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Abstract: Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved
topic that is of great interest in many domains. This study combines terrestrial laser scanner
with a smartphone for the coarse registration of leveled point clouds with small roll and pitch
angles and height differences, which is a novel sensor combination mode for terrestrial laser
scanning. The approximate distance between two neighboring scan positions is firstly calculated
with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution
coherence between the two scans and search for the optimal initial transformation parameters. To this
end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation
parameters based on two criteria: the difference between the average and minimum entropy
and the deviation from the minimum entropy to the expected entropy. Finally, the presented
method is evaluated using two data sets that contain tens of millions of points from panoramic
and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high
accuracy and efficiency.

Keywords: terrestrial laser scanning; registration; sensor combination; point cloud; information
entropy

1. Introduction

The applications of terrestrial laser scanning (TLS) are continuously growing in areas such as city
modeling, heritage documentation, manufacturing, and terrain surveying. The primary purpose of
terrestrial laser scanning is to generate a complete surface model of the target object. However, because
the limits of coverage vary and interruptions exist, a series of scans from different views are generally
necessary. Hence, point clouds from various scans have their own coordinate frames. To obtain a
complete model, point clouds from multiple scans must be transformed into a common uniform frame.
This process is called registration.

Standard method for the registration task includes using artificial targets and semi-automatic
registration. There are many types of artificial targets such as spheres [1] and planar targets [2], and
such targets generally have special shapes or reflective features. When the targets are identified,
transformation parameters can be calculated based on corresponding targets between different scans.
One drawback of this method is that it takes too much additional time to arrange the targets in
the scene. In some extreme conditions, it is impossible to place any targets. Additionally, placing
artificial targets inevitably causes occlusions and disrupts the integrality of the data. Semi-automatic
registration is also a commonly used registration method, which possesses a high universality and has
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been implemented in many commercial or opensource software packages (e.g., Riscan, Cyclone and
Cloudcompare), and the corresponding points are picked manually to calculate the transformation
parameters. Nevertheless, it sometimes takes much time and manpower when there are a number
of scans.

To avoid the manual intervention, much research has been conducted focusing on automatic
registration. Generally, automatic registration comprises two stages: coarse registration, roughly
aligning scans and producing good initial pose parameters, and fine registration, obtaining final
registration results with high precision. The most widely used method for fine registration is the
Iterative Closest Point (ICP) algorithm introduced by Besl and McKay [3] and Chen and Medioni [4].
Transformation parameters between two scans are estimated iteratively until the sum of the squares
of Euclidean distances between corresponding points converge to the minimum. Variants and
optimizations have been proposed in various contexts since then, such as mathematical framework [5,6],
corresponding metric [7,8], corresponding selection and weighting [9]. The drawback is that the
distances will most likely converge to a local minimum without a good prior alignment. Therefore,
methods to roughly align two original points in the coarse registration stage are important to the
ICP algorithm.

A general line of thought for coarse registration is based on distinctive spatial elements, such as
points, lines or planes. Those spatial elements generally have unique features, which are different from
most others and can be extracted for correspondence searching. Scale Invariant Feature Transform
(SIFT) [10] is one of the most widely used point features and can be classified as 2D key points.
Bendels et al. [11] introduced SIFT for TLS points registration combing SIFT features from camera
images with surface elements from range images. Barnea and Filin [12] proposed an autonomous
model based on SIFT key points of panoramic images. This method addresses the registration of
multiple scans. Application of the SIFT feature to reflectance images was introduced by Böhmand
and Becker [13]. False matches caused by symmetry and self-similarity are filtered by checking the
geometric relationship in a RANSAC filtering scheme. The SIFT feature was also used on reflectance
images by Wang and Brenner [14] and Kang et al. [15,16]. Weinmann et al. [17] extracted characteristic
feature points from reflectance images based on SIFT features and projected them into 3D space
to calculate transformation parameters. This algorithm can achieve a high accuracy without fine
registration by using 3D-to-3D geometric constraints. Besides SIFT descriptor, other image features
also have been used, such as Moravec operator [18]. Methods mentioned above mainly rely on mature
image processing algorithms which are efficient and convenient, but generally require large overlap
areas to make sure enough correspondences. To relax the overlap requirement and adapt to the case of
minimal overlap, Renaudin et al. utilized the linear features from photogrammetric and TLS dataset for
the registration of multiple scans, with the coregistration of image and point cloud as a byproduct [19].
Similarly, photogrammetric linear and planar features were used for scan registration by Canaz and
Habib [20], to avoid the requirement of large overlap.

