
sensors

Article

A Reinforcement Learning Model Equipped
with Sensors for Generating Perception Patterns:
Implementation of a Simulated Air Navigation
System Using ADS-B (Automatic Dependent
Surveillance-Broadcast) Technology

Santiago Álvarez de Toledo 1, Aurea Anguera 2, José M. Barreiro 1, Juan A. Lara 3,*
and David Lizcano 3

1 Escuela Técnica Superior de Ingenieros Informáticos, Campus de Montegancedo,
Technical University of Madrid (UPM), Boadilla del Monte, 28660 Madrid, Spain;
santiagoalvarezdetoledo@hotmail.com (S.A.d.T.); jmbarreiro@fi.upm.es (J.M.B.)

2 Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Technical University of Madrid (UPM),
C/Alan Turing s/n (Ctra. de Valencia km. 7), 28031 Madrid, Spain; aanguera@eui.upm.es

3 Escuela de Ciencias Técnicas e Ingeniería, Madrid Open University (MOU), Crta. de la Coruña km. 38.500,
Vía de Servicio, 15, Collado Villalba, 28400 Madrid, Spain; david.lizcano@udima.es

* Correspondence: juanalfonso.lara@udima.es; Tel.: +34-630-524-530

Academic Editor: Vittorio M. N. Passaro
Received: 4 November 2016; Accepted: 11 January 2017; Published: 19 January 2017

Abstract: Over the last few decades, a number of reinforcement learning techniques have emerged,
and different reinforcement learning-based applications have proliferated. However, such techniques
tend to specialize in a particular field. This is an obstacle to their generalization and extrapolation
to other areas. Besides, neither the reward-punishment (r-p) learning process nor the convergence
of results is fast and efficient enough. To address these obstacles, this research proposes a general
reinforcement learning model. This model is independent of input and output types and based on
general bioinspired principles that help to speed up the learning process. The model is composed of
a perception module based on sensors whose specific perceptions are mapped as perception patterns.
In this manner, similar perceptions (even if perceived at different positions in the environment) are
accounted for by the same perception pattern. Additionally, the model includes a procedure that
statistically associates perception-action pattern pairs depending on the positive or negative results
output by executing the respective action in response to a particular perception during the learning
process. To do this, the model is fitted with a mechanism that reacts positively or negatively to
particular sensory stimuli in order to rate results. The model is supplemented by an action module
that can be configured depending on the maneuverability of each specific agent. The model has
been applied in the air navigation domain, a field with strong safety restrictions, which led us to
implement a simulated system equipped with the proposed model. Accordingly, the perception
sensors were based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology, which is
described in this paper. The results were quite satisfactory, and it outperformed traditional methods
existing in the literature with respect to learning reliability and efficiency.

Keywords: machine learning; reinforcement learning; ADS-B; perception-action-value association;
air navigation

Sensors 2017, 17, 188; doi:10.3390/s17010188 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 188 2 of 27

1. Introduction

Artificial Intelligence (AI) is defined as any intelligence exhibited by man-made “mentifacts” or
artifacts (until now, computers). One of the major goals of systems using AI is to somehow simulate
human intelligence through knowledge acquisition. In order to do so, these systems need to perceive
the information coming from their environment. Taking that into account, the use of sensors is
absolutely necessary. The discipline of sensing has experienced an important growth in recent years,
regarding sensor design, applications and technology.

Ever since they were first invented, intelligent systems were meant to acquire knowledge
automatically. Machine learning is the branch of AI covering a series of techniques and concepts for
building machines that are capable of learning. Machine learning has been one of goals most often
pursued by AI in the past. According to Simon [1], a system is based on machine learning when,
thanks to what it has learned, it is capable of executing the same task more efficiently next time round.

Reinforcement learning is an area of machine learning that draws inspiration from behavioral
psychology. Reinforcement learning (also sometimes referred to as algedonic learning) studies how
systems size up an environment in an attempt to maximize the notion of reward. This field then is
based on the concept of reinforcement, which modifies a conditioned reflex or learned behavior by
increasing (positive reinforcement or reward) or reducing (negative reinforcement or punishment)
its occurrence.

Over the last few years, reinforcement learning has had a major impact as a great many techniques
have been developed and applied in many different domains. It has not, however, been one hundred
percent successful due to two major stumbling blocks in its development: (a) applications are
specialized for a particular field and are thus hard to generalize and extrapolate to other areas;
and (b) the learning process and convergence of results are slower and more limited than they should
be. Sometimes learning itself generates so much information that the process breaks down.

In order to overcome the above difficulties, this research proposes a bioinspired model that is
usable across different types of reinforcement learning applications irrespective of the input and output
types used or their complexity. Additionally, it aims to blend a number of general principles that are
useful for speeding up the above learning process.

To do this, our model is based on a central association module, an input module and an output
module. The input module is responsible for sensing the environment and generating patterns based on
the input stimuli that it feeds to the central module. These patterns are generated by sensors that set out
to emulate perceptions by different living beings (optical, tactile, etc.) in nature. These sensors generate
perceptions that are mapped to perception patterns. Similar perceptions gathered at different points of
the environment under exploration are mapped into the same perception pattern. Decision-making
complexity is reduced when similar perceptions are grouped within the same perception pattern.
The central module feeds action patterns to the output module, which is responsible for performing
the respective actions.

The central association module has mechanisms for statistically associating the input and output
patterns that have occurred repeatedly and have provided positive or negative, right or wrong results,
according to the bioinspired ideas proper to algedonic learning. To do this, it is fitted with results
rating mechanisms, which react positively or negatively to particular sensory stimuli. The described
association process, which will be formally defined later, drives the learning process. As the central
association module is related to patterns of stimuli and actions rather than directly to particular
sensory stimuli or specific actions, its features are generalizable enough for use in different applications
and environments.

The proposed reinforcement learning model has been applied to the air navigation domain.
Air navigation denotes all the techniques and procedures used to efficiently pilot an aircraft to its
destination, without doing damage to crew, passengers or people on the ground. Because air navigation
is a domain with strong limitations as far as experimentation and testing are concerned, we had to
implement, at this first stage of our research, a simulated system including the proposed model.

Sensors 2017, 17, 188 3 of 27

In particular, our system implements the sensors designed for the model by using a technology
known as automatic dependent surveillance-broadcast (ADS-B), a surveillance technology described
throughout this paper. In addition, our system has collision avoidance and automatic navigation
capabilities, and has been tested on several real-world flight scenarios. The aim within these scenarios
is for the aircraft to safely, effectively and automatically reach its destination avoiding collision with
obstacles and other aircraft.

As we will see later, the results reveal a high success rate with respect to learning (and therefore the
safety and reliability of the simulated air navigation system). It is more efficient than other techniques
reported in the literature in terms of learning time and reliability after learning. It also has other
benefits that are intrinsic to the method and will be outlined at the end of the paper. In our view,
ADS-B technology, leading to the direct and efficient implementation of the sensors on which the
proposed model is based, is a crucial factor in the achievement of such good results and an incentive
for its future implementation in other fields.

The remainder of the paper is organized as follows. Section 2 presents key research and concepts
related to the topic of this paper; Section 3 explains the proposed model; Section 4 describes the
implementation of the simulated system (based on the model proposed) in the air navigation domain
and the technology on which it relies: ADS-B; Section 5 illustrates the test scenarios and reports the
results; Section 6 analyzes the applicability of the proposal, where it is compared with other existing
options, describing its strengths and weaknesses; and, Section 7 outlines the conclusions and future
research lines.

2. Related Work and Concepts

As already mentioned, this paper describes a reinforcement learning model based on a perception
module that uses sensors. We also describe the implementation of a simulated system that uses the
proposed model. The sensor technology used in that system is based on ADS-B.

