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Abstract: Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR)
system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR
imaging theories and methods for a stationary scene have been researched thoroughly. However, for
moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces
some new issues: (I) large and unknown range cell migration (RCM) (including range walk and
high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid
and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers.
In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large
and unknown range walk is corrected by applying keystone transform over the whole received echo,
and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of
the Doppler parameters, and the speed of the mover, are established. After that, using an optimization
nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately
corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last,
a high-order polynomial filter is applied to compress the whole azimuth data of the moving target.
Numerical simulations verify the effectiveness of the proposed method.

Keywords: bistatic forward-looking SAR; moving-target imaging; adaptive; keystone
transform; optimization

1. Introduction

Forward-looking imaging has many potential applications. For example, it can be used in airplane
navigation and landing, independent of weather conditions and the time of the day. With the usual
monostatic synthetic aperture radar (SAR) configuration, forward looking mode cannot form a 2-D
image, because the directions of the Doppler and range resolutions are the same at the area of the
forward-looking direction [1,2].

Currently, as an emerging SAR technology, bistatic SAR (BiSAR) has received considerable
attention [3–6]. In BiSAR, the transmitter and receiver are placed on different platforms; therefore,
the two resolution directions are determined both by the transmitter and receiver. When one platform
works in the forward-looking mode, the other can insure the difference between the two resolution
directions, thus generating a 2-D image [1,7]. This kind of BiSAR is called bistatic forward-looking SAR
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(BFSAR) [8–10]. The advantages of BFSAR have been analyzed in [1,11,12], and the forward-looking
imaging ability of airborne BFSAR has been first tested by us in 2013 [10].

The primary processing steps for BFSAR imaging include a range cell migration (RCM) correction
step and an azimuth compression step [13–15]. For static target imaging, the RCM as well as azimuth
Doppler parameters are only contributed to by the ascertained BFSAR platform movements. That is
to say, the RCM correction (RCMC) and azimuth compression can be accurately accomplished based
on the geometry information between the BFSAR platforms and the static target. However, for
moving-target imaging, coupling effect between the non-cooperative moving-target movement and
the platform movements induces unknown RCM and spatial-variant Doppler parameters. It should
be pointed out that the main drawbacks in exploiting BFSAR for moving-target imaging include (I)
large and unknown RCM (including range walk and high-order RCM); (II) the spatial-variances of the
Doppler parameters (including Doppler centroid and high-order Doppler) are not only unknown, but
also nonlinear for different point-scatterers of the target. The moving target is smeared and shifted in
the BFSAR image if conventional imaging algorithms are applied.

Nevertheless, the extant literature and reports on BFSAR imaging theories are mainly focused on
stationary scenario imaging, such as the range doppler (RD) algorithm [13], nonlinear chirp scaling (CS)
algorithms [14,15] and Omega-k algorithms [16,17]. In [18,19], BFSAR moving-target detection and
imaging was studied first, and a detection method based on product second-order ambiguity function
in the Doppler frequency rate (DFR) domain is proposed. However, only the DFR can be estimated
here, which causes azimuth displacement since the Doppler centroid cannot be estimated. In order to
simultaneously estimate the DFR and Doppler centroid, an imaging method based on mismatched
compression was proposed in [20,21]. The main shortcomings of the existing BFSAR moving-target
imaging methods in [18–21] include three aspects: (I) only the range walk can be corrected, while
the high-order RCM cannot be compensated, which cannot be ignored for high-resolution and
high-precision imaging; (II) the nonlinear spatial-variances of the Doppler parameters cannot be
compensated, thus causing azimuth dislocation and shape distortion; (III) The third-order Doppler
parameter also cannot be estimated by the existing methods. Thus, moving-target imaging continues
to be an issue that needs to be resolved for BFSAR.

