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Abstract: To understand driving environments effectively, it is important to achieve accurate
detection and classification of objects detected by sensor-based intelligent vehicle systems, which
are significantly important tasks. Object detection is performed for the localization of objects,
whereas object classification recognizes object classes from detected object regions. For accurate
object detection and classification, fusing multiple sensor information into a key component of the
representation and perception processes is necessary. In this paper, we propose a new object-detection
and classification method using decision-level fusion. We fuse the classification outputs from
independent unary classifiers, such as 3D point clouds and image data using a convolutional
neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers,
which use more than two pre-trained convolutional layers to consider local to global features as data
representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling
to the outputs of each layer on the object candidate regions generated using object proposal generation
to realize color flattening and semantic grouping for charge-coupled device and Light Detection And
Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect
and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the
proposed method achieves better performance than the previous methods. Our proposed method
extracted approximately 500 proposals on a 1226× 370 image, whereas the original selective search
method extracted approximately 106 × n proposals. We obtained classification performance with
77.72% mean average precision over the entirety of the classes in the moderate detection level of the
KITTI benchmark dataset.

Keywords: multiple sensor fusion; decision level fusion; object detection; object classification; object
recognition; LiDAR; CCD

1. Introduction

Advanced driver assistant systems (ADASs) are utilized to assist drivers in unpredictable driving
situations. ADASs can be classified into recognition systems and interfaces for warning alarm.
Examples of the former include collision prediction and attention-less driver detection. The second one
includes providing information to drivers about hazardous events. However, an essential task in both
types of ADASs is reliable detection of other objects and events, known as simultaneous localization,
mapping and moving-object tracking [1–3], or the detection and tracking of moving objects.

Effective object detection and classification methods that localize and identify objects of interest are
very important in many fields. Primarily, object detection is generated on online maps during driving,
while object classification is conducted using a trained classification model on an offline database.
Most online maps are organized into grid maps with occupancy probabilities. Object-of-interest
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regions are usually represented as feature vectors and can be classified using classification models,
such as support vector machine (SVM) [4] and AdaBoost [5], which are trained on offline databases.

Some methods are available that separately detect moving objects from stationary objects on
grid maps using 3D point clouds of Light Detection And Ranging (LiDAR) sensors. They use the
connectivity of occupancy probabilities or depth values to detect object regions [6,7]. Detecting
object regions from charge-coupled device (CCD) images is conducted using object-region proposal
generators. However, some problems are encountered. The first problem is related to missing proposals.
If some object regions are not detected during the proposal-generation stage because of occlusion,
viewing-point variations, weather issues or overlapping, the objects are very difficult to detect.
The second problem pertains to efficiency of the segmentation results. Because previous methods
only consider low or mid-level cues, they cannot detect desirable object proposals in near-object
level regions.

To improve the detection and classification performance in intelligent vehicle systems, one possible
approach is to fuse the measurements from several sensors. Managing incomplete measurements from
different sensor modalities is necessary for accurate detection. The data-fusion scheme is generally
categorized into two types, namely early and late fusion. The early-fusion method fuses two or more
data by combining raw data or concatenating feature descriptors. Although the early-fusion method
works well, it often cannot handle incomplete measurements. If one sensor modality becomes useless
due to malfunctions, breakdown or severe weather conditions (e.g., a CCD sensor may lose confidence
on rainy days), its measurements will be rendered ambiguous. The late-fusion method independently
performs detection and classification from each sensor modality. Subsequently, the classified outputs
are fused at the decision level for final classification. By using the decision-level fusion scheme for the
object detection and classification task, we can prevent the autonomous driving system from becoming
non-functional when information conflicts are introduced to more than one sensor. In addition,
the reliability and plausibility of each sensor can be considered.

In this paper, we propose a new object-detection and classification method for a multi-layer
LiDAR and a CCD sensor. The contributions of this work are two-fold: (1) an effective object-region
proposal generation method; and (2) a decision-level fusion method for accurate object classification.
For effective generation of the object-region proposals, we develop a new method to generate a small
number of meaningful object-region proposals from the LiDAR and CCD sensor data. For the 3D point
cloud data from the LiDAR sensor, supervoxel segmentation and region-growing methods are used [6],
whereas color-flattening image segmentation and semantic grouping methods are proposed for the
CCD sensor data. Semantic grouping is a process in which tiny partitions extracted from segment
generation agglomerate with one another to form meaningful object regions. Our proposed color
flattening is based on L1 norm color transform [8]. Semantic grouping is performed using our own
dissimilarity cost function between the color-flattened and original images.

Figure 1 shows the overview of proposed method. For accurate object classification, we combine
the results from the unary classifiers of each sensor at the decision level using a convolutional neural
network (CNN). The main objective of the unary classifiers is to accurately recognize the class of
object proposals on each sensor modality. Previous models of object category classification that
used CNNs fed a fixed number of output layers into the final loss layer in their task. For example,
all-passed output, which means the input is passed through all layers of networks, is widely used for
feeding into the loss layer. For this output, however, little information loss might occur through the
passing of several pooling layers. In contrast, the proposed CNN model, similar to unary classifiers,
generates a convolutional cube from more than one convolutional layer of a pre-trained CNN model
as image representations. From the extracted object proposals obtained from the proposal generations,
ROI pooling is applied on the convolutional cube to feed them into a fine-tuned classification network
comprising two convolutional layers, two fully-connected layers and a softmax layer. Subsequently,
to fuse the two detection and classification results of the LiDAR and CCD sensors, we feed the final
softmax result vectors and their convolutional cube into the fusion CNN. By fusing the multi-sensor
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modalities, the detection and classification failures can be compensated. In addition, fusing the
multi-sensor in the decision level makes it more stable when information conflict occurs in each
modality when compared to feature-level fusion schemes.

Figure 1. Overview of our work. Red arrows denote the processing of unary classifier for each sensor,
and green arrows denote the fusion processing.