In situations of strong viewpoint changes or poor intensity resolution, a method using 2D features
is prone to failure; 3D features display more robust performances. Thus, many studies have focused
on 3D point features for registration. Those methods extract 3D feature point sets and identify
corresponding points to recover the transformation between two scans. Gelfand et al. [21] proposed an
integral volume descriptor to detect feature points and match those points using an algorithm called
branch-and-bound correspondence search. Theiler et al. [22] extracted Difference-of-Gaussian (DoG)
and 3D Harris [23] key points from voxel-filtered datasets as input to the 4-Points Congruent Sets
algorithm [24] to achieve coarse registration. Rusu et al. [25] estimated a set of 16D features called Point
Feature Histograms (PFH), which are robust to scale and noise, providing good starting points for ICP.
Then, Rusu et al. [26] applied some optimizations to PFH and proposed Fast Point Feature Histograms
(FPFH) reducing the computation time dramatically. Examples of point features also include normal
vector [27], distance between target point and center of neighboring points [28], 2.5D SIFT [29],
curvature [30] and rotational projection statistics feature [31]. Stamos and Leordeanu extracted the
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intersection lines of neighboring planes as the primitives and calculated the transformation parameters
with at least two line pairs [32]. Yao et al. presented a common framework for the automatic registration
of two scans with linear or planar features and the orientation angles and distances were used to
find candidate matches [33]. Yang and Zang used curves as matching primitives to find the initial
transformation for point clouds with freeform surfaces, such as statues and artifacts [34]. Planes are
also used for coarse registration in many studies. Theiler and Schindler [35] used intersecting planes to
generate a set of virtual tie points, which are described by properties of corresponding parent planes.
Then, tie points matching is guided by those descriptors. In the work of Dold and Brenner [36], planar
patches were described by features including area, boundary length, bounding box and mean intensity
value and matched with the help of image information. In this approach, those features of planar
patches are sensitive to density and occlusions; thus, Brenner et al. [37] proposed a more robust method
with planar patches. Plane triples were used instead of single patch in the matching process based on a
sensible criterion. Pu et al. [38] combined the semantic features of planar patches and GPS position to
derive the mathematical formulation of transformation parameters. The semantic information was also
used in [39], in which Yang et al. detected features points based on semantic feature and the matching
was processed by searching for corresponding triangles constructed and eliminate from the feature
points. Kelbe et al. [40] calculated the transformation parameters for the forest TLS data based on the
results of tree detection, which can be obtained from some previous work [41,42]. Some other geometric
elements are also used in the registration, such as salient directions [43], cylindrical and polygonal
objects [44], fitted objects in industrial environments [7] and other fitted geometric primitives [45].
To identify a good feature combination, Urban and Weinmann [46] presented a framework to evaluate
different detector-descriptor combinations, in which five approaches are involved.

Another train of thought depends on external sensors (e.g., GPS/IMU) to record the position and
orientation of each scan. Point clouds from different scans can be registered easily. This method is often
used in mobile laser scanning [47,48] but can also be used in terrestrial laser scanning [38,49]. External
sensors are helpful for registration of terrestrial point clouds, although the high cost of external sensors
limits the application of this method.

The registration techniques described above suggest that most methods focus on detailed
information extracted from point clouds to achieve the registration task. In complex scenes, feature
extraction and matching are time-consuming and prone to failure if too much symmetry, self-similarity
and occlusions exist. As the external sensors are quite helpful for point registration, this paper presents
a novel method for the automatic coarse registration of leveled point clouds, combining terrestrial laser
scanner with the smartphone, which is low-cost compared with professional sensors. This method
works without synchronization between scanner and smartphone and jumps out of detailed features
to register terrestrial point clouds from a macroscopic perspective. Scanner positions are roughly
measured by the smartphone GPS and the distance between neighboring scanner positions is used as a
translation constraint. The distribution coherence of the whole points from two scans is measured by 2D
distribution entropy and used to identify optimal transformation parameters. The main contributions
of this paper are as follows:

• combining the terrestrial laser scanner with smartphone for coarse registration;
• using 2D projection entropy to measure the distribution coherence between two scans; and
• presenting the Iterative Minimum Entropy (IME) algorithm to correct initial transformation

parameters and reduce the effect of positioning error from the smartphone GPS.

2. Methodology

2.1. Combining the Terrestrial Laser Scanner with Smartphone

Smartphones are currently commonly used and quite popular in daily life. Most smartphones
have the GPS and have previously been utilized in the processing of point clouds [50,51]. The
position of a laser scanner can be measured by the GPS on a smartphone by an SDK of network maps
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such as Google Map or phone applications such as GPS checker, etc. To measure the scan position,
a smartphone can easily be attached to the scanner when GPS data are being collected; this process
does not produce a highly accurate measurement of scanner position, but is rapid and convenient.

With each scan position measured, the distance between adjacent scans can be obtained.
The distance measuring with smartphone GPS does not require the intervisibility between neighboring
scans, bringing a favorable flexibility for the scanner set up, which is applicable to most cases, especially
in the plot containing many trees or other obstacles. For two scans, P and Q, distance r between their
scan positions can then be calculated. With r, it is possible to determine the relative position relation
between the origins of P and Q. If P is set reference whose origin coordinate is (0, 0, 0) under its own
coordinate system, then Q’s scan position will be located on the circle whose center is P and radius is r.
However, because the framework of TLS data is usually related with the orientation of the scanner,
e.g., the x-axis is commonly the direction of the starting laser beam on the scanner’s rotating plane,
y-axis is set to the direction perpendicular to x-axis whirling counterclockwise and the direction of
z-axis follows the right-hand rule in Reigl VZ-400 laser scanner used in this paper, the posture of
the point cloud is thus unknown without external reference. Although the attitude parameters can
be obtained by the gyroscopes, it is also required to know how the scanner constructs the frame to
associate the postures for two scans, which will bring more manual intervention and make the method
poor in the applicability for the data from unknown scanner. The distance r itself is not enough to
recover the transformation between two scans directly, as there are many possible distributions for P
and Q only with the constraint r, which is shown in Figure 1a,b. Nevertheless, the most appropriate
transformation parameters can still be searched based on the spatial relation between scans P and Q,
with postures considered. The problem is that smartphone GPS commonly has a location error up to
10 m, causing an error which may reach 20 m in the distance r, resulting in more uncertainty for the
location of Q (as shown in Figure 1). We propose an Iterative Minimum Entropy (IME) algorithm to
reduce the effect of locating error and refine the initial transformation parameters in Section 2.2.3.
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Figure 1. Relation between P and Q: (a,b) two different postures of P and Q with the same distance r,
and the distance r is not enough to recover the transformation between them; and (c) the uncertainty of
Q’s location.
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2.2. Registration with 2D Projection Entropy

2.2.1. Searching for the Minimum Entropy in 3D Space

Information entropy [52] is the measurement of the expected value of information and represents
the uncertainty of an event, which has been used in many areas, such as remote sensing image
evaluation [53], classification [54] and image matching [55]. This section exploits information entropy
to measure the distribution coherence of point clouds from two neighboring scans.