In this paper, an adaptive moving-target imaging method, which is based on keystone transform
and optimization NLCS, is proposed for BFSAR. This method relies on a proper processing of the data
aiming at, first, to correct the range walk by applying keystone transform over the whole received echo,
and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the
Doppler parameters, and the speed of the mover, are established. After that, the moving-target imaging
problem is transformed to be a new optimization problem. In order to get a higher efficiency, differential
evolution (DE), which is arguably one of the most powerful stochastic real-parameter optimization
algorithms in current use, is applied to solve the new optimization problem. Particularly, the NLCS
processing includes third/fourth-order filtering processing in the azimuth frequency domain, and
second/third/fourth-order azimuth chirp scaling processing in the azimuth time domain. Associated
with the aforesaid five freedoms, not only the spatial-variant Doppler centroid, but also the nonlinear
spatial-variant high-order Doppler can be balanced simultaneously. Finally, a high-order polynomial
filter is applied to compress the whole azimuth data. Compared with the existing BFSAR moving-target
imaging methods, the improvements of this method include two main aspects: (I) not only the
range walk but also the unknown high-order RCM can be corrected simultaneously; (II) the nonlinear
spatial-variances of the Doppler parameters associated to different point-scatterers can be compensated,
thus avoiding azimuth dislocation and shape distortion.

The remainder of this paper is organized as follows. In Section 2, we first describe the operative
conditions of the BFSAR system and derive the signal model of the moving target, followed by
an analysis of the basic echo properties of the moving target. In Section 3, the adaptive moving-target
imaging method based on keystone transform and optimization NLCS is described in detail. Numerical
simulations are given in Section 4. Finally, Section 5 concludes this paper.
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2. Signal Model

Here, BFSAR imaging geometrical configuration for a moving target is constructed first and then
the signal model is shown, giving the Doppler parameters (including Doppler centroid, DFR and
third-order Doppler parameter). The geometrical relationship between the aircraft and the moving
target is shown in Figure 1. In the three dimensional (3-D) coordinate system, the x-y plane defines
the surface of the Earth and the z-axis points away from the Earth. ~VR and ~VT denote the velocity
vectors of the receiver and transmitter, respectively. Supposing that the flight direction of the receiver
is parallel to the y-axis, while the transmitter has an angle α with the y-axis. Supposing that the original
coordinate of the receiver is (xR, yR, zR), and the transmitter is (xT , yT , zT). PMT is a moving target,
whose original coordinate is (x, y, 0). Supposing that vx and vy denote the cross- and along-track
velocities of the moving target, respectively. RR (η) and RT (η) represent the instant slant ranges
from the receiver platform and the transmitter platform to PMT , respectively. η is the azimuth slow
time variable.
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Figure 1. Geometrical relationship between aircrafts and GMT for BFSAR.

The slant range history with respect to the GMT’s point-scatter PMT (x, y) of the receiver is given by
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where RcR represents the squint distance of the receiver’s antenna phase centers from the GMT’s point-scatter
PMT (x, y) at the antenna beam center time. VR = |V⃗R|.

In addition, the slant range history with respect to the GMT of the transmitter is given by
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Figure 1. Geometrical relationship between aircrafts and the moving target for BFSAR.

The slant range history with respect to the point-scatterer PMT(x, y) of the receiver is given by

RR(η; x, y) =
√
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yR + VRη − y− vyη

]2
+ z2
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where RcR represents the squint distance of the receiver from PMT(x, y) at beam center time. VR = |~VR|.
In addition, the slant range history of the transmitter is given by

RT(η; x, y) =
√
[xT + VTxη − x− vxη]2 +

[
yT + VTyη − y− vyη

]2
+ z2

T ≈ RcT + Atη + 1
2 Btη

2 + 1
6 Ctη

3 (5)
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At(x, y) =
(xT − x) (VTx − vx) + (yT − y)

(
VTy − vy

)

RcT
(6)

Bt(x, y) =
(VTx − vx)

2 +
(
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)2

RcT
−
[
(VTx − vx) (xT − x) + (yT − y)

(
VTy − vy

)]
At

R2
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(7)

Ct(x, y) = −
2
[
(VTx − vx)

2 +
(
VTy − vy

)2
]

At

R2
cT

−
[
(VTx − vx) (xT − x) + (yT − y)

(
VTy − vy

)]
Bt

R2
cT

+
2
[
(VTx − vx) (xT − x) + (yT − y)

(
VTy − vy

)]2 At

R4
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(8)

where RcT represents the squint distance of the transmitter from PMT(x, y) at beam center time,
VTx = −VT sin α, VTy = VT cos α, and VT = |~VT |.