The remainder of this paper is organized as follows. Section 2 presents the related works. Section 3
provides an overview of our work. Sections 4 and 5 describe the details of the pre-processing and
object-region proposal-generation methods on each sensor. Our decision-level fusion method is
presented in Section 6. Section 7 discusses the experimental result of the proposed work on a KITTI
benchmark dataset [9]. Finally, the conclusion and future works are presented in Section 8.

2. Related Work

Object-proposal generation: The object detection and classification tasks can be divided into
object-region proposal generation and proposal region classification. To extract the object-region
proposals, one possible approach is to use the sliding-window method. The sliding window has
been used in a wide range of detection tasks for faces [5,10–12], pedestrians [13–17] and cars [18,19].
Although the sliding window can search whole image regions (i.e., the recall rate is 100%), it generates
a very large number of proposals (e.g., approximately 100,000 from a 640×480 image).

To reduce the number of object-region proposals, new approaches have been proposed,
namely objectness [20], category-independent object proposals (CIOP) [21], constrained parametric
min-cuts (CPMC) [22], selective search [23], EdgeBox [24], BInarized Normed Gradients (BING) [25]
and multi-scale combinatorial grouping (MCG) [26]. The objectness method [20] measures the
objectness score to distinguish whether a window region belongs to a background or an object.
The category-independent method [21] extracts object regions using the graph-cut segmentation
method and then ranks them to select a well-represented object-region proposal among the overlapped
proposals. The CPMC method [22] ranks the plausibility of each segment to determine whether the
foreground segments follow good object hypotheses or not. The selective search [23] hierarchically
segments an image using the color, texture and size of each segment. EdgeBox [24] extracts object
proposals using edge segmentations. In addition, it focuses on object boundaries for object-level
proposals. The multi-scale combinatorial grouping method [26] segments an image in the hierarchical
scale pyramids, and all of the segmentation results are then applied into the combinatorial grouping.
Some previous works proposed the extraction of moving objects from video sequences [27–30] for
traffic scenes. Because the amount of measured data in intelligent vehicle environments is larger than
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that in other applications, we need to design a new method to extract a smaller number of proposals
than the previous methods.

Object detection and classification: Recently, object detection and classification methods that use
CNN architecture have been thoroughly researched. AlexNet [31] won the ImageNet classification
competition using CNN. Further, various works have achieved high classification performance on
large-scale datasets [32–34], such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
and PASCAL Visual Object Classed (VOC). Some previous works focused on their performance, while
some architecture designs are available in the literature that focused on reducing the computational
costs. “You only look once” (YOLO) [35] and faster R-CNN [34] constructed a CNN architecture
that simultaneously performs object proposal generations and class classifications to reduce the
computational times. Huang and Chen [28,29] proposed a variable-bandwidth network and a
probabilistic neural network for traffic monitoring systems. However, if a model focuses on execution
times rather than performance, the classification performance may be affected.

Detection on multi-sensor modality: In particular, for the scene-level detection and classification
tasks, various sensor modalities are used. The RGB-depth sensor is widely used for indoor scene
recognition [36–38], whereas LiDAR-stereo vision [39,40], LiDAR-CCD [41], LiDAR-radar [42] and
LiDAR-radar-stereo vision [43] are used for outdoor scenes. For accurate classification, two or more
input measurements are combined. The fusion methods are divided into two categories, namely early
and late fusion. In the early fusion method, the measurements are fused by mapping them together,
or by concatenation, or probabilistic fusion [41,44,45]. However, the early fusion method suffers from
problems of non-overlapping regions and uncertainties. To solve these problems, the decision-level
fusion method is used as a late fusion method. Chavez-Garcia and Aycard [46] proposed an evidential
framework to improve the detection and tracking of moving objects by managing the uncertainty.
Cho et al. [43] independently extracted data features using target information from sensors and
combined the entire target information for movement classification and tracking of moving objects.
The transferable belief model was used to combine the sensor measurements by managing the
uncertainty [47]. In the present study, we use the CNN framework to jointly consider the classification
performance of each sensor modality, as well as the uncertainties.

3. Overview

In this section, we describe the algorithm used in our proposed method, as shown in Figure 1.
The inputs of our method consist of a CCD sensor and 3D point clouds from a multi-layer LiDAR,
which are taken from a KITTI benchmark dataset [9]. The KITTI benchmark dataset also provides
synchronized and calibrated data. Table 1 lists the notations used in our method. Our method consists
of three phases: (1) pre-processing; (2) object-region proposal generation; and (3) classification of the
object-region proposals.

Pre-processing: For the CCD image input, color flattening is performed, which makes the image
assume a monotonous color and is useful in obtaining desirable segmentation results.

For the point-cloud input, we transform the 3D point clouds into 3D occupancy voxel spaces.
This transformation reduces the noise in the point clouds, i.e., only the obviously reflected point
measurements are acquired.

Object-region proposal generation: We perform segmentation of the color-flattened image.
However, the initial segmentation results are not satisfactory with respect to the detection of meaningful
objects. Therefore, we perform semantic grouping using a dissimilarity cost function from the pixel
values of both the color-flattened and original images. These results are the object-region proposals
from the CCD sensor data.

In the 3D occupancy voxel space, we extract the supervoxels using the voxel cloud connectivity
segmentation (VCCS) [6]. VCCS uses a gradient-seeding methodology to segment point clouds.
The resulting supervoxels are fine-level segments with a fixed size. Subsequently, we perform region
growing on the supervoxels to obtain object-level segments using the occupancy connectivity because
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the supervoxels do not express meaningful cues. These results are the object-region proposals from the
3D point clouds.

Classifying object proposals: To classify the object proposals, we fuse the classification results from
the unary classifiers of the LiDAR and CCD sensors using CNN. The unary classifiers are modeled
using CNN models with the same network architecture. The proposed CNN models are generated
with two phases consisting of image representation and classification networks. First, to represent the
input data, we extract a convolutional cube that has more than one convolutional layer of pre-trained
CNN models. From the convolutional cube of the input data, object regions from the object-proposal
generations are extracted using ROI pooling. Then, the convolutional cube extracted from the proposal
regions is fed into a classification network that includes two convolutional layers, two fully-connected
layers and a softmax layer. To fuse the results from the two separate unary classifiers, we propose a
CNN model that uses the convolutional cube and softmax results of the sensor modalities as input.