According to information theory, for a discrete random event X = {X1, X2 . . . Xn} with
corresponding probabilities P′ = {p1, p2 . . . pn}, the amount of information of X can be measured by

H(X) = H(p1, p1, . . . pn) = −
n

∑
i=1

pi log pi. (1)

The more information X contains, the larger H(X) will be, with more uncertainty of X.
For two scans P and Q, different spatial distributions achieved by different transformation

parameters represent different levels of point distribution uncertainty between two scans.
The uncertainty of the point distribution can also be measured by entropy. As the relative position
relation between P and Q can be obtained through the smartphone in Section 2.1, P and Q can be
transformed into the uniform coordinate framework. In this paper, an r translation is applied to Q,
where r is the coarse distance between origins of P and Q, and the origin of Q will turn into (r, 0, 0)
under the coordinate framework of P. The space covered by P and Q is subdivided into a regular
cuboid, and a cell C can be treated as an event. The probability that one point falls into C is

p(C) =
n(i, j, k)

N
, (2)

where i, j and k are the index of C with n(i, j, k) points falling into and N is the total number of points
in both P and Q. The distribution entropy of the whole points thus can be calculated by

H(P, Q) = −
in

∑
i=1

jn

∑
j=1

kn

∑
k=1

n(i, j, k)
N

log
n(i, j, k)

N
, (3)

where in, jn and kn are the cell numbers along three axes x, y and z. In case of the same total number of
points, higher H(P,Q) indicates more cells containing at least one point and more discrete distribution
of these points. If all corresponding points in P and Q fall into the same cell, the entropy will generally
achieve the minimum. If we get can identify the minimum entropy among different point distribution
cases, the corresponding transformation parameters will most likely be an ideal answer. Thus, the task
of registration can be transformed into finding the minimum distribution entropy of P and Q.

Figure 2 shows the relation between rotation angle γ and the corresponding entropy in Stanford
Buddy datasets in 3D space. Points in Figure 2a,b are previously registered, and γ is the rotation
angle of points in Figure 2b around Z axis. Entropy corresponding to different γ is shown in Figure 2c.
Figure 2c shows that entropy achieves the minimum when γ is 0◦; thus, the optimal transformation
parameters can be observed in the process of searching for minimum entropy. However, for point
clouds captured in real scenes, there are always three rotation parameters that must be considered
simultaneously, making the search process a three-nested loop, which is time-consuming. In addition,
the cuboid partition is executed in a large-scale 3D space, also making this method inefficient. Thus,
some changes are essential to simplify the search process, which will be described in next section.
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entropy change with γ is recorded in (c).

2.2.2. Transformation from 3D to 2D Space

To reduce the cost of searching process, we project points onto the plane of X-o-Y. On this plane,
the 2D space is divided into a regular grid, with the number of points falling into every block recorded.
Then, transformation parameters are detected by searching for the minimum distribution entropy on
this grid.

Before projecting points onto X-o-Y plane, preprocessing is applied for the original points,
including ground filtering and removing small clusters. The purpose of filtering out ground points
and small point clusters is to reduce the spatial extent and number of points after projection because a
discrete or flying point may provide an extreme coordinate value, expand grid extent and produce
more redundant empty blocks. As described by Pirotti et al. [56], ground filtering is critical to the
definition of above-ground elements, which are small point clusters in this paper. Vosselman and
Mass [57] presented an overview of ground filtering methods that can be divided into three primary
classes. Those three methods are based on progressive densification of a triangle mesh, mathematical
morphology and linear prediction and hierarchic robust interpolation. Although point filtering is a
wide field, we can narrow it to the case of our research, in which ground points of high accuracy are
not required. Preprocessing is conducted in three major steps:
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• Ground filtering: The ground is removed using progressive densification of a triangle mesh.
• Clustering above-ground points: The clustering process is based on distance. If the distance

between p and its closest point q is within the distance threshold, then p and q will be identified
as the same cluster.

• Removing small clusters: In this paper, a cluster is removed if the number of points in the cluster
is less than 500.

The remaining points will be projected onto the X-o-Y plane, primarily comprising architectures,
vegetation and some other types of points. Typically, we follow the assumption that a laser scanner is
set approximately vertical during data acquisition [37]. Sometimes it is not the case, such as scanning a
high building in close distance with a tilted scanner posture, and this can be compensated by rotating
the point cloud through Principal Components Analysis (PCA), as described by Polewski et al. [58].
Thus, the coordinates x and y can be directly used as the projected coordinates on X-o-Y plane and
Figure 3 shows an example of the projection in this paper. Then the scan Q can be transformed into P’s
coordinate framework on X-o-Y plane, with the translation of distance r (obtained in Section 2.1) and
the origin of Q will turn into (r, 0).