After demodulation of the baseband, the received moving target echo can be written as follows in
terms of azimuth time η and range time τ, which is given by

S(η, τ; x, y) = σSt

(
τ − RR(η; x, y) + RT(η; x, y)

c

)
×ω(η) exp

[
−j2π

RR(η; x, y) + RT(η; x, y)
λ

]
(9)

where σ denotes the scattering coefficient of the target, ω(η) the azimuth antenna pattern, St(τ) the
transmitted baseband signal (supposing it is a LFM signal here), c the speed of the electromagnetic
wave, and λ the carrier wavelength. The last exponential term is the azimuth Doppler term, which
includes the modulated information of the azimuth signal.

The Doppler frequency is the first-order derivative of the Doppler phase term in Equation (9)
versus the azimuth time η, which can be expressed as

fd (η; x, y) = − 1
λ

d [RR(η; x, y) + RT(η; x, y)]
dη

≈ fdc(x, y) + fdr(x, y)η +
1
2

fd3(x, y)η2 (10)

where fdc(x, y) is the Doppler centroid, fdr(x, y) denotes the DFR, and fd3(x, y) represents the
third-order Doppler parameter. The analytical expressions of the above Doppler parameters can
be obtained from Equation (1) to (8), which are given by

fdc(x, y) = −Ar(x, y) + At(x, y)
λ

(11)

fdr(x, y) = −Br(x, y) + Bt(x, y)
λ

(12)

fd3(x, y) = −Cr(x, y) + Ct(x, y)
λ

(13)

Generally, moving-target velocity parameters are unknown, whereas the foregoing analysis
reveals that both RCM and azimuth modulation are all related to them. Therefore, BFSAR
moving-target imaging requires correction of the unknown RCM in Equations (1) and (5) (including
range walk and range curvature), as well as compensation for the additional modulation of the azimuth
polynomial-phase signal (including Doppler centroid, DFR and third-order Doppler parameter, where
the wrong Doppler centroid causes displacement and the wrong DFR and third-order Doppler
parameter cause defocusing).

More difficult, according to Equations (11)–(13), we can observe that the Doppler parameters are
related to the coordinate of the point-scatterer. That means that different point-scatterers of the moving
target have different Doppler parameters, and such a problem is called spatial-variances of the Doppler
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parameters. For the moving target with BFSAR, the spatial-variances of the Doppler parameters are
not only unknown, but also nonlinear for different point-scatterers.

In the succeeding section, an adaptive moving-target imaging method, which is based on keystone
transform and optimization NLCS, for BFSAR is analyzed in detail.

3. Moving Target Imaging Method

Associating Equation (1) with (5), the BFSAR bistatic range history for PMT(x, y) can be given by,

RR(η; x, y) + RT(η; x, y) ≈ Rbs (0; x, y) + Aη +
B
2

η2 +
C
6

η3 (14)

where Rbs (0; x, y) =RcR+RcT , A = Ar + At, B = Br + Bt, C = Cr + Ct. Ar, Br and Cr are given in
Equations (2)–(4), respectively. At, Bt and Ct are given in Equations (6)–(8), respectively.

After the slant range expansion in Equation (14), the phase term in Equation (9) after range FFT is
given by

ϕ (η, fτ) = −π
f 2
τ

Kr
− 2π

c
( fτ + fc)

[
Rbs (0) + Aη +

B
2

η2 +
C
6

η3
]

(15)

where Kr is the frequency rate of the transmitted LFM signal, fc is the carrier frequency. Notice that the
second phase term is a linear phase of the range frequency variable fτ , so it represents a position shift
of the echo signal in the range direction with η versus τ plane. If we construct a compensation factor in
the range frequency and azimuth time domain using the geometric parameters of the stationary target,
the RCM of the moving target cannot be fully compensated for because it ignores the movement of the
moving target.