4. Pre-Processing

In this section, we present two pre-processing schemes of the CCD image and 3D point cloud
data, such as the L1 norm-based color flattening and 3D occupancy voxel spaces.

4.1. L1 Norm-Based Color Flattening

Before applying the segmentation, we generate a color-flattened image from CCD sensor image I.
Our color flattening is based on the L1 image transform. However, the color flattening based on the L1

image-transform method proposed by Bi et al. [8] was very costly. Therefore, we propose a modified
color-flattening L1 image transform by defining an energy function as follows:

E( f ) = Ed + Ep, (1)

where Ed is the data term that considers the pixel-wise intrinsic similarity. Ep refers to the local
smoothness as the pairwise term.

The pixel-wise intrinsic similarity in the color-flattened image can avoid a negative solution where
entire pixels are flattened with the same color values. To do this, the data term measures the similarity
between the transformed and original images, which should be a minimum. We let z∗ and z represent
a concatenated vector of all pixel values in transformed image Ic and original image I, respectively.
Data term Ed, which measures the pixel-wise intrinsic similarity, is defined as follows:

Ed = ||z∗ − z||22. (2)

The pairwise term, which measures the local smoothness, totals the weighted L1 differences
between adjacent pixel pairs. The L1 difference between the pixel pairs of transformed image Ic should
be small for desirable flattening generation, i.e., neighboring pixels that have similar colors from
original image I are assigned larger weights.
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Table 1. The notation of the used parameters and functions.

Section Parameters or Functions Descriptions

E( f ) Energy function to generate color-flattening, E( f ) = ed + Ep.
Ed Data term of energy function for pixel-wise intrinsic similarity.
z∗ A concatenated vector of all pixel values in transformed image Ic.
z A concatenated vector of all pixel values in original image I.

4.1

Ep Smoothness term of energy function.
xi A 3-dimensional vector of the RGB values at pixel position pi of transformed image Ic.

ωi,j Weights to the difference between xi of pixel position pi and xj of the neighboring pixel pj of pi.
fi A 3-dimensional vector of the CIELab color space of pi.
κ A constant related to the luminance variations.
M The ml × n matrix consists of ωi,j and −ωi,j.

dk and bk Intermediate variables of the split Bregman method.
γi γi = [xi, yi, zi], the i-th 3D point data of 3D point clouds.

4.2
Γi The i-th voxel includes the reflected particles with a size of mx

v ×my
v ×mz

v.
NΓ The number of voxels in a 3D point cloud.

Γmax
i The possible number of reflectance particles in voxel Γi.

S A set of segmented partition of the color-flatted image.
Ns The number of segmented partitions.
N (si) Set of spatially-connected neighborhood partitions of the si partition.

ψi,j The dissimilarity function to group the adjacent partitions.
ψc

i,j ψc
i,j = ||z

c
i − zc

j ||1; the color dissimilarity between the adjacent partitions.
αc A weight constant for the color dissimilarity.

5.1 zc 75-bin color histogram measured from the mean image Iµ.
ψt

i,j The texture dissimilarity between the adjacent partitions.
αt A weight constant for the texture dissimilarity.
zt 240-bin SIFT histogram of original image I.
θd A threshold value for grouping adjacent partitions.

S and S′ The ground truth of the segmented and inferred segmentation images from the proposed method.
Ns The number of training images to find α = [αc, αt].

∆(·, ·) The structural loss between the ground truth and the inferred segmented partition.

αi,i∈n The classification results of each bounding box provided from the image.
6.2 β j,j∈m The classification results of each bounding box provided from the 3D point clouds.

mαi ,β j The association component between αi and β j.
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Let xi be the RGB vector at pixel position pi of transformed image Ic. If we consider a neighboring
system, such as a set of m×m adjacent pixels of pi, the pairwise term between xi and xj is defined
as follows:

Ep =
n

∑
i=1

(m×m)−1

∑
j=1

ωi,j||xi − xj||1, (3)

where n is the number of pixels in image Ic. Weight ωi,j is defined as follows:

ωi,j = exp(−
|| fi − f j||22

2σ2 ), (4)

where fi = [κ × li, ai, bi]
T from the CIELab color space of pi. κ is a constant, which is related to the

luminance variations. Using this constant, we can complexly suppress the luminance variations.
If κ < 1, the pairwise energy term becomes less sensitive to luminance variations. In our work, we set
κ and σ to 0.3 and 1.0, respectively. To set each parameter, we iteratively run the proposed method
using different parameter values on the KITTI object validation dataset. Based on the results of the
operation using different parameter settings, we set κ and σ to 0.3 and 1.0, respectively. Subsequently,
we validate the parameter settings using another validation set to verify that no overfitting occurs in
the first validation dataset.

Let M = {Mij} be an ml × n matrix. If pj is located in neighboring pairs m×m of pi, Mki = ωi,j
and Mkj = −ωi,j. To optimize the weights in Equations (3) and (4), we use the linear form of the least
squares as follows:

zk+1 = arg min
z

(βEd + λp||dk − Lz− bk||22),

L =

M
M

M

 ,
(5)

where dk and bk are intermediate variables introduced by the split Bregman method [48]. To solve
Equation (5), a normal sparse linear system is used. λp controls the weight of the L1 energy terms of
the least square form. Algorithm 1 shows the steps to minimize Equation (5).

Algorithm 1 Split Bregman for color-flattening.