ADS-B is a surveillance technology that is used to determine an aircraft’s position by means of
satellite navigation, typically the global positioning system (GPS). This position is then broadcast at
regular time intervals to inform other agents of the aircraft’s position [2].

In a traditional air navigation environment, these other agents are usually ground air traffic
control stations and other airborne aircraft. Thanks to this technology, different air traffic operations
can be managed from the ground as it reports the position of nearby aircraft. It also enables an aircraft
to make decisions on flight path changes if there are other aircraft in its path.

Figure 1 illustrates this classical model described above.

Sensors 2017, 17, 188 3 of 27

model. In particular, our system implements the sensors designed for the model by using a

technology known as automatic dependent surveillance-broadcast (ADS-B), a surveillance

technology described throughout this paper. In addition, our system has collision avoidance and

automatic navigation capabilities, and has been tested on several real-world flight scenarios. The

aim within these scenarios is for the aircraft to safely, effectively and automatically reach its

destination avoiding collision with obstacles and other aircraft.

As we will see later, the results reveal a high success rate with respect to learning (and therefore

the safety and reliability of the simulated air navigation system). It is more efficient than other

techniques reported in the literature in terms of learning time and reliability after learning. It also

has other benefits that are intrinsic to the method and will be outlined at the end of the paper. In our

view, ADS-B technology, leading to the direct and efficient implementation of the sensors on which

the proposed model is based, is a crucial factor in the achievement of such good results and an

incentive for its future implementation in other fields.

The remainder of the paper is organized as follows. Section 2 presents key research and

concepts related to the topic of this paper; Section 3 explains the proposed model; Section 4 describes

the implementation of the simulated system (based on the model proposed) in the air navigation

domain and the technology on which it relies: ADS-B; Section 5 illustrates the test scenarios and

reports the results; Section 6 analyzes the applicability of the proposal, where it is compared with

other existing options, describing its strengths and weaknesses; and, Section 7 outlines the

conclusions and future research lines.

2. Related Work and Concepts

As already mentioned, this paper describes a reinforcement learning model based on a

perception module that uses sensors. We also describe the implementation of a simulated system

that uses the proposed model. The sensor technology used in that system is based on ADS-B.

ADS-B is a surveillance technology that is used to determine an aircraft’s position by means of

satellite navigation, typically the global positioning system (GPS). This position is then broadcast at

regular time intervals to inform other agents of the aircraft’s position [2].

In a traditional air navigation environment, these other agents are usually ground air traffic

control stations and other airborne aircraft. Thanks to this technology, different air traffic operations

can be managed from the ground as it reports the position of nearby aircraft. It also enables an

aircraft to make decisions on flight path changes if there are other aircraft in its path.

Figure 1 illustrates this classical model described above.

Figure 1. Standard ADS-B (Automatic Dependent Surveillance-Broadcast) operation.
Figure 1. Standard ADS-B (Automatic Dependent Surveillance-Broadcast) operation.

Sensors 2017, 17, 188 4 of 27

As Figure 1 shows, ADS-B is based on the use of two types of airborne components: (i) a GPS
source; and (ii) a data link (ADS-B unit) for information exchange.

As this technology is a mainstay of our paper, the technical details of the proposal and its
application to the reference domain, air navigation, are described in Section 4.

With regard to the concepts related to the learning process of this proposal, note that the
proposed model aims to solve problems with an active agent in an inaccessible environment,
where environmental knowledge is incomplete. In this scenario, most techniques assume that there is
no environment model (model-free reinforcement learning).

Table 1 describes prominent model-free reinforcement learning methods.

Table 1. Prominent model-free reinforcement learning methods.

Method Description

Monte Carlo methods
(Ulam and von Neumann—1940s) [3–5]

Monte Carlo methods are non-deterministic methods used to
simulate complex problems that are hard to evaluate accurately.
To do this, such deterministic problems are randomized using
a random number generator. As far as we are concerned,
Monte Carlo methods are a category of reinforcement learning
approaches requiring experience—a sample of sequences of
states, actions and results—instead of a full model of the
environment dynamics.

Temporal difference (Sutton—1980s) [6–8]

Temporal difference methods perform reinforcement learning
based on different successive predictions of the same value as
time elapses. These methods perform what is known as
bootstrapping. Even so, they differ from Monte Carlo methods
in that they do not need to wait until the end of an episode and
their terminal reward, but learn incrementally.

Q-learning (Watkins—1980s) [9]

Q-learning uses the value-action function instead of just the
value function in order to predict the reward Q of a specified
action in a specified state. Therefore, it takes into account the
values of the action-state pairs rather than just of the states.

Michie and Chambers used Monte Carlo methods in their cart-pole application. They used
the mean times of each episode (balanced pole) in order to check which action was useful in which
state and thus control which action to select [10]. Other authors have used these methods [11],
sometimes for a special purpose, for example to solve linear systems of equations [12]. A review of
the literature published over the last ten years did not reveal many proposals by the reinforcement
learning community related to this type of methods.

Over the years, different authors have proposed temporal difference-based techniques following
the above idea [9,13]. Although not a paper specializing in temporal differences, the research reported
in [14], proposing an online policy iteration algorithm that evaluates policies with the so-called
least-squares temporal difference for Q-functions (LSTD-Q), does use concepts related to this approach.

As developed by Watkins, Q-learning combined the trial-and-error, optimal control, dynamic
programming and temporal difference learning methods. However, Werbos had put forward
a tconvergence between trial and error and dynamic programming earlier [15]. Action-value methods
were first proposed for the one-armed bandit problem [16]. They are often referred to in the machine
learning literature as estimation algorithms. However, it was not until later that Watkins introduced
the method and the actual action-value term [17]. Watkins later conducted a thorough convergence
test [9]. Other authors also tested several forms of system convergence [13]. The reinforcement learning
community has proposed and improved a number of different methods based on Q-learning ideas
over the last ten years [18–21].

The above three approaches have been used (in their original form or with slight modifications)
successfully over the last few years. For example, reinforcement learning has been applied to the game

Sensors 2017, 17, 188 5 of 27

of backgammon [22], elevator control [23], the field of autonomic computing [24], the game of Go [25],
epilepsy treatment [26], and memory controller optimization [27].

3. Proposed Model

The reinforcement learning approaches described at the end of Section 2 are not generally effective
enough for most applications of any complexity. General-purpose versions combining several such
methods and tools are tailored to the respective application. Far from being a generally applicable
approach, the application of reinforcement learning has come to be a practice of manually adapting
different methodologies. Richard Sutton went as far as to say that there is often more art than
engineering in having to tailor such a tightly fitting suit taking on board so much domain-specific
knowledge [28]. Thus, there appears to be a need for a more general model for different application
domains and areas.

Another area where there is room for improvement is the adoption of ideas with respect to action
and state hierarchy and modularity. If we look at actions like tying a shoelace, placing a phone call
or making a journey, for example, not all learning consists simply of one-step models of the dynamic
environment or value functions. Although these are higher level scenarios and activities, people who
have learned how to do them are able to select and plan their use as if they were primary actions.
Similarly, we need to find a way of dealing with states and actions, irrespective of their level in
a hierarchy and their modularity.

Additionally, there is still a rather evident need for methods that avoid an information explosion,
somehow retaining only the key or vertebral parts of the experiences.

The model described in this paper was proposed with the aim of addressing the above limitations
detected in the literature. Although we have not found any specialized literature on reinforcement
learning dated later than 2012, a definitive solution to the problem addressed here, especially with
regard to the need for broader applicability, has not yet been found (i.e., only specific improvements
have been addressed). This is one of the key objectives of this proposal.