3.1. Range Walk Correction

To eliminate the Doppler ambiguity and transform the skewed spectrum into a quasi-orthogonal
one, firstly the pre-filter is constructed as [20]

hfilter = exp
[

j
2π

c
( fτ + fc) Are f η

]
(16)

where Are f is the first-order coefficient of the bistatic range history for one reference stationary target.
After the pre-filtering, the filtered signal phase is given by

ϕ1 (η, fτ) = −π
f 2
τ

Kr
− 2π

c
( fτ + fc)

[
Rbs (0) + A′η +

B
2

η2 +
C
6

η3
]

(17)

where A′ = A− Are f is the residual first-order coefficient of the bistatic range history.
The pre-filtering processed phase still contains a residual first-order coupling term (i.e., A′).

Prior to the following moving-target imaging steps, the residual first-order coupling effects must be
eliminated completely. This is to be followed up by applying the first-order keystone transform [22].
The transform function is

η =
fc

f + fc
ηm (18)

where ηm is the new azimuth time after the transformation.
Then the keystone transformed phase is given by

ϕ2 (ηm, fτ) = −π
f 2
τ

Kr
− 2π

c
( fτ + fc) Rbs (0) −

2π

c
A′ fcηm −

π

c
B f 2

c
( fτ + fc)

η2
m −

π

3c
C f 3

c

( fτ + fc)
2 η3

m (19)
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As we can see in Equation (19), the first-order polynomial of ηm is 2πA′ fcηm/c. Thus, the
first-order coupling effect between the range frequency variable fτ and the azimuth time variable ηm

is removed, i.e., the range walk has been corrected completely. The keystone transform is essentially
a coordinate transformation and it changes the original azimuth time variable η to a new azimuth time
variable ηm. However, the coupling effects continue to exist in the higher-order terms, i.e., the last
two terms in Equation (19).

3.2. Range Curvature Correction

In order to correct the range curvature, first expanding the above phase term in Equation (19) into
a Taylor series of fτ and keeping up to second-order term yield

ϕ3 (ηm, fτ) = −
2π fc

c

(
Rbs (0) + A′ηm +

B
2

η2
m +

C
6

η3
m

)
− 2π

(
Rbs (0)

c
− Bη2

m
2c
− Cη3

m
3c

)
fτ

−
(

π

Kr
+

π

c
B
fc

η2
m +

π

c
C
fc

η3
m

)
f 2
τ

(20)

The new range frequency rate is

K′ =
1

1
Kr

+ B
c fc

η2
m + C

c fc
η3

m

(21)

Thus, the range compression should be carried out after keystone transform using the following
range frequency rate

K′re f =
1

1
Kr

+
B|vx ,vy=0

c fc
η2

m +
C|vx ,vy=0

c fc
η3

m

(22)

The range compression factor is given by

ϕrcom ( fτ) = π f 2
τ /K′re f (23)

After keystone transform and range compression, the phase term in the range frequency domain is

ϕ4 (ηm, fτ) = −
2π fc

c

(
Rbs (0) + A′ηm +

B
2

η2
m +

C
6

η3
m

)
− 2π

(
Rbs (0)

c
− Bη2

m
2c
− Cη3

m
3c

)
fτ (24)

Then, we can construct a phase factor in the azimuth-time and range-frequency domain to
compensate for the residual range curvature, which is given by

φHRCMC
(
ηm, fτ ; vx, vy

)
= exp

{
−jπ(

Bη2
m

c
+

Cη3
m

c
) fτ

}
(25)

which is a function of target motion parameters. Then, the residual range curvature correction can be
given by

S5
(
ηm, fτ ; vx, vy

)
= S4 (ηm, fτ)× φHRCMC (ηm, fτ) = exp {jϕ4 (ηm, fτ)} × exp

{
−jπ( Bη2

m
c + Bη3

m
c ) fτ

}
(26)