1: procedure COLORFLATTEN(ε,λp)
2: Initial: z0 = zin; d0, b0 = 0;
3: while ||zk − zk−1||22 > ε do
4: A = βI3n×3n + λpLT L
5: v = βzin + λpLT(dk − bk)

6: Update zk+1 by solving Azk+1 = v
7: dk+1 = Shrink(Lzk+1 + bk, 1

λp
)

8: bk+1 = bk + Lzk+1 − dk+1
9: k = k + 1

10: end while
11: return zk

12: end procedure
13: procedure SHRINK(y, γ)
14: return y

||y|| ×max(||y|| − γ, 0)
15: end procedure
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4.2. The 3D Occupancy Voxel Spaces

As raw data, the 3D point clouds can have many noisy reflectance particles. If the given point
clouds contain significant noise, erroneous object partitions will be generated in the segmentation task,
i.e., the number of meaningless partitions will increase. This incurs additional computational costs
to achieve desirable segmented results. To reduce the noise, 3D point clouds with adjacent positions
are transformed to discrete 3D occupancy voxel spaces. Let γi denote the i-th 3D point data of the 3D
point clouds, which is composed of [xi, yi, zi]. The i-th voxel Γi includes the reflected particles with an
mx

v ×my
v ×mz

v size. If the voxel size is too small, noise reduction may be difficult. On the other hand,
if the voxel size is too large, the meaningful shape of the object may be suppressed, i.e., segmentation
will not be adequately performed. In our work, we set mx

v = my
v = mz

v = 0.1 m.
The occupancy probability of each voxel p(Γi) can be measured as follows:

p(Γi∈NΓ) =
∑N

j=1 γi,j

Γmax
i

, γi,j ∈ Γi, (6)

where NΓ is the number of voxels in a 3D point cloud and Γmax
i denotes the possible number of

reflectance particles in voxel Γi. According to the qualification of a LiDAR sensor, we can learn the
number of reflectance particles that can be included in a voxel. γi,j is the j-th particle of Γi(γi,j = 1
when a j-th laser is reflected by obstacles; otherwise, γi,j = 0).

5. Object-Region Proposal Generation

5.1. Object-Region Proposal from the CCD Sensor

To obtain the object-region proposals from an image, we first segment color-flattened image Ic.
The segmented image has several very small partitions; therefore, each partition has only mid-level
visual cues. Thus, we require a grouping task to obtain more semantic information from the segmented
partitions. To achieve this, we design a simple dissimilarity function between adjacent partitions si
and sj.

Let a segmented partition set of the color-flattened image be S = {s1, s2, · · · , sNs}, where si
denotes the i-th segmented partition and Ns is the number of partitions. Each segmented partition
has its set of spatially-connected neighborhood partitions N (si), where (si, sj) ∈ N (si) if si and sj are
adjacently located. At this point, the dissimilarity function is defined as follows:

ψi,j = αcψc
i,j + αtψ

t
i,j, (7)

where ψc
i,j and ψt

i,j capture the color and texture dissimilarity between adjacent partitions, respectively.
α = [αc, αt] is the corresponding weight constant that will be learned. If ψi,j < θd, adjacent partitions si
and sj will be grouped. θd denotes a threshold value that should be learned.

For the color dissimilarity, we construct a histogram with 25 bins from each partition. Then,
we concatenate them into a 75-bin histogram zc. At this point, we use the color value from mean image
Iµ between original image I and color-flattened image Ic as HSV color values because this will be useful
in generating desirable grouping Iµ(x, y) = βc × I(x, y) + (1− βc)× Ic(x, y), where βc is a weight
constant. We set βc = 0.6. The L1 norm is used to measure the color dissimilarity: ψc

i,j = ||zc
i − zc

j ||1.
The texture dissimilarity is measured by scale-invariant feature transform (SIFT) histogram zt,

which is constructed from Gaussian derivatives with eight orientations at σ = 1 for each RGB color
channel. In each orientation, the histogram is constructed with 10 bins. Consequently, the SIFT
histogram has 240 bins. The textures of original image I are used for the texture dissimilarity
measurement because the partitions of color-flattened image Ic do not include any textures. Similar
to the color dissimilarity measurement, we use the L1 norm to compute the texture dissimilarity:
ψt

i,j = ||zt
i − zt

j ||1.
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To optimize the weights of the dissimilarity function (i.e., Equation (7)), we use the PASCAL VOC
2012 segmentation dataset [49]. In the given original image I, S and S′ denote the ground truth of
the segmented and inferred segmentation images obtained from the proposed method, respectively.
We aim to find the optimized weight combination of α = [αc, αt], which can optimally group the
mid-level segment partitions into object-level segment partitions. From given Ns training images,
the objective function is defined as follows:

arg min
α,ξn≥0

αTα + λ
Ns

∑
n=1

ξn

s.t. ∀n ∈ [1, Ns], ∀S′n
ψ(In, S′n)− ψ(In, Sn) ≥ ∆(Sn, S′n)− ξn,

(8)

where ∆(·, ·) denotes the structural loss between the ground truth of the segmented partition and
the inferred segmented partition. λ ≥ θ is the regularization parameter predefined by a linear SVM,
and ξn is a slack variable.

Finally, the set of object-region proposals of the image data can be acquired using the grouped
partition set. Figure 2 shows our semantic grouping results.

Figure 2. Procedure from pre-processing to semantic grouping on CCD image data. (a) Input
image data; (b) color-flattened image; (c) segmented image using the graph-segmentation method;
(d) semantic grouping using the dissimilarity cost function.

5.2. Object-Region Proposal from the LiDAR Sensor

In the 3D point cloud data, VCCS [6] is first applied to occupancy voxel space Γ to generate
fine-level segments. The supervoxels partitioned by the VCCS adhere to the object boundaries
adequately. The VCCS uses a seeding methodology in 3D data spaces. In addition, by using color
and geometric features, a flow-constrained local iterative clustering is applied to generate supervoxel
spaces. For the decision-level fusion, we need to obtain the probability of each supervoxel instead
of the color values of the original VCCS method. K-means clustering is used to generate the VCCS
with two constraints. The first constraint is that the partitioned supervoxels are distributed according
to the geometry information. The next one is that the supervoxels cannot be overlapped between
more than two regions in the 3D space. Using the seed number selection, we determine the number of
occupancy voxels.

The supervoxel regions extracted from the aforementioned method do not contain any meaningful
information. To solve this problem, the supervoxels are first projected onto an [X, Z] 2D space with
a grid size of 0.1 m × 0.1 m. Subsequently, the supervoxels are grouped. To connect the partitions
as object-level segments, the difference in height (Y-axis value) of the supervoxels in each grid cell
is computed. If the difference in height of a grid cell is above 0.1 m, the supervoxels of the grid cell
are connected. Figure 3 shows an example of the segmentation generation in the 3D point clouds.
From the given 3D origins, i.e., the height, width and length of each partition, we can obtain the
object-region proposals of the 3D bounding boxes.
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Figure 3. Segment generation on 3D point clouds. (a) 2D occupancy grid mapping results and
(b) segmentation result on 3D point clouds.