3.1. General Operation of the Proposed Model

As Figure 2 shows, the structure of the proposed model is clearly modular. On the one hand,
the proposed model has two parts specializing in interaction with the environment: the perception
and action modules.Sensors 2017, 17, 188 6 of 27

Figure 2. Overview of the proposed model.

The model also has a rating module. This module is responsible for establishing the

reinforcement (reward or punishment) for the current situation in view of the action that has been

executed and its effect on the environment. The parameters of this module should be set for each

domain, although the user will have to set no more than the rating (sign and magnitude) of each

object type identified by the agent in the environment.

Finally, the central part of the model, responsible for operating on the abstract knowledge is

referred to as the association module. An association (normally denoted as a P-A-V association) is a

value (V) that links each perception pattern (P) with each possible action that can be taken (A) in

such a manner that this value is used to decide, for each pattern, which is the better action in the

current scenario. The model uses a matrix composed of as many rows as perception patterns (P) and

as many columns as possible actions to take (A). Each cell of this matrix stores a value (V) that

represents the reward (positive or negative) of taking the action A in the presence of pattern P. As

we will see later, this matrix is updated as the agent learns. In addition, this matrix is read by the

action module in order to choose, in the future, the action A’ that returns a higher positive reward in

the presence of pattern P. In other words, it selects the action A’ corresponding to the maximum

value found in the matrix for row P. All this process will be more formally described in Section 3.2.

The last two modules are completely domain independent, although they can be configured to

be able to establish the value of positive and negative reinforcements, etc.

The operation of the proposed model is based on a procedure that is divided into cycles, where

each cycle is composed of several separate steps (Figures 3–6).

Figure 3 illustrates the first step of the procedure, whose final goal is to select an action for

application within the environment.

It has to take a number of intermediate steps on the way to selecting this action. First, the

stimulus is perceived and inspected to check whether it matches a known or constitutes a new input

pattern. If it is new, the probability of the different actions available in the procedure being selected

will be evenly distributed. If, on the other hand, the pattern is already known, the action that is

considered best according to the knowledge accumulated by the procedure will have a greater

probability of being chosen.

Figure 2. Overview of the proposed model.

Sensors 2017, 17, 188 6 of 27

The perception module is responsible for perceiving the environment through sensors and
transforming each perception of each particular instant into a specified perception pattern. As we will
see later, the model will manage this pattern to determine which action to take. In order to perceive
the environment, the model provides for the use of sensors. These sensors aim to emulate the way in
which human beings perceive their environment (by means of senses such as touch to detect when
different surfaces come into contact, sight to detect distances to objects and other agents, hearing to
detect possible movements, etc.). These sensors are set up based on the special requirements of each
problem and the characteristics of the environment in question. Section 4.1 describes an application
domain (air navigation), which illustrates, apart from the characteristics of the sensors, the importance
of mapping different perceptions (with similar characteristics but gathered at different points of
the environment) into the same perception pattern. As we will see in Section 4.1 through different
examples, each perception pattern is composed of the different elements perceived by the sensors
within the agent range, the relative position of those elements with respect to the agent (left/right) and
whether the agent is further or closer to those elements in the current cycle compared to the previous
one. Section 4.2 reports the technology on which these sensors rely.

On the other hand, the action module is responsible for executing the action selected once the
perception pattern has been processed in the environment.

Although generally applicable, these perception and action modules can be parameterized in
each domain to establish aspects like the range of perception, the maneuverability of the agents in the
environment, etc.

The model also has a rating module. This module is responsible for establishing the reinforcement
(reward or punishment) for the current situation in view of the action that has been executed and its
effect on the environment. The parameters of this module should be set for each domain, although the
user will have to set no more than the rating (sign and magnitude) of each object type identified by the
agent in the environment.

Finally, the central part of the model, responsible for operating on the abstract knowledge is
referred to as the association module. An association (normally denoted as a P-A-V association) is
a value (V) that links each perception pattern (P) with each possible action that can be taken (A) in such
a manner that this value is used to decide, for each pattern, which is the better action in the current
scenario. The model uses a matrix composed of as many rows as perception patterns (P) and as many
columns as possible actions to take (A). Each cell of this matrix stores a value (V) that represents the
reward (positive or negative) of taking the action A in the presence of pattern P. As we will see later,
this matrix is updated as the agent learns. In addition, this matrix is read by the action module in order
to choose, in the future, the action A’ that returns a higher positive reward in the presence of pattern P.
In other words, it selects the action A’ corresponding to the maximum value found in the matrix for
row P. All this process will be more formally described in Section 3.2.

The last two modules are completely domain independent, although they can be configured to be
able to establish the value of positive and negative reinforcements, etc.

The operation of the proposed model is based on a procedure that is divided into cycles, where
each cycle is composed of several separate steps (Figures 3–6).

Figure 3 illustrates the first step of the procedure, whose final goal is to select an action for
application within the environment.

It has to take a number of intermediate steps on the way to selecting this action. First, the stimulus
is perceived and inspected to check whether it matches a known or constitutes a new input pattern.
If it is new, the probability of the different actions available in the procedure being selected will be
evenly distributed. If, on the other hand, the pattern is already known, the action that is considered
best according to the knowledge accumulated by the procedure will have a greater probability of
being chosen.

Sensors 2017, 17, 188 7 of 27

Sensors 2017, 17, 188 7 of 27

Figure 3. Action selection diagram (0 is the initial state of this diagram; state 1 continues in Figure 4;

state 4 continues in Figure 6).

Figure 4 shows the next step of the procedure. This is to update the associations between the

perception patterns and actions. As explained earlier, a specified value, which is referred to as the

association, between each perception pattern and all the different actions is stored. This value is then

used to decide which action should be selected, as described in the first part of the procedure. Each

association is calculated based on the rating output after executing each action in response to a

particular perception pattern (the stronger the positive rating, the more likely the action is to be

selected).

Figure 3. Action selection diagram (0 is the initial state of this diagram; state 1 continues in Figure 4;
state 4 continues in Figure 6).

Figure 4 shows the next step of the procedure. This is to update the associations between the
perception patterns and actions. As explained earlier, a specified value, which is referred to as the
association, between each perception pattern and all the different actions is stored. This value is
then used to decide which action should be selected, as described in the first part of the procedure.
Each association is calculated based on the rating output after executing each action in response
to a particular perception pattern (the stronger the positive rating, the more likely the action is to
be selected).

Sensors 2017, 17, 188 8 of 27

Sensors 2017, 17, 188 8 of 27

Figure 4. Association updating (1 is the initial state of this diagram; state 2 continues in Figure 5).

The next part of the procedure (Figure 5) aims to propagate the rating perceived in the current

cycle back to patterns perceived in the cycle immediately preceding the current cycle. Thus, the

gathered knowledge is much more grounded; for example, if a good result is achieved after

executing a series of actions, all preceding actions and not just the action immediately prior to the

result are rated positively. The same would apply if the result of executing a series of actions were

negative.

Finally, the last part of the procedure (Figure 6) deletes any superfluous information, namely,

associations with a very low value that are of little use in later cycles, and propagated ratings that are

below a specified threshold and are thus useless to the learning process.

Figure 4. Association updating (1 is the initial state of this diagram; state 2 continues in Figure 5).

The next part of the procedure (Figure 5) aims to propagate the rating perceived in the current cycle
back to patterns perceived in the cycle immediately preceding the current cycle. Thus, the gathered
knowledge is much more grounded; for example, if a good result is achieved after executing a series of
actions, all preceding actions and not just the action immediately prior to the result are rated positively.
The same would apply if the result of executing a series of actions were negative.

Finally, the last part of the procedure (Figure 6) deletes any superfluous information, namely,
associations with a very low value that are of little use in later cycles, and propagated ratings that are
below a specified threshold and are thus useless to the learning process.