After the residual range curvature correction, the 2-D time domain echo is

S6
(
ηm, τ; vx, vy

)
= sin c

[
Br

(
τ − Rbs(0;x,y)

c

)]
× exp

{
−j 2π

λ

[
Rbs (0) + A′ηm + B

2 η2
m + C

6 η3
m

]}
(27)

where Br is the transmitted signal bandwidth.
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3.3. Nonlinear Spatial-Variance Compensation

First, we shall evaluate the spatial-variances of Doppler parameters. Here, we model the azimuth
dependence of the Doppler centroid as a first-order polynomial of azimuth position,

fdc(x, y; Rbs) = fdc0(x0, y0; Rbs) + aηm (28)

where fdc0(x0, y0; Rbs) is the Doppler centroid of the reference point-scatterer PMT(x0, y0; Rbs) and a is
the first-order term coefficient.

Similarly, the DFR is modeled as a second-order polynomial of azimuth position as follows

fdr(x, y; Rbs) = fdr0(x0, y0; Rbs) + bηm + cη2
m (29)

where fdr0(x0, y0; Rbs) is the DFR of the reference point-scatterer PMT(x0, y0; Rbs). b and c are the first-
and second-order term coefficients.

After the above analysis, the range curvature corrected data in Equation (27) is transformed into
the RD domain. Then, a fourth-order filtering is performed

HF
(

fη ; vx, vy
)
= exp

{
jπ
(

Y3 f 3
η + Y4 f 4

η

)}
(30)

where Y3 and Y4 are the coefficients of HF( fη ; vx, vy).
After the fourth-order filtering, an azimuth NLCS factor is introduced in the azimuth time domain

to equalize the spatial-variant Doppler centroid as well as DFR. The NLCS factor is given as follows

HANLCS
(
ηm; vx, vy

)
= exp

{
jπ
(

q2η2
m + q3η3

m + q4η4
m

)}
(31)

where q2, q3 and q4 are the coefficients of the NLCS operator.
Then, the azimuth phase is transformed into the frequency domain,

φazANLCS
(

fη

)
≈ D( fη) + Eηm fη + Fη2

m fη + Gηm f 2
η + Hη2

m f 2
η + Iηm f 3

η + J(ηm) (32)

where E, F, G, H, I are the expanding coefficients of the coupling term between ηm and fη .
In order to eliminate the azimuth variances of Doppler coefficients, the coefficient of first-order

coupling between fη and ηm is set to π/β, β is a constant scaling factor, which determines the azimuth
position of the targets. Furthermore, the coefficients of other coupling terms are set to zero. Thus,
we obtain an equation system with five unknowns

[





E = −π/β

F = 0

G = 0

H = 0

I = 0

(33)
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Solving Equation (33), the parameters of fourth-order filtering and NLCS are given by

q2 = −2aβ + (2β− 1) fdr0

Y3 =
b(2q2 + a + fdr0)− fd3(a + q2)

3( fdr0 − a)2q2 fdr0

q3 =
2b(q2 + a)(q2 + fdr0)− fd3(a + q2)

2 − q2N

3( fdr0 − a)2 (34)

Y4 =
L/6−M(a− fdr0)/4

( fdr0 − a)2q2 f 2
dr0(q2 + fdr0)

q4 =
M/4− ( fdr0 − a) f 3

dr0q2Y4

a− fdr0

where L, M and N are given by

N = b(2q2 + a + fdr0)− fd3(a + q2)

L = −[c(q2 + fdr0)
2 − b2(q2 + fdr0)]− 3 fd3b(a + q2)

−3q3b(q2 − 2 fdr0 + 3a) + 3Y3q2b fdr0(3 fdr0q2 − 2aq2 + fdr0a)

M = −3 fd3b + 3Y3q2b f 2
dr0 − 3q3b

After the extended NLCS process, the signal phase in the frequency domain is given by

φaz_last( fη ; vx, vy) = −
π

β
ηm fη −

π f 2
η

q2 + fdr0
+ π

( fd3/3 + Y3 f 3
dr0 + q3) f 3

η

(q2 + fdr0)
3 + π

(Y4 f 4
dr0 + q4) f 4

η

(q2 + fdr0)
4 (35)

Compared with the existing NLCS algorithms in [23,24], here the azimuth chirp scaling processing
is conducted together with a fourth-order filtering in Equation (30). This combination can increase
two freedom degrees in the azimuth phase term, which is necessary for the balance of the nonlinear
spatial-variances of the Doppler parameters in this paper.