6. Classifying Object-Region Proposals

From the extracted bounding box sets of each sensor modality in Section 5, the object region
proposals are classified using the unary classifiers. The unary classifiers are separately used for each
sensor; however, they have the same network architecture. Subsequently, we fuse them using another
CNN model by measuring the associations among the bounding boxes.

Directly training 3D point clouds using CNN is difficult because the 3D point clouds do not
contain suitable information to classify the object classes from the object proposals. Further, the sparse
point clouds contain ambiguously distributed shapes of the points in order to enable the classes of the
object regions to be distinguished. To solve these issues, we project the 3D point clouds into a dense
depth map using the up-sampling method [7].

6.1. Unary Classifier

CNN models have been successfully applied in a wide range of tasks. One of the benefits of
the CNNs is the simultaneous direct learning of representation and estimation. We propose a CNN
architecture for accurate classification of the object proposals. Figure 4 shows the architecture of the
unary classifier used to classify the object proposals presented in Section 5.

Figure 4. Proposed network architecture as unary classifiers.

The objects of the driving scenes contain large variations in their scales. Scale variations can be
introduced by distances from the ego-vehicle and/or inter (or intra) types of objects in driving scenes.
However, previous CNN models for detecting and classifying objects used the fixed output from
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the final layers of a model as a data representation. At this point, the fine features can be gradually
ignored according to a passing layer, which includes some types of operations, such as convolution
and pooling. In particular, if a small bounding box has passed entire layers, feature losses may be
introduced owing to its low resolution. Therefore, to use the features of small objects, as well as objects
with moderate sizes, we construct a convolutional cube from each input data as a data representation.
The convolutional cube represents more than one convolutional output of some stacked convolutional
layers, which is similar to HyperFeature [33]. Because the sizes of the outputs from each convolutional
layer vary, we should individually sample them by applying different sampling layers to the stack
outputs of the convolutional layers. The subsampling for the outputs of the convolutional layers
with sizes larger than that of the convolutional cube is generated by max pooling layers. Meanwhile,
a deconvolutional layer is used to up-sample the outputs of convolutional layers that are smaller than
the size of the convolutional cube. Subsequently, local response normalization is used to normalize
the entire output. Consequently, we can obtain the convolutional cube of the input data with a
uniform scale.

The region of the object proposal presented in Section 5 is extracted from the convolutional cube
of the input data using ROI pooling. Then, the convolutional cube of each object proposal is fed into a
small CNN to classify their object category. This CNN is fine-tuned on a KITTI dataset. The network
comprises two convolutional layers with max pooling layers, two fully-connected layers and one
softmax layer.

6.2. Fusion Classifier

Bounding box association: To fuse the classification results extracted from each sensor datum,
we need to find an association between the object bounding boxes. In this paper, we represent the
association as basic belief assignment (BBA) [50,51]. The fusion of the classification results provided
by each unary classifier leads us to benefit from the reliability by reducing the uncertainty.

We let αi,i∈n and β j,j∈m denote the sets of the classification results of each bounding box provided
by the image and 3D point cloud unary classifiers, respectively. The numbers of classified bounding
boxes from CCD and LiDAR are n and m, respectively. The association is represented as an n×m
matrix, namely the association matrix. Each cell of the matrix is the association component mαi ,β j

between the classification results of αi and β j, where i ≤ n; j ≤ m. The frame of discernment
ΩC = {1, 0} of the classification results is used to represent the association and is defined as follows:

ΩC =


1, if ai and bj are of the same class

0, if ai and bj are not of the same class

Ω, ignorance

. (9)

Therefore, mαi ,β j({1}) and mαi ,β j({0}) denote the association probability P(αi, β j) = 1 and
P(αi, β j) = 0, respectively. The probability of association can be measured by the distance and
class dissimilarity between αi and β j.

To measure distance md
αi ,β j

between two classification results, we use the Mahalanobis distance

because it includes the correlation of the distance set. The BBA of md
αi ,β j

is measured as follows:

md
αi ,β j

({1}) = ν× dαi ,β j , (10)

md
αi ,β j

({0}) = ν× (1− dαi ,β j), (11)
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md
αi ,β j

({Ω}) = 1− ν, (12)

where ν ∈ [0, 1] denotes the evidence discounting factor and dαi ,β j ∈ [0, 1] is the Mahalanobis distance
between αi and β j. To return to the larger value when the distance becomes smaller, we use the
following function:

d′αi ,β j
= e
−θdαi ,βj , (13)

where θ is a threshold factor that determines whether the distance is near or far.
For the class association between αi and β j, we use class dissimilarity. Although two bounding

boxes αi and β j have the same object class, they may include different objects. On the other hand, if αi
and β j belong to different classes, they are clearly different from each other. Therefore, we compute
the dissimilarity as class association mc

αi ,β j
. The frame of discernment for class association is the set

Ω = {cars, pedestrians, cyclists}. The classification results of each unary classifier, which consist of
the probability proportions about classes of interest, are transformed into a BBA mass function form
using pignistic transformation [51], i.e., mc

S ∈ {mc
S(cars), mc

S(pedestrians), mc
S(cyclists)}, where mc

Sk
(·)

denotes the mass of the class of the k-th bounding box obtained from the sensor modality S. The class
dissimilarity is computed as follows:

mc
αi ,β j

({1}) = 0, (14)

mc
αi ,β j

({0}) = ∑
A∩B=∅

mc
αi
(A)mc

β j
(B), ∀A, B ∈ Ω, (15)

mc
αi ,β j

({Ω}) = 1−mc
αi ,β j

({0}). (16)

Finally, we can obtain bounding box association mαi ,β j using Yager’s combination rule [52],
which is expressed as follows:

mαi ,β j({ΩC}) = m′αi ,β j
({ΩC}) + κa

αi ,β j
,

m′αi ,β j
(A) = ∑D∩C=A md

αi ,β j
(D)mc

αi ,β j
(C),

κa
αi ,β j

= ∑D∩C=∅ md
αi ,β j

(D)mc
αi ,β j

(C),
(17)

where D and C denote the bounding box spaces of each sensor. If two bounding boxes are set as the
associated bounding box, the data of the bounding boxes are passed to our proposed fusion classifier.