Sensors 2017, 17, 188 9 of 27

Sensors 2017, 17, 188 9 of 27

Figure 5. Rating back-propagation (2 is the initial state of this diagram; state 3 continues in Figure 6).

Figure 6. Deleted information (3 is the initial state of this diagram; state 4 comes from Figure 3; 0 is

the final state of this diagram and it is the initial state of Figure 3 at the same time).

Figure 5. Rating back-propagation (2 is the initial state of this diagram; state 3 continues in Figure 6).

Sensors 2017, 17, 188 9 of 27

Figure 5. Rating back-propagation (2 is the initial state of this diagram; state 3 continues in Figure 6).

Figure 6. Deleted information (3 is the initial state of this diagram; state 4 comes from Figure 3; 0 is

the final state of this diagram and it is the initial state of Figure 3 at the same time).
Figure 6. Deleted information (3 is the initial state of this diagram; state 4 comes from Figure 3; 0 is the
final state of this diagram and it is the initial state of Figure 3 at the same time).

Sensors 2017, 17, 188 10 of 27

These steps will be executed as often as necessary until the specified goal has been achieved
(thereby solving the problem) or the maximum number of iterations is reached if the agent does not
learn successfully.

3.2. Proposed Model Execution Cycle

Section 3.1 gave a preliminary and general description of how the procedure implementing the
proposed model works. This section describes this procedure more formally.

The proposed model is based on a cyclical perception-action-value association process. This cycle
will be executed until the final objective is achieved or the user-specified maximum number of iterations
is reached. A maximum number of cycles is established for each trial. The trial will have failed if the
objective is not achieved within this number of cycles. Even so, any learning is retained for the next
trial. A maximum number of trials per simulation can also be set.

The steps executed in each cycle are explained in Algorithm 1.
As mentioned above, one of the key problems of reinforcement learning applications is how to deal

with the combinatorial explosion when there are a lot of states and actions. To do this, the proposed
solution selectively generates P-A-V associations attaching priority to any associations whose result
ratings are stronger, irrespective of whether they are positive or negative. Thus, perception and action
patterns whose results were not rated or were rated neutrally take least priority and may not even
be associated. Subsequently, associations with stronger ratings are more likely to be generated. It is
not just a question of the associations being weighted higher or lower on the strength of their rating,
which is indeed the case and worth consideration; the crux of the matter is that associations may not
even be generated. This is very helpful for reducing the volume of information that has to be handled.
Additionally, the selection procedure attaches priority to the associations that are most necessary for
intelligent action.

On the other hand, there is a periodic deletion mechanism, which gradually removes the lowest
weighted P-A-V associations. In the first place, any associations that are the product of chance,
association perceptions, actions and results that are not really related to each other will end up being
deleted as they are not repeated. Likewise, low weights will assure that the least necessary associations
will also end up being deleted, not only because they are not repeated but also because their results are
weak. Finally, any associations with a lower certainty level may also end up being deleted because
there is not much similarity between the perceived signals and the called pattern. The entire deletion
process is therefore priority based and selective.

Sensors 2017, 17, 188 11 of 27

Algorithm 1. Perception-action-value association process

INPUT: Environment, agent’s position in environment
OUTPUT: Selected action
PRECONDITION: Environment is accessible to the perception module
POSTCONDITION: The selected action is executed in the environment (step 2), the pattern associations are

updated (step 4) and associations are selectively deleted (step 5).

STEPS:

1. Perceive environment, call input pattern or patterns
The perception module sensors perceive the environment and generate the perception pattern associated with
the state of the environment at the current time.

2. Select action
This step calculates the probability of each action being selected for a given input pattern. The probability of
each action is weighted based on the values of the associations and/or reinforcements for the respective
action and input pattern (P-A-V). If there is as yet no association and the rating is zero (neither positive nor
negative, that is, there is no reinforcement), a default probability is assigned. If the rating is below a negative
threshold, the assigned selection probability is 0. However, if all the possible actions are below the negative
threshold, a probability of 1 is assigned to the least negative rating.

3. Calculate result rating
The perception pattern and action pattern pairs are associated based on the value of the result output during
the action time cycle or later. The weight associated with this value decreases depending on the number of
cycles in which the result occurred with respect to the perception and with respect to the action, according to
Equation (1).

V(p,a)i = V(p,a)i−1 + α, (1)

where V is the value of the pair association between the perceived pattern (p) and the action taken (a) as
determined by the rating system, i is the cycle in which the value occurs and α is the discount value per cycle
that is applied to align the resulting value with the historical value. Variable α is parameterizable and
specified by the user. Clearly, the action taken immediately before the perceived pattern (cycle i) will be rated
higher than the preceding action (cycle i − 1). To be precise, it will be α units higher. Therefore, the action
taken immediately before perceiving a pattern will be rated higher than the preceding actions. This suggests
that the action taken in response to a perceived pattern is important, as are, albeit to a lesser extent, the
actions leading up to that situation.

4. Update/generate P-A-V association weight
Each perception pattern has a unique value that depends on the value of the result perceived later,
its magnitude and sign, and the number of cycles between the result and the perception. At the same time,
the higher the certainty of the value being associated with patterns is, the larger the part of the value
back-propagated towards preceding perception patterns will be. This is denoted by Equation (2).

VPi =
cpi−1 VPi−1 +

α
2j

cpi−1 +
α
2j

, (2)

where VPi is the value of the perception pattern in the current cycle, α is the discounted value depending on
the elapsed j cycles, cPi−1 is the certainty of the perception pattern value in the preceding cycle, VPi−1 is the
value of the perception pattern in the preceding cycle. Parameter α appears again in this equation and is used
for the same purpose as in Equation (1). In this case, fraction α/2j will be higher for a smaller number of
elapsed cycles, j, between the perceived pattern and the preceding actions, that is, the association will be
stronger the closer the pattern and the action are in time. The above certainty of such a value for the
perception pattern depends on the actual value of the result and the number of cycles between the result and
the perception (measurement of time). This is denoted by Equation (3).

cpi = cpi−1 +
α

2j , (3)

where cpi is the certainty and, again, α is the discounted value depending on the elapsed j cycles.

5. Delete associations
Associations are deleted by periodically lowering the weight level of the associations. This ends up deleting
any associations that have occurred less often and pinpointing associations that are more common and/or
stronger rated and/or have shorter time lapses between their parts.

Sensors 2017, 17, 188 12 of 27

4. Model Deployment

4.1. Air Navigation: Current Application

Air navigation is a discipline whose main objective is the safe transportation of goods and
passengers on aircraft. It is an especially challenging domain because of the required safety level. It is
also very motivating because of public concern surrounding episodes caused by aircraft accidents,
for instance.

On this ground, we have selected the air navigation domain as a benchmark for testing our
learning model. For obvious reasons, any technological advance in air navigation has to be tested in
a simulated environment first.

We built the proposed model by implementing a simulated air navigation environment in which
different agents (aircraft) have to safely reach their target (namely, land at their destination).

The simulated environment is composed of a three-dimensional space composed of a grid across
which the agents move. The environment is bounded by fixed planes: lateral, top (representing the
maximum altitude at which it is safe to fly) and bottom (representing the ground).

As already mentioned, the objective of the agents is to reach their destination (generally, the head
of the runway). A virtual approach cone is added at the head of the runway. To do this, we implemented
a perception module that informs each agent of the distance to the target and alerts it to other aircraft
or obstacles in its proximity.