3.4. Azimuth Compression

After the above spatial-variant doppler parameter compensation, the azimuth compression
function can be given by

HAC( fη ; vx, vy) = exp
{

j
π f 2

η

q2+ fdr0

}
× exp

{
−jπ

( fd3/3+Y3 f 3
dr0+q3) f 3

η

(q2+ fdr0)
3

}
× exp

{
−jπ

(Y4 f 4
dr0+q4) f 4

η

(q2+ fdr0)
4

}
(36)

which is a high-order polynomial function.
Then, the azimuth compression processing can be given by

SDE(ηm, τ; vx, vy) = IFTaz
[
Saz_last( fη , τ; vx, vy)× HAC( fη , τ; vx, vy)

]
(37)

where IFTaz [·] is the IFT over the azimuth frequency fη, Saz_last( fη, τ; vx, vy) = exp
{

jφaz_last( fη, τ; vx, vy)
}

is the echo signal after the NLCS process.

3.5. Motion Parameter Estimation

Since the above three processes (i.e., residual range curvature correction in Equation (26), NLCS
process in Equations (30) and (31), and azimuth compression in Equation (37)) are all related to the
target motion parameters, then the processing result SDE

(
ηm, τ; vx, vy

)
in Equation (37) is a function of

vx and vy, which should be estimated here.
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3.5.1. Transforming the Imaging Problem to Be a New Optimization Problem

In order to solve the above issues, the imaging problem here is transformed to be a new
optimization problem, whose optimal criterion is the local minimum entropy [25,26]. Minimum
entropy mainly states that any inference results made should be based on the probability distribution
naturally [25]. Inference should have the minimum entropy that is permitted by data taken during
observation. That is to say, the moving target is well focused when its image entropy is minimum.
Firstly, the new optimization problem can be given by





v̂opt = arg min
v

∫∫
Ω
{−ρ (ηm, τ; v) log ρ (ηm, τ; v)}dΩ

s.t. vx ∈ (vx min, vx max), vy ∈ (vy min, vy max)
(38)

where

ρ (ηm, τ; v) =

∣∣SDE
(
ηm, τ; vx, vy

)∣∣2
∫∫
Ω

∣∣SDE
(
ηm, τ; vx, vy

)∣∣2dηmdτ
(39)

and v = [vx, vy], vx min and vx max are the minimum and maximum bounds of vx, vy min and vy max are
the minimum and maximum bounds of vy.

3.5.2. Solving the New Optimization Problem Based on Differential Evolution

Differential Evolution (DE) is arguably one of the most powerful stochastic real-parameter
optimization algorithms in current use [27]. DE proposed by Storn and Price [28] is a population
based evolutionary algorithm for real parameter optimization. DE starts by randomly initializing the
population to cover the entire search space uniformly. The individuals of the population are then
perturbed and combined by applying mutation and crossover operators to produce new candidates.
The new population is generated by selecting the better individuals among the current population and
the new candidates. The overall procedure repeats until the stopping criteria is satisfied.

Let vi,G =
(
vx,i,G, vy,i,G

)
represent the ith individual of the population at the Gth generation.