Classifier for fusion results from unary classifiers: For the decision-level fusion, object-proposal
generations and classifications are first independently run on each sensor modality. The next process
is performed to fuse the decision results using a CNN model. Figure 5 shows the network architecture
of the fusion classifier.

Figure 5. Architecture of the fusion network. Bbox denotes bounding box (Section 6.2).
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The fusion classifier takes two separate input columns that include convolutional cubes and
category probabilities of the softmax layers from each sensor modality. The input of the first column is
a convolutional cube in which the convolutional cubes from each sensor modality are concatenated.
By passing two convolutional layers and two fully-connected layers, the concatenated convolutional
cube becomes a 2048-dimensional vector. This vector is concatenated using two-class probability
vectors. Subsequently, a 2054-dimensional vector (2048 + 3 + 3) is fed into two fully-connected layers
and a binary class SVM for the final fusion classification.

7. Experimental Results

In this section, we first validate the design choices of the proposed method. In addition,
we describe the comparative evaluations of the proposed method relative to the baseline algorithms of
the KITTI benchmark dataset.

7.1. Setup

Dataset: To fine-tune the classification network phases of the unary classifiers and the fusion
network, we used the training dataset of the KITTI benchmark. The employed categories comprised
cars, pedestrians and cyclists. At this point, the cars category included the truck and bus categories of
the KITTI dataset. The evaluations of the proposed method were conducted on 15% of the training
dataset of the KITTI benchmark non-overlapped with 85% of the training dataset.

At the training time, we cropped the 3D object boxes from the 3D point clouds, and each object
box was then mapped onto the 3D point clouds. Subsequently, the dense depth maps, employed as the
training dataset, were trained using CNNs. During the test time, the pre-processing phase and the
object-region proposal generation were performed in 3D spaces, whereas the dense depth maps were
passed out to the classification model. The cropped object regions from the image dataset were simply
used to train the CNNs for the image data.

Implementation details: We implemented the proposed model using MATLAB on an Intel-Core
i5-4570 dual-core 3.20-GHz processor with 8.00 GB of RAM and an NVIDIA GeForce GTX 650 graphic
card with 3.7 GB of memory for CUDA computations. The machine used to train the CNNs and
conditional random fields (CRFs) is an Intel-Core i7-6700 quad-core 4.0-GHz processor with 64.00 GB
of RAM and an NVIDIA GeForce Titan X graphic card with 12 GB of memory for CUDA computations.
We trained the CNNs using Caffe [53], which is a widely-used deep-learning tool.

To extract the convolutional cubes from each sensor modality, we used the VGG16 [54] architecture.
No pre-trained CNN models are available for the dense depth map from the 3D point cloud data,
whereas the VGG16 has been pre-trained using ImageNet. Therefore, we extracted the convolutional
cube of the 3D point cloud using the cross-feature extraction method [55]. Gupta et al. [55] have
proposed a method for extracting data representation from another pre-trained CNN model trained on
different data modalities.

To reduce localization errors, we trained a linear regression model for the bounding box fitting to
the objects, which was employed in the deformable part model (DPM) [56].

7.2. Evaluation

We evaluated our proposed method to validate our various design choices. The proposal
generation part presents the detection of the effectiveness of the presented proposal-generation
methods. In the representation architecture discussion, we present our observation on which
pre-trained CNNs could precisely represent the multi-class objects. To show the effectiveness of
fusing multiple sensor modalities, we present our conducted process in the data modality part. Finally,
we evaluate our proposed fusion schemes by comparing it with the usage of a single sensor modality
or other fusion schemes, as presented in the fusion scheme paragraph. The basic configuration of our
proposed method is listed in the row ours in Table 2.
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Proposal generation: Table 3 lists the recall rates and the number of proposals. Our proposed
method extracted approximately 1000 proposals from the image data and 65 proposals from the 3D
point clouds. The passed-out object regions to the final fusion were approximately 500 bounding boxes
obtained using bounding box association. Although the number of proposals was smaller than that
of the other methods, we achieved approximately 90% recall for the cars class. We outperformed the
other methods in each class by 90%, 88% and 86% for cars, pedestrians and cyclists, respectively, in the
moderate level. These results may have been obtained from our semantic grouping scheme. We can
sufficiently segment 3D point cloud and image data as object-level regions.

Table 2. Comparison models used to evaluate the proposed method. ConvCube, convolutional
cube; CIOP, category independent object proposals; CPMC, constrained parametric min-cuts; MCG,
multiscale combinatorial grouping; TBM, transferable belief model; CRF, conditional random field;
3DOP, 3D object proposal.

Model Proposal Generator Representation Representation Usage Modality Fusion Scheme

model1 Sliding Window VGG16 ConvCube CCD + LiDAR CNN
model2 CIOP VGG16 ConvCube CCD + LiDAR CNN
model3 Objectness VGG16 ConvCube CCD + LiDAR CNN
model4 Selective Search VGG16 ConvCube CCD + LiDAR CNN
model5 CPMC VGG16 ConvCube CCD + LiDAR CNN
model6 MCG VGG16 ConvCube CCD + LiDAR CNN
model7 EdgeBox VGG16 ConvCube CCD + LiDAR CNN
model8 Proposed Generator AlexNet ConvCube CCD + LiDAR CNN
model9 Proposed Generator VGG16 conv1 CCD + LiDAR CNN
model10 Proposed Generator VGG16 conv5 CCD + LiDAR CNN
model11 Proposed Generator VGG16 fc7 CCD + LiDAR CNN
model12 Proposed Generator VGG16 conv5 + fc7 CCD + LiDAR CNN
model13 Proposed Generator VGG16 ConvCube CCD ×
model14 Proposed Generator VGG16 ConvCube LiDAR ×
model15 Proposed Generator VGG16 ConvCube CCD + LiDAR Decision-TBM
model16 Proposed Generator VGG16 ConvCube CCD + LiDAR Decision-CRF
model17 3DOP 3DOP 3DOP CCD + LiDAR Feature-3DOP

ours Proposed Generator VGG16 ConvCube CCD + LiDAR CNN

Table 3. Recall of each object-region proposal method. # of Bbox denotes the number of bounding box
in the KITTI data. The bold numbers in the recall column represent the highest recall except for the
sliding window (because the sliding window always contains 100%). The bold component in # of Bbox
represent the smallest number among the entire methods.