Specifically, this perception module was equipped with the following sensors:

• Radar:

This sensor provides information on any possible obstacle in the environment (ground, approach
cone, and other agents) that is in the proximity of the agent within a specified maximum distance
(radar range). Additionally, it reports negative ratings if such obstacles are too close to the agent,
that is, are within touching distance, that is, the sign of the generated rating will be negative (a value
less than 0). Radar operates as follows: the agent must do a full-circle scan in each cycle, taking note of
all the obstacles that are positioned in its vicinity. The perception pattern is formed depending on the
agent’s orientation with respect to each detected obstacle. It is important to ascertain whether there is
an obstacle in its proximity and, if so, what its position is with respect to the agent, as shown in Figure 7.
Figure 7 illustrates three scenarios, each with an agent (represented by the figure of an airplane) and
an obstacle (represented by the symbol X). These scenarios denote the importance of orientation in
radar perception. Thus, Figure 7a,c should have a different perception pattern, whereas Figure 7b,c
should have the same pattern (obstacle ahead).

Sensors 2017, 17, 188 12 of 27

4. Model Deployment

4.1. Air Navigation: Current Application

Air navigation is a discipline whose main objective is the safe transportation of goods and

passengers on aircraft. It is an especially challenging domain because of the required safety level. It

is also very motivating because of public concern surrounding episodes caused by aircraft accidents,

for instance.

On this ground, we have selected the air navigation domain as a benchmark for testing our

learning model. For obvious reasons, any technological advance in air navigation has to be tested in

a simulated environment first.

We built the proposed model by implementing a simulated air navigation environment in

which different agents (aircraft) have to safely reach their target (namely, land at their destination).

The simulated environment is composed of a three-dimensional space composed of a grid

across which the agents move. The environment is bounded by fixed planes: lateral, top

(representing the maximum altitude at which it is safe to fly) and bottom (representing the ground).

As already mentioned, the objective of the agents is to reach their destination (generally, the

head of the runway). A virtual approach cone is added at the head of the runway. To do this, we

implemented a perception module that informs each agent of the distance to the target and alerts it

to other aircraft or obstacles in its proximity.

Specifically, this perception module was equipped with the following sensors:

 Radar:

This sensor provides information on any possible obstacle in the environment (ground,

approach cone, and other agents) that is in the proximity of the agent within a specified maximum

distance (radar range). Additionally, it reports negative ratings if such obstacles are too close to the

agent, that is, are within touching distance, that is, the sign of the generated rating will be negative (a

value less than 0). Radar operates as follows: the agent must do a full-circle scan in each cycle, taking

note of all the obstacles that are positioned in its vicinity. The perception pattern is formed

depending on the agent’s orientation with respect to each detected obstacle. It is important to

ascertain whether there is an obstacle in its proximity and, if so, what its position is with respect to

the agent, as shown in Figure 7. Figure 7 illustrates three scenarios, each with an agent (represented

by the figure of an airplane) and an obstacle (represented by the symbol X). These scenarios denote

the importance of orientation in radar perception. Thus, Figure 7a,c should have a different

perception pattern, whereas Figure 7b,c should have the same pattern (obstacle ahead).

 X

 X X

(a) (b) (c)

Figure 7. Example of three scenarios with obstacles. Figure 7. Example of three scenarios with obstacles.

• Sensor at Head of Runway:

This sensor informs the agent about its orientation with respect to the landing runway. In this
case, the perception is obtained by calculating the angle formed by the orientation vector linking the
agent with the head of the runway. If this angle is 0◦, it will mean that the agent is oriented straight
towards the runway. This angle is calculated to determine the position of the runway with respect to

Sensors 2017, 17, 188 13 of 27

the agent—(a) ahead; (b) to the right; (c) to the left; or (d) behind—where it is this discrete value that
actually forms the pattern.

This sensor also provides information on whether the information is moving towards (positive
rating) or away (negative rating) from the target. Although the simulation used the difference between
distances to the target in consecutive cycles, this can be implemented in the real world using any kind
of geopositioning system.

Figure 8 shows two pertinent scenarios involving the two sensors described above. The landing
runway is represented in Figure 8 by means of the symbol |-|. In both scenarios, the agents meet
with an obstacle head on as they move towards the runway (moving upwards in the diagram from
the shaded box at their tail-end). Besides, as a result of the movement that brought the aircraft closer
the obstacle, they managed to approach the head of the runway, which, in both cases, is to their left.
The most important thing about these two scenarios is that both agents are actually perceiving the same
perception pattern, even though the perceived realities are different (the agent is closer to the runway
in Figure 8b than in Figure 8a, for example). This pattern is composed of the following information:
<Obstacle straight ahead, Runway to the left, Runway approach>.

Sensors 2017, 17, 188 13 of 27

 Sensor at Head of Runway:

This sensor informs the agent about its orientation with respect to the landing runway. In this

case, the perception is obtained by calculating the angle formed by the orientation vector linking the

agent with the head of the runway. If this angle is 0°, it will mean that the agent is oriented straight

towards the runway. This angle is calculated to determine the position of the runway with respect to

the agent—(a) ahead; (b) to the right; (c) to the left; or (d) behind—where it is this discrete value that

actually forms the pattern.

This sensor also provides information on whether the information is moving towards (positive

rating) or away (negative rating) from the target. Although the simulation used the difference

between distances to the target in consecutive cycles, this can be implemented in the real world

using any kind of geopositioning system.

Figure 8 shows two pertinent scenarios involving the two sensors described above. The landing

runway is represented in Figure 8 by means of the symbol |-|. In both scenarios, the agents meet

with an obstacle head on as they move towards the runway (moving upwards in the diagram from

the shaded box at their tail-end). Besides, as a result of the movement that brought the aircraft closer

the obstacle, they managed to approach the head of the runway, which, in both cases, is to their left.

The most important thing about these two scenarios is that both agents are actually perceiving the

same perception pattern, even though the perceived realities are different (the agent is closer to the

runway in Figure 8b than in Figure 8a, for example). This pattern is composed of the following

information: <Obstacle straight ahead, Runway to the left, Runway approach>.

This approach, adopted in the proposed model, means that what are in actual fact different

perceptions are regarded as the same thing, that is, the same perception pattern, if the salient

features of the environment are perceived as being similar in both cases. This increases the efficiency

and effectiveness of the learning process.

Thus, if the agent learns that the ideal maneuver in such a scenario is <Turn left, Move forward>,

for example, it will tend to repeat this sequence of movements whenever it encounters this

perception pattern, as it will be able in this manner to avoid the obstacle and move towards and

approach the runway.

The above sensors could be classed as tactile and optical. The ADS-B technology on which they

rely will be described in Section 4.2.

|-| |-|

 X

 X

(a) (b)

Figure 8. Example of two scenarios with obstacles and head of runway (the agent is closer to the

runway in (b) than in (a) but the perception pattern is the same in both cases).

On the other hand, each agent is fitted with an action module composed of the following

actions:

Figure 8. Example of two scenarios with obstacles and head of runway (the agent is closer to the
runway in (b) than in (a) but the perception pattern is the same in both cases).

This approach, adopted in the proposed model, means that what are in actual fact different
perceptions are regarded as the same thing, that is, the same perception pattern, if the salient features
of the environment are perceived as being similar in both cases. This increases the efficiency and
effectiveness of the learning process.

Thus, if the agent learns that the ideal maneuver in such a scenario is <Turn left, Move forward>,
for example, it will tend to repeat this sequence of movements whenever it encounters this perception
pattern, as it will be able in this manner to avoid the obstacle and move towards and approach
the runway.

The above sensors could be classed as tactile and optical. The ADS-B technology on which they
rely will be described in Section 4.2.

On the other hand, each agent is fitted with an action module composed of the following actions:

• Continue straight ahead: The agent moves to the next position in the direction that it is currently
facing. The agent has a front and a rear, and moves in the direction that it is facing.