Under the same coordinate framework, the distribution entropy of P and Q can be calculated. The
combined 2D space is subdivided into a regular grid of block size tG to generate a grid G(P,Q). The
size of G(P,Q) can be calculated by

mG = b(xmax − xmin)/tGc+ 1, (4)

nG = b(ymax − ymin)/tGc+ 1, (5)

where xmax, xmin, ymax and ymin represent the bounding rectangle of the projected points of both P and
Q. The index of the block that point p falls into can be obtained using

i =
⌊
(xp − xmin)/tG

⌋
+ 1, (6)

j =
⌊
(yp − ymin)/tG

⌋
+ 1, (7)

where xp and yp are the projected coordinates of p. The distribution entropy for P and Q can be
calculated on G(P,Q) with

H(P, Q) = −
mG

∑
i=1

nG

∑
j=1

n(i, j)
N

log
n(i, j)

N
, (8)

where n(i, j) is the number of points falling into the block of index (i, j) and N is the total number of
points in both P and Q.

Fundamentally, the Euler distance, which is generally used in ICP, can also be utilized to measure
the distribution for two scans. However, the convergence basin of ICP is usually too small [20] and
it works only with an accurate description for the postures of two scans. For two coincident wall
surfaces, similar distance error will be obtained as the height of the wall changes. However, the
entropy will change as the height of the wall changes, as the space distribution of all the points is
considered. Additionally, computing the distance error related with ICP is more time consuming than
the computation of entropy, making Euler distance less practical in the coarse alignment stage.
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Figure 3. Transformation from 3D to 2D: (a) original points; (b) ground filtering; (c) clustering result
with small clusters colored by green; (d) filtering result and the number of points is 3,407,526; and (e)
projecting result and the number of points in each block is rendered by different colors of the block
center. The number of points is 27,706.
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After point projection, the registration task will convert to 2D point alignment and only the
rotation angle around the z axis needs to be considered. With the origins of P and Q have been set
(0, 0) and (r, 0) under P’s coordinate framework, the postures of the two scans are only related with the
rotation angles around (0, 0) and (r, 0), respectively. The 2D relation between P and Q when registered
will be [

cos(κp) − sin(κp)

sin(κp) cos(κp)

][
xp

yp

]
=

[
cos(κq) − sin(κq)

sin(κq) cos(κq)

][
xq

yq

]
+

[
r
0

]
, (9)

where P and Q rotate angles of κp and κq, respectively, around their own z axis. Thus, the 2D
point alignment will convert to finding appropriate rotation parameters κ′p and κ′q to gain the
minimum entropy:

[κ′p, κ′q] = arg min Hr(κp, κq), κp, κq ∈ [0, 360◦], (10)

where Hr(κp, κq) is the distribution entropy under the rotation parameters κp and κq when the distance
between P and Q is r. The coordinates of P and Q need recalculation every time κp and κq vary, which is
time consuming. Thus, point cloud simplification is necessary and we achieve it by grid simplification
in this paper. The point cloud from P or Q is assigned to a grid of block size dG and every block is
represented by its center, with the number of points falling into it recorded. Figure 4 illustrates a
simple example of the searching process. Point clouds in Figure 4a,b rotate around their own origins,
(0, 0) and (r, 0), and the continuous ranges of κp and κq, which are [0, 360◦], are discretized with the
interval of 1◦. The rotation angles corresponding to the minimum entropy are selected to calculate the
initial transformation parameters, as shown in Figure 4e.
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With the assumption of the approximately vertical scanner, the z component of translation
parameters between P and Q can be roughly determined based on the distance between the ground
parts. Then, the relation between two registered scans P and Q can be extended back to 3D space by cos(κp) − sin(κp) 0

sin(κp) cos(κp) 0
0 0 1


 xp

yp

zp

 =

 cos(κq) − sin(κq) 0
sin(κq) cos(κq) 0

0 0 1


 xq

yq

zq

+

 r
0

∆h

, (11)

where κp and κq are rotation angles around the z axis for P and Q, r is the distance between the two
scan positions of P and Q and ∆h is the transformation along the z axis. The transformation from Q to
P will be
 xp

yp
zp

 =

 cos(κp) − sin(κp) 0
sin(κp) cos(κp) 0

0 0 1

−1 cos(κq) − sin(κq) 0
sin(κq) cos(κq) 0

0 0 1

 xq
yq
zq

+

 cos(κp) − sin(κp) 0
sin(κp) cos(κp) 0

0 0 1

−1 r
0

∆h

. (12)

2.2.3. Correcting Initial Transformation Parameters Using Iterative Minimum Entropy

As described in Section 2.1, the distance r between the scan positions of P and Q generally
has an error up to 20 m. Search for the minimum entropy is not always the ideal case shown in
Figure 4. In this paper, we propose a method called Iterative Minimum Entropy (IME) to correct r
when searching for the minimum entropy and reduce the impact from smartphone GPS location error.
The process of IME is as follows:

1 Initial distance and rotation angle detection

The distance r between two adjacent scans (hereafter referred to as scan distance) can be directly
calculated from scan position’s GPS coordinates. As shown in Figure 5a, the angles corresponding to
the minimum entropy are selected as the initial rotation parameters,

[κp(0), κq(0)] = arg min Hr(κp, κq), κp, κq ∈ [0, 360◦]. (13)

The smartphone GPS generally has an error of up to 10 m, leading to a 20-m error in scan distance r.
Thus, the true value of r commonly falls in the range of [r− 20, r + 20]. This range may be unreasonable;
for example, r − 20 may be negative, or r +20 may be too large to conform to the actual situation. Here,
we set two thresholds rlow and rup to establish a further limit. The initial search range for scan distance
can be obtained by

rstart(0) = max(rlow, r− 20), (14)

rend(0) = min(rup, r + 20), (15)

where rlow is zero or a small value to ensure rstart positive and rup can be easily set to r + 20 or a known
value the scan distance will certainly not exceed.