Method Recall (%)
# of Bbox

Cars Pedestrians Cyclists

Sliding window 100 100 100 108 × n
CIOP 64.4 59.8 59.9 103 × n

objectness1000 66.9 60.4 60.1 102 × n
Selective search 70.4 66.8 68.7 106 × n

CPMC 71.7 67.4 68.6 103 × n
MCG 76.6 78.9 74.8 104 × n

EdgeBox 85.2 84.3 82.5 104 × n
Ours (CCD) 88.4 85.4 84.8 103 × n

Ours (LiDAR) 71.8 63.3 64.2 70
Ours 90.8 88.7 86.5 500

To evaluate the performance of our method according to the usages of the proposal generation
methods, we compared our mean average precision (mAP) with the other proposal generation methods.
The compared models were as follows: sliding window (model1), CIOP (model2), objectness (model3),
original selective search (model4), CPMC (model5), MCG (model6) and EdgeBox (model7). As shown in
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the ours and model1,··· ,7 rows in Table 4, ours more accurately detected and classified the entire object
classes than the other models. We conclude that our proposal-generation methods can precisely extract
object regions at object levels.

Representation architecture: First, we compared the pre-trained network architecture to represent
objects. For comparison, we used AlexNet, which was pre-trained on ImageNet Large Scale Visual
Recognition Competition 2012 (ILSVRC2012) (model8), because it is a widely-used network that
includes smaller layers than VGG16. Similar to ours, we extracted five convolutional layers to construct
ConvCube from the pre-trained AlexNet. The ours and model8 rows in Table 4 show that the ConvCube
extracted from the larger network (VGG16) can represent objects more precisely.

In addition, we compared the accuracy in constructing ConvCube according to the usages
of convolutional layers. The comparison models were as follows: output of the output of first
convolutional layer (conv1) only (model9), conv5 only (model10), the ouput of seventh fully connected
layer (fc7) only (model11) and conv5fc7 (model12) layers from the pre-trained VGG16. To feed ConvCube
into the classification network with uniform scales, we applied the sampling methods into each layers,
such as those presented in Section 6.1. As shown in the ours and model9,··· ,12 rows in Table 4, we can
conclude that mAP is the highest when the outputs of the entire convolutional layers were used to
construct ConvCube. This result demonstrates that information losses can be reduced by using all
convolutional layers.

Table 4. Comparison of the proposed method with design-varied models. The best scores are boldfaced.

Model
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

model1 90.98 88.64 79.88 82.84 69.55 66.42 82.12 71.48 64.55
model2 90.7 83.67 79.78 80.54 68.07 65.23 80.86 68.59 63.54
model3 91.34 85.28 77.42 81.71 68.54 61.19 78.21 68.77 63.77
model4 85.88 87.74 79.01 79.59 68.45 62.66 82.65 65.12 61.38
model5 91.39 87.78 75.7 75.25 66.35 61.27 76.24 66.93 63.39
model6 89.42 82.94 77.1 80.94 67.93 61.58 79.07 66.67 63.27
model7 85.68 87.82 79.57 81.53 65.02 65.94 78.67 67.89 60.81
model8 87.43 84.44 75.42 73.2 65.28 64.55 77.51 66.74 60.15
model9 86.29 81.26 73.52 72.86 63.04 60.31 74.69 61.30 56.16
model10 74.87 80.98 75.85 77.57 60.61 62.79 70.12 62.49 59.21
model11 77.00 82.37 75.50 77.54 60.43 56.30 73.37 64.23 56.84
model12 88.59 83.08 77.30 79.17 64.54 64.34 75.69 66.35 59.58
model13 88.84 84.77 73.81 77.92 68.81 59.33 72.60 67.32 57.21
model14 70.32 67.97 59.62 64.96 59.29 37.28 63.45 58.34 30.22
model15 84.25 81.66 74.48 69.49 67.81 62.14 70.81 68.11 60.25
model16 83.48 82.71 70.55 78.34 68.97 60.38 72.84 68.42 61.01
model17 93.04 88.64 79.1 81.78 67.47 64.7 78.39 68.94 61.37

ours 94.88 89.34 81.42 83.71 70.84 68.67 83.95 72.98 66.47

Data modality: In this experiment, we compared the accuracy differences generated from the
sensor modality. model13 and model14 are generated on CCD and LiDAR, respectively. As shown in
the ours and model13,14 rows in Table 4, the model that fuses the classification results of the CCD and
LiDAR modalities outperformed the unary classifiers of the CCD and LiDAR sensors by 4.09% and
15.86% mAP, respectively. We conclude that the detection and classification failures of each unary
classifier can be compensated by fusing two sensor modalities at the decision level.

Fusion scheme: As target models for the decision-level fusion scheme, we used the transferable
belief model (TBM) [47] (model15) and conditional random fields (CRFs) [57] (model16). For TBM,
the results from each unary classifier were combined using the belief model. On the other hand,
the results from each unary classifier and the final fully-connected layer were fed into the CRF model
to consider joint probability. When the fusion of the unary classifiers was performed by TBM and
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CRF, we could observe that the final classification results were lower than the result of the CCD-only
classifier. In addition, to compare the proposed method with the other classifiers that fuse features
at an early decision level, we implemented 3D Object Proposal (3DOP) [58] (model17). The 3DOP
extracts object proposals with a higher recall rate using depth information from a stereo vision sensor.
Therefore, we extract the depth information from the 3D point clouds.