The size of the population is denoted as N. The solving processing of DE includes the following steps:

Step 1 : Initialize the population based on the minimum and maximum bounds,

vx,i,0 = vx,min + randij [0, 1]× (vx,max− vx,min)

vy,i,0 = vy,min + randij [0, 1]×
(
vy,max− vy,min

)

Step 2 : Randomly select three mutually distinct vectors from the population vri
1,G, vri

2,G,vri
3,G;

Step 3 : Create the donor vector for the ith individual,

Γi,G = vri
1,G + p×

(
vri

2,G − vri
3,G

)

Step 4 : Generate the trail vector ui,G through the following crossover operator,

uj,i,G =

{
Γj,i,G if (randi,j[0, 1] ≤ Cr or j = jrand)

vj,i,G otherwise

Step 5 : Correct the residual range curvature and compensate the spatial-variant Doppler parameters of the
moving target through Equations (26), (30) and (31) using vi,G and ui,G, separately;

Step 6 : Azimuth compression through Equation (37) using vi,G and ui,G, separately;
Step 7 : Compute the local image entropies around the moving target of the two images SDE1 and SDE2,
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HSDE1,G = −
∫∫
Ω
{ρ (ηm, τ; vi,G) log ρ (ηm, τ; vi,G)}dηmdτ

HSDE2,G = −
∫∫
Ω
{ρ (ηm, τ; ui,G) log ρ (ηm, τ; ui,G)}dηmdτ

Step 8 : Produce this generation through the following selector,

vi,G + 1 =

{
ui,G if HSDE1,G > HSDE2,G

vi,G otherwise

Step 9 : Continue the above Steps until the local minimum entropy is obtained,

v̂opt = vi,k when
∣∣∣HSDE,k −HSDE,minimum

∣∣∣ < e

where e represents a very small error, such as 10−2.
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Figure 2. The flowchart of the proposed method.

After the new optimization problem has been solved by DE, not only can the residual range
curvature be completely corrected, but also the nonlinear spatial-variances of the Doppler parameters
can be compensated by the adaptive NLCS accurately. Finally, the geometric rectification for the
imaging result from the bistatic range domain to the scene domain should be done via the relationship
between the bistatic range Rbs and the x-axis coordinate. The relationship can be given by [18]

x(Rbs, y) =
−N +

√
N2− 4MP

2M
(40)
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where

M = A2− 4R2
bs

N = 2ABy+ 2AC + 8R2
bsxT

P = B2y2 +C2 + 2BCy− 4R2
bsx

2
T − 4R2

bsy
2
T + 8R2

bsyTy− 4R2
bsy

2− 4R2
bsz

2
T

A = 2xT − 2xR

B = 2yT − 2yR

C = x2
R + y2

R + z2
R− x2

T − y2
T − z2

T − R2
bs

Figure 2 shows the flowchart of the proposed BFSAR moving-target imaging method.

4. Computational Complexity

Suppose that the range sample number is denoted as Nr and the azimuth sample number is Na.
The total number of real floating-point operations is

10NrNalog2(Nr) + 20NrNalog2(Na) + 36NrNa + 2(2Mkey− 1)NrNa (41)

where Mkey is the number of neighbor samples used for the azimuth interpolation. Therefore,
the computational complexity is of order O

(
N2log2N

)
, where N is the 1-D size of the data.

5. Numerical Simulations

To verify the validity of the proposed BFSAR moving-target imaging method, numerical
simulations are carried out in this section. The relevant simulation parameters are shown in Table 1.
To highlight the moving-target imaging capability of the proposed technology, the target is assumed to
comprise ten point-scatterers, and it is shown in Figure 3. The distances between each two adjacent
point-scatterers along the x-axis and the y-axis are both 20 m. The cross-track velocity of the moving
target (i.e., vx) is assumed to be 12 m/s and the along-track velocity (i.e., vy) 10 m/s.

First, moving-target raw data is shown in Figure 4, which is blurry in noise with SNR = −10 dB.
Figure 4a is the 2-D time domain raw data , and Figure 4b is the range-compressed domain raw data.
The keystone transform processed image is shown in Figure 5. By making a comparison between
Figures 4 and 5, we can observe that the range walk of the moving target has been corrected by the
keystone transform, but the high-order RCM still exists in Figure 5 (moving-target energy still spreads
in several range gates since the effect of the high-order RCM, that should be corrected before the
azimuth compression).
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Figure 3. The original simulated moving-target scene.
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Table 1. Relevant Parameters of the Simulations.