The aim of the initial scan distance detection is to find the distance closest to the true value in
[rstart(0),rend(0)]. Ten sampling values are selected to help the traversal, with the interval labeled
as rinterval,

rk = rstart(0) + (k− 1) ∗ rinterval(0), k = 1, 2 . . . 10, (16)

rinterval(0) = (rstart(0)− rend(0))/9. (17)

For each rk, a series of entropy values are calculated within the range of κp ∈ [κp(0) − 20◦,
κp(0) + 20◦], κq ∈ [κq(0)− 20◦, κq(0) + 20◦], as shown in Figure 6a. With those entropy values, the
difference between average and minimum entropy (Figure 6a) and the deviation from minimum
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entropy to expected entropy (Figure 6b), labeled as HA−M
rk

and HR−M
rk

, are calculated to evaluate rk, as
shown in Figure 5b. The criterion to select the initial scan distance is

r(0) = argminHR−M
rk

, rk ∈ {rk|HA−M
rk

> HA−M
rk , rk ∈ [rstart(0), rend(0)]}, (18)

where HA−M
rk

is used to narrow the selection to some preliminary search results and larger HA−M
rk

commonly means more discriminative minimum entropy for rk. The HA−M
rk

is calculated by

HA−M
rk

= Hrk (κp, κq)−min(Hrk (κp, κq))

κp ∈ [κp(0)− 20◦, κp(0) + 20◦], κq ∈ [κq(0)− 20◦, κq(0) + 20◦]
, (19)

where Hrk (κp, κq) is the average entropy obtained within the preset angel range.
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Figure 5. Search for the initial parameters: (a) the searching process for rotation angles; and (b) the
searching process for initial scan distance.

For HR−M
rk

, we find that the entropy is partially affected by the scan distance between P and Q,
that Hrk will generally become smaller with a smaller rk, and the effect can be ignored when it comes to
a small variation range of r. Although smaller minimum entropy commonly means the corresponding
rk closer to the true value, comparing the minimum entropy directly for different rk becomes unreliable
here with the largest variation range of 40 m, as shown in Figure 6b. To eliminate the effect of distance,
the series of entropy values Hrk (κp(0), κq(0)) (rk sequence is obtained through Equations (16) and (17))
are selected as the reference and the relation between the entropy and distance is constructed based on
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linear model HR
rk
= m ∗ rk + b. We prefer rk with the largest deviation from the minimum to reference

entropy, instead of rk with the minimum entropy. The deviation HR−M
rk

is calculated by

HR−M
rk

= min(Hrk (κp, κq))− HR
rk

, k = 1, 2 . . . 10,
κp ∈ [κp(0)− 20◦, κp(0) + 20◦], κq ∈ [κq(0)− 20◦, κq(0) + 20◦].

(20)
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Figure 6. Two criteria for initial distance and rotation angles selection: (a) The entropy change when
rk = 14.2272 m and κp(0) = 93◦, κq(0) = 108◦, in S1 and S2 of the first data set in Section 3.1. The
calculation of HA−M

rk
corresponding to 12.2272 m is also shown. (b) How HR−M

rk
works on S3 and S4 in

the second data set in Section 3.2.
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2 Iterative Minimum Entropy

With initial parameters obtained, the scan distance and rotation parameters will be corrected
iteratively. In i-th iteration, the searching scope will be

rstart(i) = max(r(i− 1)− rinterval(i− 1), rstart(0)), (21)

rend(i) = min(r(i− 1) + rinterval(i− 1), rend(0)), (22)

rinterval(i) = (rstart(i)− rend(i))/9, i ≥ 1, (23)

where r(i− 1) is the scan distance obtained after i − 1 times iteration and [rstart(i),rend(i)] will be the
search region and rinterval(i) be the search step. The rk will be traversed in [rstart(i),rend(i)] to find the
optimal transformation parameters,

r(i) = arg min Hrk (κp, κq), rk ∈ [rstart(i), rend(i)],
[κp(i), κq(i)] = arg min Hr(i)(κp, κq),
κp ∈ [κp(0)− 20◦, κp(0) + 20◦], κq ∈ [κq(0)− 20◦, κq(0) + 20◦],

(24)

where the scan distance r(i) is selected with the minimum entropy in the iteration, because of the
shrinking search scope, and the rotation parameters are calculated based on r(i).

3 Convergence

The change of the distribution entropy between two adjacent iterations is utilized as the condition
of convergence. The algorithm stops when the entropy change is less than threshold τ, which is set
0.001 in this paper.

With the scan distance and rotation angles obtained at convergence, the coarse transformation
parameters can be obtained by the Equation (12). The result of coarse alignment is used as the input
for ICP in fine registration stage.

3. Experiments and Discussion

Two data sets obtained by a Reigl VZ-400 scanner were used to process and evaluate the proposed
approach. Data set 1 was captured on a square, in which the primary objects are plants, sculptures and
buildings around the square and covered a panoramic view. Data set 2 comprised scans captured from
6 positions around a building and only covered a horizontal view of about 100◦. The primary target of
data set 2 is a building with some plants around it.

