 21. Comparison of PAD errors of our proposed method and various methods using ISPR and its
sub-databases (unit: %).

Method
Printed Using 300

DPI Resolution
Printer (ISPR-DB4)

Printed Using 300
DPI Resolution

Printer (ISPR-DB5)

Printed Using 300
DPI Resolution

Printer (ISPR-DB6)

Entire ISPR
Database

(ISPR-DB)

FFT + HW + DW [24] 2.5460 1.4760 3.9310 2.8740

CNN-based Method Using Alex
network Architecture (Without

PCA and SVM)
0.1320 0.0000 0.2794 0.1940

CNN-based Method using
VGG-16 network Architecture

(Without PCA and SVM)
0.0389 0.0000 0.0545 0.0620

Our Proposed Method (With
PCA and SVM) 0.0000 0.0000 0.0389 0.0311

Similar to Table 21, Table 22 shows the comparison of PAD errors using our proposed method
with those of previous studies using Idiap Full-DB and Idiap Cropped-DB databases. The Idiap
database was fully investigated in the research by Tome et al. [23]. Four methods were applied for
PAD using the Idiap database: baseline method, GUC method, B-Lab method, and GRIP-PRIAMUS
method. As shown in Table 22, our proposed method is comparable to the GRIP-PRIAMUS method
using both the Idiap Full-DB and Idiap Cropped-DB databases. Compared to the other three methods,
our proposed method delivered better detection results. Our proposed method produced a detection
error (ACER) of 0.00% for both Idiap Full-DB and Idiap Cropped-DB databases. On the other hand,
the baseline method produced an error of 0.00% using Idiap Full-DB database and 20.50% using the
Idiap Cropped-DB database; the GUC method produced an error of 4.00% using the Idiap Full-DB
database and 2.75% using Idiap Cropped-DB database. Finally, the B-Lab method produced an error of
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0.00% using the Idiap Full-DB database and 1.25% using the Idiap Cropped-DB database. In addition,
we compared the detection accuracy of our proposed method with the conventional CNN-based
methods. As shown in this table, the detection accuracy of our proposed method is comparable with
other conventional CNN-based detection method using the Idiap database. However, from the result
of both Tables 21 and 22, we can conclude that our proposed method outperforms the conventional
CNN-based method by producing smaller error than those methods.

We also gave the comparison of the system performance with and without applying the PCA
method in order to demonstrate the efficiency of dimensionality reduction of feature space (using PCA
method) in our proposed method in Tables 21 and 22. The case without PCA and with SVM could
not be compared in our experiment. That is because the dimension of input data (obtained by CNN)
to SVM is so large (as 4096) considering the huge number of training data that SVM is not operated
without the dimensionality reduction of feature space by PCA method. Therefore, we compared the
case without the dimensionality reduction of feature space by PCA and classification by SVM to our
proposed method (with the dimensionality reduction of feature space by PCA and classification by
SVM) in Tables 21 and 22. Experimental results showed that our proposed method outperforms the
other methods.

Table 22. Comparison of PAD errors using our proposed method and various methods using Idiap
Full-DB and Idiap Cropped-DB databases (unit: %).

Database Method APCER BPCER ACER

Idiap Full-DB

Baseline [23] 0.00 0.00 0.00

GUC [23] 0.00 8.00 4.00

B-Lab [23] 0.00 0.00 0.00

GRIP-PRIAMUS [23] 0.00 0.00 0.00

CNN-based Method Using Alex network
Architecture (Without PCA and SVM) 0.00 0.00 0.00

CNN-based Method using VGG-16 network
Architecture (Without PCA and SVM) 0.00 0.00 0.00

Our Proposed Method (With PCA and SVM) 0.00 0.00 0.00

Idiap Cropped-DB

Baseline [23] 11.00 30.00 20.50

GUC [23] 1.50 4.00 2.75

B-Lab [23] 0.00 2.50 1.25

GRIP-PRIAMUS [23] 0.00 0.00 0.00

CNN-based Method Using Alex network
Architecture (Without PCA and SVM) 0.00 0.00 0.00

CNN-based Method using VGG-16 network
Architecture (Without PCA and SVM) 0.00 0.00 0.00