Parameter Value

Center frequency 9.6 GHz
Range bandwidth 200 MHz

PRF 1000 Hz
GMT center Location (0, 0, 0) m
Transmitter Location (−8,−1, 6) km

Receiver Location (0,−6, 4) km
Receiver’s Velocity 200 m/s

Transmitter’s Velocity 150 m/s
Angle α 30◦
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Figure 4. Raw date of the moving target for BFSAR. (a) In the 2-D time domain; (b) In the
range-compressed domain.
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Figure 4. Raw date of GMT for BFSAR. (a)In 2-D time domain; (b)In range-compressed domain.
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Figure 5. Keystone transform processed data in range-compressed domain.

new optimization problem. Compared with the existing BFSAR GMT imaging methods, the improvements of
this technology include two main aspects: (I)Not only the range walk but also the unknown range curvature
can both be corrected well here; (II)The spatial-variant Doppler parameters for different point-scatters can be
compensated here, thus can avoid azimuth dislocation and shape distortion. The simulation results show that
the proposed method has high estimation precision and high processing efficiency.
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11

Figure 5. Keystone transform processed data in the range-compressed domain.

During DE to solve the new optimization problem, minimum and maximum bounds of vx and
vy are set to be −30 m/s and 30 m/s, respectively. In addition, population size N is set to be 100.
The solving process of the new optimization problem based on DE is shown in Figure 6, where Figure 6a
shows the image entropy changes along with different iteration times, Figure 6b,c shows the estimated
cross-track velocity and along-track velocity, respectively. Based on the four subfigures, we can
observe that the search-processing has high efficiency since after 25 iterations, it begins to converge.
In addition, after the new optimization problem has been solved by DE, the optimal solution of v is
v̂opt = [12.0167 m/s, 9.9861 m/s], i.e., v̂x = 12.0167 m/s and v̂y = 9.9861 m/s. Compared with the
theoretical values v = [12 m/s, 10 m/s], we can observe that the estimation errors of the velocity
parameters are less than 0.14%.
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Figure 6. The solving process of the new optimization problem for the moving-target imaging.
(a) Image entropy; (b) Estimated cross-track velocity; (c) Estimated along-track velocity.

Using the optimal solution v is v̂opt = [12.0167 m/s, 9.9861 m/s], the range curvature of the
moving target can be corrected completely using Equation (26), and the processed result is shown in
Figure 7. From this figure, we can establish that most moving target energy has been gathered in one
range bin.
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Figure 6. The solving process of the SOP problem for the GMT imaing. (a)The relationship between image entropy and
iteration times; (b)The relationship between the estimated cross-track velocity and iteration times; (c)The relationship
between the estimated along-track and iteration times;
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Figure 7. Processing results of GMT. (a)Range curvature corrected image for the GMT; (b)Final imaging result.

12

Figure 7. Range curvature corrected image for the moving target.
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Finally, the moving target can be well refocused and the imaging result is shown in Figure 8,
where Figure 8a is before the geometric rectification and its range direction is in the bistatic range
domain, while Figure 8b is after geometric rectification and it is in the same domain with the original
scene in Figure 3.
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Figure 8. Imaging result of the moving target for BFSAR. (a) Before geometric rectification; (b) After
geometric rectification.

6. Conclusions

This paper presents an adaptive moving-target imaging method for BFSAR. The validity of this
method is verified by numerical simulations with detailed analysis. This method relies on a proper
processing of the data aiming at, first, to correct the range walk by applying keystone transform
over the whole received echo; then, the relationships between unknown high-order RCM, nonlinear
spatial-variances of the Doppler parameters, and speed of the mover, are established. After that,
using an optimization NLCS technique, not only can the unknown high-order RCM be accurately
corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. Finally,
a high-order polynomial filter is applied to compress the whole azimuth data of the moving target.
The simulation results show that the proposed method has high estimation precision.
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