All scans in one data set are aligned manually and refined by standard ICP to generate reference
transformation parameters. Because IME is a method for coarse registration, the result of IME is
processed with the ICP algorithm to achieve a complete registration. Errors between reference and
estimated transformation parameters are used to estimate the registration accuracy. In addition, root
mean square deviation (RMSD) before and after ICP is used here for metric accuracy and RMSD is
calculated as

RMSD =

√
1
/

n
n

∑
i=1

(pi − qi)
2, pi ∈ P, qi ∈ Q (25)

As described in Section 2.2.2, there are two parameters that must be set manually: dG and tG.
We also tested parameter sensitivity by changing one parameter while another remained unchanged.

3.1. Data Set 1

Data set 1 contains scans recorded at 3 different positions, as shown in Figure 7. Each scan in data
set 1 contains approximately 50 million points spanning 360◦ horizontally and 100◦ vertically with a
maximum range of approximately 400 m and dimensions of 537 m × 483 m × 111 m. The angular
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resolution is 0.02◦ and point density is between 8 and 80 mm. As illustrated in Figure 7, data set 1
contains a square in the middle with plants around it and buildings at a distance.

Table 1 shows the basic information of each scan, including the number of points in different
stages. Block size dG and tG for point simplification and projection are both 1 m and the number of
points is obviously decreased after projecting, improving the efficiency of IME significantly. Table 2
shows the distance between each scan position, as well as the corresponding reference distance, which
is calculated from the result of manual alignment. Generally, there is a significant error for each scan
distance that is unstable and cannot be removed as system error.Sensors 2017, 17, 197 14 of 26 
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Figure 7. View of data set 1 after registration and three scan positions.

Table 1. Basic information of each scan.

Scan
Number of Points

Original After Preprocessing After Projecting

S1 50,164,568 21,225,851 15,017
S2 53,101,629 21,256,225 15,749
S3 54,158,850 21,858,623 15,631

Table 2. Initial distance between adjacent scan positions and the corresponding reference.

Scan pair Scan Distance (m) Reference (m)

S1–S2 34.2272 24.5040
S1–S3 25.8609 28.264
S2–S3 40.4741 31.6358

Table 3 shows the registration result, including rotation and translation errors, RMSD in IME and
ICP and scan distance error ∆dS. For the search scope of the scan distance, rlow is set to 0, ensuring the
distance is positive, and no upper limit is set (or rup can be set to an extremely large value).
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Table 3. Errors between estimated and reference transformation parameters: ∆φ, ∆ω and ∆κ are
rotation parameter errors corresponding to the x, y and z axes, respectively; ∆x, ∆y and ∆z are
translation errors along the x, y and z axes, respectively; RMSD is the root mean square deviation
between two point clouds; and ∆dS is the error of the distance between two adjacent scan positions.

Scans Stage ∆φ (◦) ∆ω (◦) ∆κ (◦) ∆x (m) ∆y (m) ∆z (m) RMSD (m) ∆dS (m)

S1–S2
IME 0.317 2.501 −0.639 3.784 0.644 0.433 0.643 0.220
ICP 0.034 0.173 0.020 0.162 0.081 −0.006 0.011 −0.063

S1–S3
IME −1.011 0.316 0.171 −1.065 1.482 −0.358 0.517 −1.292
ICP −0.008 0.010 −0.003 −0.006 0.004 −0.006 0.007 −0.007

S2–S3
IME −1.986 −1.613 −1.128 −2.665 −0.608 −0.281 0.853 −2.27
ICP −0.143 −0.059 0.035 −0.07 −0.031 −0.044 0.007 −0.076

The rotation error is generally within 2◦, with ∆κ commonly smaller than the other two, because
the rotation angle corresponding to the z axis is continuously corrected during IME iteration. Similarly,
IME performs better on ∆z than the other two translation errors, demonstrating that it is feasible to
directly use the distance between the ground parts along the z axis as the z component of translation
for two adjacent scans. Although horizontal translation errors ∆x and ∆y are much larger than ∆z,
the errors remain sufficient for a successful fine alignment, with translation errors and RMSE all
reaching centimeter level after ICP. In addition, the error of scan distance also reaches centimeter or
sub-centimeter level after ICP. In Table 3, we can also observe that the correlation between ∆dS and
transformation errors is not absolute, although in most cases, a smaller ∆dS tends to correspond to
smaller transformation errors. In conclusion, the IME algorithm is more concerned with the overall
distribution of points in two adjacent scans, resulting in larger initial transformation errors than
feature-based method in the stage of rough alignment, but the coarse alignment accuracy is still good
enough to ensure the convergence of ICP in the fine alignment stage.

There are two parameters in IME that have to be set by the user: block size dG for the grid
simplification of original points and block size tG for entropy calculation, as described in Section 2.2.2.
To identify the appropriate parameter settings and test the parameter stability, registration tests were
conducted using different parameter settings. Test results are shown in Figures 8–11, in which the
mean angular error (MAE), mean translation error (MTE), scan distance error (∆dS) and runtime T are
analyzed. In the test, MAE and MTE are only influenced by ∆κ and ∆x, ∆y, respectively, because ∆φ,
∆ω and ∆z are all set to fixed values during IME iteration.