Our Proposed Method (With PCA and SVM) 0.00 0.00 0.00

3.2.6. Application of our Proposed Method on PAD for Palm-Vein Recognition Systems

For the vein-based biometrics systems, there is another recognition method that has been used for
identification/recognition, called palm-vein recognition method. This recognition method is similar
to finger-vein recognition by the use of vein structure inside a hand for recognition task [11,12,51,52].
Similar to finger-vein recognition systems, the palm-vein recognition systems are also vulnerable to
attackers [51]. Therefore, in this section, we applied our proposed method to detect the presentation
attacks for such palm-vein recognition systems. For this purpose, we used a public database, called the
Idiap VERA spoofing palm-vein database [51], for our experiments. We refer to this database as
“Idiap PVD” for convenience. The Idiap PVD database contains palm-vein and presentation attack
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images from 50 users. For each user, they captured both the left and right hand in two sessions
(Sessions 1 and 2) to produce 10 images for each hand. Totally, the Idiap PVD database contains 1000
real and 1000 presentation attack images (50 persons × 2 hands × 2 Sessions × 5 trials). In addition,
two protocols of full and cropped images are provided that is similar to Idiap spoofing finger-vein
database in [23]. In these experiments, we again performed two-fold cross-validation procedure to
measure the detection performance. In the first fold validation, we used images from 25 persons for
training, and data from the other 25 persons for testing. In the second fold validation, we exchanged
these two datasets of training and testing each other, and repeated the experiment. Similar to the
experiments in above sections, we also performed data augmentation procedure on training databases
to generalize the training databases and reduce the over-fitting problem of CNN-based methods.
For this purpose, we artificially made 49 images from each original palm-vein image (real and
presentation attack image) by shifting and cropping the original image in both horizontal and vertical
directions. As a result, we obtained 24,500 images for training database and 500 images for testing
database for our experiments. In Table 23, we show the detailed description of the Idiap PVD and its
corresponding training and testing sub-databases using two-fold cross-validation scheme.

Table 23. Description of the Idiap palm-vein database (PVD) database used in our experiments for
PAD for palm-vein recognition system.

Idiap PVD Database
Training Database

Testing Database
Original Database Augmented Database

Session 1
Full Image Protocol 500 24,500

(500 × 49) 500

Cropped Image Protocol 500 24,500
(500 × 49) 500

Session 2
Full Image Protocol 500 24,500

(500 × 49) 500

Cropped Image Protocol 500 24,500
(500 × 49) 500

For comparison purpose, we performed experiments using four detection methods including
the previous method by Nguyen et al. [24], CNN-based method using Alex network; the CNN-based
method using VGG-16 network; and our proposed method using VGG-16 network. The detailed
experimental results are given in Table 24. As shown in this Table, our proposed method outperforms
the other methods by accurately detecting the spoofing images. From these results, we can conclude
that our proposed method is not only suitable for detecting spoofing images for finger-vein recognition
system, but also for the palm-vein recognition system. In addition, our proposed method outperforms
the conventional CNN-based method and previous method in [24].
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Table 24. Detection errors using Idiap PVD database (unit: %).

Idiap PVD Database Method APCER BPCER ACER

Session 1

Full Protocol

FFT + HW + DW [24] 2.6 3.6 3.1

CNN-based Method Using Alex network
(Without PCA and SVM) 0.2 0.4 0.3

CNN-based Method Using Alex network
(Without PCA and SVM) 0.0 0.0 0.0

Our Proposed Method
(With PCA and SVM) 0.0 0.0 0.0

Cropped
Protocol

FFT + HW + DW [24] 4.0 3.2 3.6

CNN-based Method Using Alex network
(Without PCA and SVM) 2.2 3.0 2.6

CNN-based Method Using Alex network
(Without PCA and SVM) 0.2 0.4 0.3

Our Proposed Method
(With PCA and SVM) 0.0 0.0 0.0

Session 2

Full Protocol

FFT + HW + DW [24] 3.4 1.8 2.6

CNN-based Method Using Alex network
(Without PCA and SVM) 0.2 2.0 1.1

CNN-based Method Using Alex network
(Without PCA and SVM) 0.0 0.0 0.0

Our Proposed Method
(With PCA and SVM) 0.0 0.0 0.0

Cropped
Protocol

FFT + HW + DW [24] 5.8 4.4 5.1

CNN-based Method Using Alex network
(Without PCA and SVM) 2.2 2.2 2.2

CNN-based Method Using Alex network
(Without PCA and SVM) 0.2 0.2 0.2

Our Proposed Method
(With PCA and SVM) 0.0 0.0 0.0

4. Conclusions

In this paper, we proposed a PAD method for finger-vein recognition systems. Our proposed
method is based on the convolutional neural network with the use of transfer learning to reduce the
effects of the over-fitting problem normally caused by a small amount of training data and/or the
complexity of the CNN architecture. To enhance the detection performance of conventional CNN-based
methods, we applied post-processing steps based on PCA method for dimensionality reduction of
feature space and SVM for classification. As shown in our experimental results using ISPR database
and Idiap database, the proposed method outperformed methods used previously to resolve the same
problem using the same databases. In addition, the VGG network (VGG-16 network), which is much
deeper than the Alex network, delivered slightly better detection performance compared to the others.
We obtained the smallest error of 0.0311% using ISPR database that is much smaller than the error
produced by previous research. Using the Idiap database, we obtained errors of 0.00% with both
protocols of full and cropped images. Through these experimental results, we confirm the efficiency
of the transfer learning method in solving the over-fitting problem of CNN caused by small amount
of training data and/or the high complexity of CNN. In addition, we confirm that the CNN-based
method is suitable for detection of presentation attack for finger-vein recognition system.

In future work, we plan to collect more reasonable image data of real and presentation attack to
simulate all the possible cases of the PAD problem. With the new data, we will investigate the problem
in more detail to make our system invariant to various possible presentation attack methods.
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