Sensors 2017, 17, 188 14 of 27

• Turn left: The agent stays in the same physical position as in the preceding cycle but turns (as it
has a back and front) to its left a parameterizable number of degrees (a value of 15◦ was used in
the test scenarios described later as it returned the best results).

• Turn right: As above, except that the agent turns the set number of degrees to the right.
• Ascend: As above, except that the agent turns the set number of degrees upwards.
• Descend: As above, except that the agent turns the set number of degrees downwards.

Each agent also has a rating module as described in the model. Approaching or steering towards
the destination results in a positive reinforcement, whereas approaching obstacles, other aircraft or
fixed planes results in a negative reinforcement. In both cases, reinforcement parameters are adjustable.

The association module is fully generic, as described in the proposed model.
It has all been implemented using the C++ programming language and different versions of the

Visual Studio development environment. The system includes two basic packages: one for simulation
and the other for visualization.

The simulation package offers a user interface for environment configuration: initial position
and destination of the aircraft, possible obstacles (location and size), turning angle, reinforcements,
etc. In order to evaluate the learning rate, the user can select the number of times (trials) that each
simulation will be repeated (the agent does not know anything at all about the environment at first
and does better in successive trials, as it learns). Each trial is composed of a maximum number of
cycles, during each of which the procedure described in Section 3.2 will be executed. After each cycle,
the agent will perform the maneuver denoted by the selected action, where there is a one-to-one
correspondence between the cycle and maneuver. If the agent manages to achieve its objective before
reaching the established maximum number of maneuvers, the trial is said to have been successfully
completed. Otherwise, it is a failure.

For example, Figure 9 shows a snippet of the class diagram for the simulation package containing
the most important classes (agents, model modules, environment and simulation, etc.).

Sensors 2017, 17, 188 14 of 27

 Continue straight ahead: The agent moves to the next position in the direction that it is

currently facing. The agent has a front and a rear, and moves in the direction that it is facing.

 Turn left: The agent stays in the same physical position as in the preceding cycle but turns (as it

has a back and front) to its left a parameterizable number of degrees (a value of 15° was used in

the test scenarios described later as it returned the best results).

 Turn right: As above, except that the agent turns the set number of degrees to the right.

 Ascend: As above, except that the agent turns the set number of degrees upwards.

 Descend: As above, except that the agent turns the set number of degrees downwards.

Each agent also has a rating module as described in the model. Approaching or steering

towards the destination results in a positive reinforcement, whereas approaching obstacles, other

aircraft or fixed planes results in a negative reinforcement. In both cases, reinforcement parameters

are adjustable.

The association module is fully generic, as described in the proposed model.

It has all been implemented using the C++ programming language and different versions of the

Visual Studio development environment. The system includes two basic packages: one for

simulation and the other for visualization.

The simulation package offers a user interface for environment configuration: initial position

and destination of the aircraft, possible obstacles (location and size), turning angle, reinforcements,

etc. In order to evaluate the learning rate, the user can select the number of times (trials) that each

simulation will be repeated (the agent does not know anything at all about the environment at first

and does better in successive trials, as it learns). Each trial is composed of a maximum number of

cycles, during each of which the procedure described in Section 3.2 will be executed. After each

cycle, the agent will perform the maneuver denoted by the selected action, where there is a

one-to-one correspondence between the cycle and maneuver. If the agent manages to achieve its

objective before reaching the established maximum number of maneuvers, the trial is said to have

been successfully completed. Otherwise, it is a failure.

For example, Figure 9 shows a snippet of the class diagram for the simulation package

containing the most important classes (agents, model modules, environment and simulation, etc.).

SimLanderDoc

Agent

Agents

Simulation

Perception SS

Environment

Asociation SS

Action SS

Figure 9. Simulation package class diagram.

As the simulation is executed, the system stores the simulation data in a binary file. Basically,

this file stores the position and movement of the agent for each cycle of each trial. This procedure is

enacted until the simulation ends when the user-defined number of trials is reached.

The visualization system, on the other hand, is capable of replaying the simulation from the file

in a visual environment that recreates the simulation environment (Figure 10). Users can browse the

different trials and execute the simulation step by step to observe the movements of each agent in the

environment. Figure 10 shows the agent (on the right), the different fixed planes (illustrated by the

Figure 9. Simulation package class diagram.

As the simulation is executed, the system stores the simulation data in a binary file. Basically,
this file stores the position and movement of the agent for each cycle of each trial. This procedure is
enacted until the simulation ends when the user-defined number of trials is reached.

The visualization system, on the other hand, is capable of replaying the simulation from the file
in a visual environment that recreates the simulation environment (Figure 10). Users can browse the
different trials and execute the simulation step by step to observe the movements of each agent in
the environment. Figure 10 shows the agent (on the right), the different fixed planes (illustrated by

Sensors 2017, 17, 188 15 of 27

the grids), the head of the runway (on the left) and the approach cone (which is really a hexagonal
pyramid with a vertex on the head of the runway).

Sensors 2017, 17, 188 15 of 27

grids), the head of the runway (on the left) and the approach cone (which is really a hexagonal

pyramid with a vertex on the head of the runway).

The visualization system also generates plots showing the number of maneuvers performed by

each agent in each trial. Figure 11 shows an example of this type of plot, where the horizontal axis

represents the different simulated trials and the vertical axis denotes the number of maneuvers

performed in each trial. This type of representation is helpful for identifying the successes and

failures of the simulation and checking the learning evolution.

Figure 11 shows the plot for a simulation of 60,000 trials where the agent has to achieve its

objective within a maximum of 600 maneuvers for each trial. We find that the first trials end in

failure (the objective is not achieved after performing the first 600 maneuvers). As the trials advance,

however, the agent learns, and the number of maneuvers required to achieve the objective decreases

until it stabilizes around 60.

Approach Cone

Plane

Runaway

Ground Level

Figure 10. Simulation visualization tool.

N
u

m
b

e
r

o
f

m
a
n

o
e
u

v
re

s

Trial

Figure 11. Example of plot associated with a simulation.

Figure 10. Simulation visualization tool.

The visualization system also generates plots showing the number of maneuvers performed
by each agent in each trial. Figure 11 shows an example of this type of plot, where the horizontal
axis represents the different simulated trials and the vertical axis denotes the number of maneuvers
performed in each trial. This type of representation is helpful for identifying the successes and failures
of the simulation and checking the learning evolution.

Sensors 2017, 17, 188 15 of 27

grids), the head of the runway (on the left) and the approach cone (which is really a hexagonal

pyramid with a vertex on the head of the runway).

The visualization system also generates plots showing the number of maneuvers performed by

each agent in each trial. Figure 11 shows an example of this type of plot, where the horizontal axis

represents the different simulated trials and the vertical axis denotes the number of maneuvers

performed in each trial. This type of representation is helpful for identifying the successes and

failures of the simulation and checking the learning evolution.

Figure 11 shows the plot for a simulation of 60,000 trials where the agent has to achieve its

objective within a maximum of 600 maneuvers for each trial. We find that the first trials end in

failure (the objective is not achieved after performing the first 600 maneuvers). As the trials advance,

however, the agent learns, and the number of maneuvers required to achieve the objective decreases

until it stabilizes around 60.

Approach Cone

Plane

Runaway

Ground Level

Figure 10. Simulation visualization tool.

N
u

m
b

e
r

o
f

m
a
n

o
e
u

v
re

s

Trial

Figure 11. Example of plot associated with a simulation. Figure 11. Example of plot associated with a simulation.

Figure 11 shows the plot for a simulation of 60,000 trials where the agent has to achieve its
objective within a maximum of 600 maneuvers for each trial. We find that the first trials end in failure
(the objective is not achieved after performing the first 600 maneuvers). As the trials advance, however,
the agent learns, and the number of maneuvers required to achieve the objective decreases until it
stabilizes around 60.