The performance comparison is described as follows: as listed in the rows in Table 4, the mAPs of
the entire object classes in the ours row are the highest when compared with the other models. Further,
ours can classify object classes more accurately than model17.

State-of-the-art comparisons: Table 5 lists the comparison results between the proposed method
and state-of-the-art methods. We achieved improvement in average precision (AP) of 89.34%, 70.84%
and 72.98% over the entire classes for the cars, pedestrians and cyclists, respectively, in the moderate
level. As listed in Table 5, the results of the pedestrians and cyclists classes were slightly improved over
those of the baseline methods. This result demonstrates that the 3D point clouds cannot completely
measure obstacles located far from the sensors. Further, because the gap between scans of two laser
beams is widely spread according to the distances, objects corresponding to pedestrians and cyclists
could be missed.

Qualitative results: Figure 6 shows the qualitative examples. Figure 6a,b shows the results of the
unary classifiers generated on the CCD and LiDAR sensor, respectively. Figure 6c shows the qualitative
results of model17. Non-object regions are classified as objects of interest in the results on the unary
classifier of the CCD sensor because a large number of object proposals are still generated. On the other
hand, some objects are missing in Figure 6b because of the limitations of the sensor measurements of
the LiDAR sensor. Figure 6c shows that the objects located in the regions with information conflicts
are not detected and classified.

Figure 6d shows the results of the proposed method. In the proposed method, the final
classification results are projected onto the input RGB image. The position of the 3D bounding boxes can
be estimated using a calibration matrix between the 3D point clouds and the image. The feature-fusion
scheme (Figure 6c) occasionally misses the objects located in the information conflict areas; however,
the proposed method, which uses the decision-level fusion scheme, could more accurately detect and
classify the objects regardless of the information conflicts.

Figure 6. Qualitative results of our proposed method. We projected the classification results on the
image data. (a) The results of CCD unary classifier. (b) The results of LiDAR unary classifier. (c) The
results of model17. (d) The results of proposed method. Each box indicates the following: yellow box:
correctly-detected and -classified objects; red box: failures; green box: un-detected objects.
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Table 5. Average precision (AP) (%) of the KITTI Object Detection Benchmark dataset. L, C and S in the “Sensor” column denote the LiDAR, CCD and stereo vision
sensors, respectively. DPM, deformable part model.LSVM-MDPM, latent support vector machine-modified discriminative part based model; ICF, integrated channel
features; BB, bounding box regression;

Fusion Sensor
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Vote3D [59] × L 56.80 47.99 42.57 44.48 35.74 33.72 41.43 31.24 28.62
LSVM-MDPM [60] × C 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21

SquaresICF [61] × C - 57.33 44.42 40.08 -
MDPM-un-BB [62] × C 71.19 62.16 48.48 - -

DPM-C8B1 [63] × S 74.33 60.99 47.16 38.96 29.03 25.61 43.49 29.04 26.20
DPM-VOC+ VP [64] × C 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

OC-DPM [65] × C 74.94 65.95 53.86 - -
AOG [66] × C 84.36 71.88 59.27 - -

SubCat [67] × C 84.14 75.46 59.71 54.67 42.34 37.95 -
DA-DPM [68] × C - 56.36 45.51 41.08 -

Faster R-CNN [34] × C 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90
FilteredICF [69] × C - 61.14 53.98 49.29 -
pAUCEnsT [70] × C - 65.26 54.49 48.60 51.62 38.03 33.38

3DVP [71] × C 87.46 75.77 65.38 - -
Regionlets [72] × C 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

uickitti × C 90.83 89.23 79.46 83.49 71.84 67.00 78.40 70.90 62.54
Fusion-DPM [73] Decision L + C - 59.51 46.67 42.05 -

MV-RGBD-RF [74] Early L + C 76.40 69.92 57.47 73.30 56.59 49.63 52.97 42.61 37.42
3DOP [58] Early S + C 93.04 88.64 79.10 81.78 67.47 64.70 78.39 68.94 61.37

Ours (CCD) × C 88.84 84.77 73.81 77.92 68.81 59.33 72.60 67.32 57.21
Ours (LiDAR) × L 70.32 67.97 59.62 64.96 59.29 37.28 63.45 58.34 30.22
Ours (TBM) Decision L + C 84.25 81.66 74.48 69.49 67.81 62.14 70.81 68.11 60.25
Ours (CRF) Decision L + C 83.48 82.71 70.55 78.34 68.97 60.38 72.84 68.42 61.01

Ours Decision L + C 94.88 89.34 81.42 83.71 70.84 68.67 83.95 72.98 66.47
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8. Conclusions and Future Works

In this paper, we proposed a new object-region proposal-generation method for object detection
and a decision-level fusion method for accurate classification of objects for multi-sensor modalities
of intelligent vehicles. The pre-processing tasks, such as color flattening and 3D occupancy voxel
space, were used to reduce noises. Then, we performed segmentation and grouping to generate a
small number of object-region proposals. Thereafter, the object-region proposals were classified using
independent unary classifiers. Finally, we fused the results of each unary classifier using a CNN model.

The experimental results on the KITTI benchmark dataset showed that more meaningful
object-region proposals were extracts, while the number of proposals was reduced when compared
with those of the previous methods. The performance of our object classification method fused from
the CCD and LiDAR sensors was better than that of the other methods. The limitations of our proposed
method are as follows: (1) it cannot be generated in real time due to the color flattening and proposal
generation in 3D point clouds; (2) the classification accuracies on pedestrians and cyclists remain low
due to the incomplete data from the LiDAR sensor modality.

Various previous methods focused on the improvement of detection performance. Although the
proposed model requires a bit more computational cost, the computational cost could be reduced
by implementing GPU-based approaches. Although the proposed method could reduce the failures
generated on the feature-level fusion schemes and unary classifiers, the failures of each unary classifier
slightly influence the final classification results. To address this problem, we will improve the accuracy
of the proposed method in terms of the detection rate of pedestrians and cyclists classes by dealing
with the confidence of the sensor information for effective classification.
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