Although a smaller grid size dG or tG can retain more details from the original point cloud,
we observed that incorrect transformation parameters are obtained with an MAE greater than 20◦

when dG is below 2 m or tG is below 3 m in Figures 8 and 10. The ICP can obtain a right convergence
when dG is between 2 m and 14.5 m in Figure 8. Considering the runtime and translation errors,
[2.5, 7.5] will be a more appropriate variation range for dG. Figure 9 shows the projections of four
rough alignment results when dG is 1 m, 2 m, 5 m and 10 m. By comparing Figure 9b,c, we observe
that despite having similar angular and translation errors, slight differences remain in the results of
rough alignment. IME performs better on the two buildings located in the upper left corner when dG

is 5 m whereas the parameter setting dG = 2.5 m gains a greater overlap on the building located in the
lower right corner. The best results are achieved when dG is approximately 50 to 100 times the average
density and the stability of the rotation error is better than that of the translation error.

Figures 10 and 11 show similar tendency with Figures 8 and 9; thus, similar conclusions can be
drawn. MAE is below 2 m when tG is in the range of [3,40], which is much wider than the that of dG.
We also note that tG has more influence on the efficiency than dG, by comparing Figures 8d and 10d.
The best results are achieved when tG is approximately 1% to 10% of the shortest edge of the point
cloud’s bounding box. In addition, tG has better error resistance than dG while the latter has better
runtime stability.
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3.2. Data Set 2

Compared with data set 1, the horizontal scanning scope of data set 2 (as shown in Figure 12)
is between 60 and 100◦ with a lower overlap rate. Data set 2 comprises 6 scans around a
building with surroundings including vegetation, roads, cars and bicycles and was acquired with
dimensions ≈ 85 m × 166 m × 49 m and point density between 8 and 16 mm. The basic information
is shown in Table 4, and Table 5 shows the distance between different scan pairs in data set 2. Scan
pairs S1–S2 and S5–S6 have a deviation of more than 15 m from the reference values. This is because a
large amount of vegetation interfered with the GPS signal when the scans were acquired.
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Table 4. Basic information of each scan.

Scan
Number of Points

Original After Preprocessing After Projecting

S1 16,941,512 14,168,335 31,652
S2 20,841,940 12,642,348 11,736
S3 10,091,225 7,832,464 15,022
S4 14,232,022 10,745,991 7119
S5 22,715,235 14,635,858 9299
S6 16,474,111 10,901,182 4819

Table 5. Initial distance of each scan pair and the corresponding reference.

Reference (m)
Distance (m)

S1 S2 S3 S4 S5 S6

S1 0 43.4 84.4 98.5 53.1 59.5
S2 28.712 0 43 69.6 37.9 72.7
S3 74.967 46.529 0 44.5 48.5 90.6
S4 88.723 65.984 38.302 0 54.4 76
S5 63.112 56.282 63.939 47.843 0 48.7
S6 58.443 65.705 90.439 77.565 28.896 0

The registration test was conducted with parameter settings: dG = 0.15 m and tG = 2.5 m, recalling
the conclusion of the test on dataset 1. The result is shown in Table 6, with the overlap rate of
neighboring scans. The registration error of data set 2 is larger than that of data set 1 and the likely
reason is the lower overlap rate between adjacent scans, resulting in the decreased accuracy of initial
transformation parameters. Despite this, most results of IME remains good enough to be correctly
refined by ICP in the stage of fine alignment, with the final accuracy on the order of scanner’s
measurement accuracy, except the registration between S1 and S6. As shown in Table 6 and Figure 13,
the IME falls into the local convergence basin for the registration of S1 and S6, probably because of
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the small overlap rate and the homogeneous overlapping area, containing only part of a wall and
placing weak constraint on the transformation search. We also tried to use the result in Figure 13b
as the input of ICP, but the z component of the translation parameters still contained a large error,
for there is little overlap at the ground part. For the two nonadjacent scan pairs, S1–S3 and S4–S6,
although the overlap rates are significantly lower compared with the sequential pairs, the registration
results are still satisfying, with the registration errors at centimeter level.
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Figure 13. The IME result of S1–S6: (a) the Nadir view corresponding to the minimum entropy, which is
a local convergence for IME; and (b) the theoretically correct posture for S1 and S2, which corresponds
to the fifth small entropy.

Table 6. Errors between estimated and reference transformation parameters.

Scan Pair Overlap Rate Stage ∆φ (◦) ∆ω (◦) ∆κ (◦) ∆x (m) ∆y (m) ∆z (m) RMSD (m) ∆dS (m)

S1–S2 17.3%
IME 2.23 1.396 0.230 0.133 0.798 0.609 0.25 0.795
ICP 0.205 0.402 −0.029 0.024 0.039 0.005 0.018 0.045

S1–S3 10.84%
IME 1.192 1.691 −2.865 0.749 −0.998 0.186 0.480 0.567
ICP 0.422 0.545 0.329 0.302 −0.244 0.075 0.039 −0.078

S1–S6 7.67%
IME - - - - - - - -
ICP - - - - - - - -

S2–S3 23.5%
IME −1.038 0.295 −5.895 5.236 1.404 −0.423 0.58 1.963
ICP −0.246 0.145 −0.131 0.028 0.109 0.0797 0.028 0.112

S3–S4 17.8%
IME −0.466 1.330 6.090 −2.170 −0.922 0.111 0.103 0.983
ICP 0.304 −0.382 −0.047 0.126 −0.109 0.108 0.012 −0.167