Sensors 2017, 17, 188 16 of 27

4.2. Underlying Sensor Technology

The reinforcement learning model described here has been validated in an air navigation
environment. In view of the features of this very special domain, we opted to implement a simulated
environment, which is, in any case, a usual and necessary practice in such a sensitive area.

Simulation also has the advantage that the proposal will not become technologically obsolete,
whereas a real environment requires the use of technology, which, according to Moore’s law (applicable
primarily to computers but also extendible to other technological fields with minor changes),
has an expiry date.

It is also true, however, that the simulated environment is being transferred to the real world,
starting with drones. They are being used as a test bed, with the ultimate aim of the adoption of the
model in real aircraft. In both cases, the technology used will be ADS-B as mentioned above.

After studying different technological approaches, we chose this option because it has many
advantages for this particular project and more general research. In this case, we want to be able to
implement the sensors described with innovative technology that has institutional support and is
destined to become the standard air surveillance technology in the coming years: ADS-B.

From a more technical viewpoint, the sensors considered in our proposal are used for any agent
(aircraft) to be able to find out the position of other obstacles of interest:

• Other airplanes;
• Destination (landing runway); and
• Different obstacles (towers, cables, limited access zones, etc.).

This technology was chosen in preference to others because any aircraft can gather information
about the position of the different types of obstacles listed above if they are equipped with
a position-emitting system with ADS-B technology. This is all the information required for the
aircraft learning model to work.

The most logical thing would apparently be to equip airports or landing runways, as well as, of
course, aircraft with an ADS-B system. As regards objects that have the potential to block an agent’s
path, it makes sense that they should also be equipped with such systems (they will really only need
to broadcast their position), especially in an age where it is increasingly frequent for objects to be
interconnected and intercommunicated (see the Internet of Things paradigm). All this would lead to
a scenario, as shown in Figure 12, generalizing the conventional scenario illustrated in Figure 1.

Sensors 2017, 17, 188 16 of 27

4.2. Underlying Sensor Technology

The reinforcement learning model described here has been validated in an air navigation

environment. In view of the features of this very special domain, we opted to implement a simulated

environment, which is, in any case, a usual and necessary practice in such a sensitive area.

Simulation also has the advantage that the proposal will not become technologically obsolete,

whereas a real environment requires the use of technology, which, according to Moore’s law

(applicable primarily to computers but also extendible to other technological fields with minor

changes), has an expiry date.

It is also true, however, that the simulated environment is being transferred to the real world,

starting with drones. They are being used as a test bed, with the ultimate aim of the adoption of the

model in real aircraft. In both cases, the technology used will be ADS-B as mentioned above.

After studying different technological approaches, we chose this option because it has many

advantages for this particular project and more general research. In this case, we want to be able to

implement the sensors described with innovative technology that has institutional support and is

destined to become the standard air surveillance technology in the coming years: ADS-B.

From a more technical viewpoint, the sensors considered in our proposal are used for any agent

(aircraft) to be able to find out the position of other obstacles of interest:

 Other airplanes;

 Destination (landing runway); and

 Different obstacles (towers, cables, limited access zones, etc.).

This technology was chosen in preference to others because any aircraft can gather information

about the position of the different types of obstacles listed above if they are equipped with a

position-emitting system with ADS-B technology. This is all the information required for the aircraft

learning model to work.

The most logical thing would apparently be to equip airports or landing runways, as well as, of

course, aircraft with an ADS-B system. As regards objects that have the potential to block an agent’s

path, it makes sense that they should also be equipped with such systems (they will really only need

to broadcast their position), especially in an age where it is increasingly frequent for objects to be

interconnected and intercommunicated (see the Internet of Things paradigm). All this would lead to

a scenario, as shown in Figure 12, generalizing the conventional scenario illustrated in Figure 1.

Figure 12. Adaptation of the original ADS-B (Automatic Dependent Surveillance-Broadcast) diagram

to the designed proposal.
Figure 12. Adaptation of the original ADS-B (Automatic Dependent Surveillance-Broadcast) diagram
to the designed proposal.

Sensors 2017, 17, 188 17 of 27

We now describe the selected technology in detail. ADS-B is mainly based on the frequent and
regular transmission of reports by means a radiobroadcast data link. ADS-B reports are periodically
sent by the aircraft without any intervention whatsoever from the ground station. These reports can
be received and processed by any receptor in the aircraft’s vicinity. In the case of the ground data
acquisition unit, the ADS-B report will be processed together with other surveillance data and will be
used for control operations.

ADS-B provides the option of sending the air-air or air-ground surveillance information. Direct
air-air transmission means that a ground station does not have to intervene in order to carry out
on-board aircraft surveillance tasks. Additionally, the use of ADS-B reports from other aircraft in the
vicinity provides a clear picture of the air traffic status in the cockpit. ADS-B-transmitted surveillance
data include the flight identifier, position, time and speed, etc.

There is no acknowledgement of receipt of ADS-B reports. Therefore, the aircraft does not know
which receptors, if any, have received and are processing their reports. In fact, any aircraft or ground
team in the vicinity may have received and be processing the information.

There are at present different ways of deploying ADS-B (they are all now being tested by
EUROCONTROL), albeit with different levels of standardization and validation. The most widespread
option is to use a Mode S or 1090 extended squitter transponder, as suggested by the International
Civil Aviation Organization (ICAO) [29]. This is an extension of the traditional Mode S secondary
surveillance radar, commonly used in other systems like the airborne collision avoidance system
(ACAS). Accordingly, the aircraft regularly transmits “extended squitter” messages containing
information like position or identification. The extended squitters are transmitted at the 1090 MHz
secondary response frequency and may be received by any suitably equipped aircraft or ground station.

An ADS-B message currently has a length of 112 bits, as shown below.

100011010100100001000000110101100010000000101100110000110111000111000011001011001110000001010111
0110000010011000

Each of the above bits has a meaning defined in Table 2.

Table 2. ADS-B message structure.

Bits Name Abbreviation

1–5 Downlink Format DF
6–8 Message Subtype CA
9–32 ICAO aircraft address ICAO24

33–88 Data frame DATA
89–112 Parity check PC

The DF field identifies the message type. The above value should be 10,001 in binary (17 in
decimal) for an ADS-B message.

DATA is another important field, which transmits the following information:

• Aircraft status: On ground or in flight (the number of squitters can be reduced if the aircraft is
taxiing in the aerodrome, with the resulting reduction in frequency saturation).

• Position and speed (twice per second).
• Identification message, which should be constant (every five seconds if it is moving and every

10 s if it is stationary).
• Incident messages if necessary.

As regards system performance, its range is established at from 60 to 100 NM.
In view of the above, we are using this technology, specifically Trig Avionics (Edinburgh, Scotland)

Model TT21 Mode S transponders, similar to the one shown in Figure 13a, in our preliminary fieldwork.
The transponder has the interface and controls described in Figure 13b.

Sensors 2017, 17, 188 18 of 27

Sensors 2017, 17, 188 18 of 27

The TT21 is an ideal transponder for experiments conducted on light aircraft, as it weighs

around 450 g Additionally, it is reasonably priced (around €2000), making it viable for use in

research.

(a) (b)

Figure 13. (a) Photograph of TT21 transponder; and (b) front panel of TT21 transponder.

The device specifications used are shown in Table 3.

Table 3. TT21 technique specifications.