S4–S5 18.1%
IME −0.313 −1.940 −2.115 −0.371 −1.641 0.671 0.523 −0.733
ICP 0.087 0.085 −0.144 0.0379 −0.114 0.0004 0.021 0.013

S4–S6 10.52%
IME 0.140 −1.10 1.091 −0.182 0.433 −0.059 0.140 −0.096
ICP −0.091 0.011 −0.004 0.079 −0.002 −0.029 0.037 0.077

S5–S6 30.1%
IME −0.551 −0.779 −4.011 −1.148 1.134 −0.730 0.231 0.820
ICP 0.027 0.0054 0.0005 0.017 −0.002 −0.022 0.011 0.102

The results under different dG and tG settings are shown in Figures 14 and 15. The experiment
on data set 2 shows similar trends with data set 1, except for the correct result under the minimum
parameter setting, dG = 0.05 m and tG = 0.05 m. Considering the error and runtime together, the best
results are obtained when dG is between 0.05 m and 0.75 m, and tG is between 0.05 m and 4 m and the
conclusion can be drawn similar as that of data set 1.

The accuracies shown in Figures 14 and 15 are slightly worse than in Figures 8 and 10 and the
range of dG and tG corresponding to correct results is smaller. This result is most likely because of the
smaller dimensions of data set 2. Two distant points may fall into the same block if dG or tG is set too
large compared with the edge length of the bounding box.
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In addition to parameter tests, we conducted a further test to compare two initial value selecting
criteria: using minimum entropy and deviation distance. This test was conducted using parameter
settings: dG = 0.5 m and tG = 0.25 m, and the result is shown in Figure 16. As shown in Figure 16a–c,
the results based on the deviation show a better performance, with smaller MAE and MTE and the
scan distance much closer to the reference. Figure 16d shows the selecting process of scan distance.
The linear function between entropy and distance is shown in the form of line, and ten candidates
are labeled as points. The 2D distribution entropy shows a decreasing trend when the scan distance
reduces. The minimum distance 24.5 m will be selected as the initial scan distance if the minimum
entropy is used as decision criterion, as shown in Figure 16d. When the deviation is used as criterion,
the initial scan distance will be 36.3 m, which is much closer to the reference scan distance 38.302 m,
erasing the entropy change brought by distance variation.
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Figure 16. Comparison of two initial value selection criteria, using minimum entropy and using
deviation distance: (a) MAE; (b) MTE; and (c) Scan distance; and (d) the selecting process in detail.
Although the distance 24.5 m corresponds to the smallest entropy, 36.3 m, which is much closer to
reference distance of 38.302 m, is selected based on deviation distance.

3.3. Comparison

A comparison was taken between SIFT-based method and the proposed method. In the SIFT-based
method, correspondences are obtained on the reflectance image with SIFT and false matches are
excluded with the branch-and-bound algorithm [19,23]. The mean angle error, mean translation error
and RMSD before ICP are listed in Table 7. As shown in Figure 17, the matching rate is limited because
of the viewpoint changes, self-similarity and holes, and some problems may exist, e.g., the points
on background and inaccurate matching. Meanwhile, the proposed method, which is independent
of detailed features, mainly focuses on the overall distribution and reduces the possibility of false
registration result.
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Table 7. Comparison between the proposed method and SIFT-based method.

SIFT Based Method The Proposed Method

Key
Points

Average
Match

Successful
Match (%)

Average
MAE (◦)

Average
MTE (m)

Average
RMSD (m)

Average
MAE (◦)

Average
MTE (m)

Average
RMSD (m)

Data set 1 3678 72 69.4 1.741 1.09 0.715 1.076 1.258 0.671
Data set 2 7608 5 - - - - 1.532 0.958 0.330
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and the false matching is mainly because of viewpoint changes and self-similarity; (b) the false match
from holes; and (c) the correct match on the background with no correspondence in the space of
point cloud.
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4. Conclusions

In this paper, a method called Iterative Minimum Entropy (IME) is proposed for the coarse
registration of TLS point clouds, with a novel sensor combination mode of terrestrial laser scanner
and smartphone. This method is based on 2D distribution entropy and the distance r between
neighboring scan positions, by rotating two point clouds around their own z axis until the optimal
initial transformation is reached. Since there is no synchronization between the laser scanner
and smartphone, only a rough distance between neighboring scanner positions is measured using
smartphone GPS. We proposed two criteria, the difference between average and minimum entropy and
the deviation from minimum entropy to expected entropy, to decide the optimal initial transformation
between two scans instead of directly using the minimum entropy. The method achieved high accuracy
and efficiency in the two experiments we have conducted, in which panoramic and non-panoramic,
vegetation-dominated and building-dominated scenes were tested. Commonly, the proposed method
achieves a good result when tG is approximately 1% to 10% of the shortest edge of the bounding box
and dG is approximately 50 to 100 times the average density, according to the experimental results, but
the range is not absolute. It is also noticed that the IME is likely to fall into a local convergence basin
when the overlapping rate is too low or most overlapping areas are of narrow distribution.

The future investigations will include efforts to deal with the small overlapping rate, which is
about 5%–10%, and homogeneous overlapping areas. In addition, IME can be extended in the future
using other ranging methods, e.g., Electronic Distance Measurement (EDM), or the initial distance can
simply be given by the user in some special cases, such as near the subway or train tracks, where each
track section has a fixed length and can be treated as the distance marker, making it a method using no
prior information. However, some modifications may be needed to ensure the robustness for different
manners of extension.
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