 TT21—Mode S for Light Aviation

Type Transponder Class 2 Mode S level 2els ADS-B Class B0

Certification
ETSO C88A, C112C, C166A and TSO C88b, C112c, C166b, approved for

IFR and VFR flight

Compliance
ED-73C, DO-160F, DO-178B Level B, DO-254 Level C, DO-260B,

DO-181D

Supply voltage (DC) 9–33 V

Typical Consumption (at 14 V) idle: 0.15 A active: 0.28 A

Nominal Transmitter Power 130 W at connector

Operating temperature for the transponder −40 °C to +70 °C for the controller −25 °C to +70 °C

Cooling Requirement no fan required

Weight 440 g

Dimensions
controller: H 44 × W 63 × L 54 mm transponder in tray: H 48 × W 68 × L

160 mm

As specified in Table 3, the transponder comes with a controller. In this case, the controller is

connected directly to the reinforcement learning system proposed in this paper. Figure 14 shows the

standard connections between the transponder and the controller. Figure 14 also shows that the

transponder should receive the GPS signal through connection 5 in order to ascertain its position.

Although it is widely used and recognized, one of the key challenges faced by the Mode S

extended squitter is that the transmissions may be confused with other Mode S functions, like

elementary or improved surveillance or with ACAS, which also operate according to the same

protocols and message formats and at the same frequencies (1030 MHz for queries and 1090 MHz for

responses).

To conclude this section, we should note that, thanks to the joint efforts of different European

(Single European Sky ATM Research-SESAR) and North American (Next Generation Air

Transportation System-NextGen) bodies and other international institutions (like ICAO), the

standardization levels of ADS-B technology are improving. In particular, its use in some areas of

Australia is compulsory. There are plans in the United States for ADS-B adoption in some aircraft by

2020. In Europe (and particularly Spain), some airplanes will have to use it as of 2017. Canada has

already adopted ADS-B technology for air traffic control. In the coming years, the evolution of this

technology will determine the future of air navigation, as well as research, which, like the

investigation reported in this paper, is reliant on its development and full standardization.

Figure 13. (a) Photograph of TT21 transponder; and (b) front panel of TT21 transponder.

The TT21 is an ideal transponder for experiments conducted on light aircraft, as it weighs around
450 g Additionally, it is reasonably priced (around €2000), making it viable for use in research.

The device specifications used are shown in Table 3.

Table 3. TT21 technique specifications.

TT21—Mode S for Light Aviation

Type Transponder Class 2 Mode S level 2els ADS-B Class B0

Certification ETSO C88A, C112C, C166A and TSO C88b, C112c, C166b, approved for IFR
and VFR flight

Compliance ED-73C, DO-160F, DO-178B Level B, DO-254 Level C, DO-260B, DO-181D

Supply voltage (DC) 9–33 V

Typical Consumption (at 14 V) idle: 0.15 A active: 0.28 A

Nominal Transmitter Power 130 W at connector

Operating temperature for the transponder −40 ◦C to +70 ◦C for the controller −25 ◦C to +70 ◦C

Cooling Requirement no fan required

Weight 440 g

Dimensions controller: H 44 ×W 63 × L 54 mm transponder in tray:
H 48 ×W 68 × L 160 mm

As specified in Table 3, the transponder comes with a controller. In this case, the controller is
connected directly to the reinforcement learning system proposed in this paper. Figure 14 shows
the standard connections between the transponder and the controller. Figure 14 also shows that the
transponder should receive the GPS signal through connection 5 in order to ascertain its position.

Although it is widely used and recognized, one of the key challenges faced by the Mode S extended
squitter is that the transmissions may be confused with other Mode S functions, like elementary or
improved surveillance or with ACAS, which also operate according to the same protocols and message
formats and at the same frequencies (1030 MHz for queries and 1090 MHz for responses).

To conclude this section, we should note that, thanks to the joint efforts of different European
(Single European Sky ATM Research-SESAR) and North American (Next Generation Air Transportation
System-NextGen) bodies and other international institutions (like ICAO), the standardization levels of
ADS-B technology are improving. In particular, its use in some areas of Australia is compulsory.
There are plans in the United States for ADS-B adoption in some aircraft by 2020. In Europe
(and particularly Spain), some airplanes will have to use it as of 2017. Canada has already adopted
ADS-B technology for air traffic control. In the coming years, the evolution of this technology will
determine the future of air navigation, as well as research, which, like the investigation reported in
this paper, is reliant on its development and full standardization.

Sensors 2017, 17, 188 19 of 27

Sensors 2017, 17, 188 19 of 27

Figure 14. TT21 transponder connections.

5. Experimentation and Results

5.1. Test Scenarios

Many simulations have been run on the implemented simulated environment recreating

scenarios similar to what a pilot may encounter in his or her professional life.

In an air navigation environment, airline pilots have to safely pilot aircraft from a point of

departure to a destination. To do this, they have to avoid any obstacles that they may encounter

(other aircraft, buildings, mountains, storms, prohibited airspaces, etc.), making sure that goods and

people (crew, passengers and ground staff) are kept safe and come to no harm.

We carried out different simulations in realistic piloting scenarios in order to test the proposed

model. In this case, it is the intelligent agents implementing our model rather than the pilots that

have to learn to choose the right path for the aircraft that they are piloting. Each simulation recreates

a different scenario including diverse elements. These scenarios alternated the number of aircraft,

the existence or otherwise of obstacles within the planned flight path, obstacle features, etc.

Overall, we carried out hundreds of simulations, of which nine representative examples are

reported in this paper. Table 4 lists the name of the simulation, the number of participating agents,

the number of obstacles in the planned flight path, and some observations to clarify the designed

scenario.

Table 4. Description of the designed learning scenarios.

Simulation #Agents #Obstacles Observations

Sim1 1 0 Basic simulation

Sim2 2 0 Both agents have to land on the same runway

Sim3 1 1 Narrow obstacle

Sim4 2 1 Narrow obstacle; both agents have to land on the same runway

Sim5 1 20 Narrow obstacles

Sim6 2 20 Narrow obstacles; both agents have to land on the same runway

Sim7 1 1 Large obstacle, emulating a prohibited airspace

Sim8 2 1
Large obstacle, emulating a prohibited airspace; both agents have to land on

the same runway

Sim9 4 1
Medium-sized obstacle positioned mid-way along the flight paths of the four

aircraft (with different overlapping flight paths)

Figure 14. TT21 transponder connections.

5. Experimentation and Results

5.1. Test Scenarios

Many simulations have been run on the implemented simulated environment recreating scenarios
similar to what a pilot may encounter in his or her professional life.

In an air navigation environment, airline pilots have to safely pilot aircraft from a point of
departure to a destination. To do this, they have to avoid any obstacles that they may encounter
(other aircraft, buildings, mountains, storms, prohibited airspaces, etc.), making sure that goods and
people (crew, passengers and ground staff) are kept safe and come to no harm.

We carried out different simulations in realistic piloting scenarios in order to test the proposed
model. In this case, it is the intelligent agents implementing our model rather than the pilots that
have to learn to choose the right path for the aircraft that they are piloting. Each simulation recreates
a different scenario including diverse elements. These scenarios alternated the number of aircraft,
the existence or otherwise of obstacles within the planned flight path, obstacle features, etc.

Overall, we carried out hundreds of simulations, of which nine representative examples are
reported in this paper. Table 4 lists the name of the simulation, the number of participating
agents, the number of obstacles in the planned flight path, and some observations to clarify the
designed scenario.

Table 4. Description of the designed learning scenarios.

Simulation #Agents #Obstacles Observations

Sim1 1 0 Basic simulation

Sim2 2 0 Both agents have to land on the same runway

Sim3 1 1 Narrow obstacle

Sim4 2 1 Narrow obstacle; both agents have to land on the same runway

Sim5 1 20 Narrow obstacles

Sim6 2 20 Narrow obstacles; both agents have to land on the same runway

Sim7 1 1 Large obstacle, emulating a prohibited airspace

Sim8 2 1 Large obstacle, emulating a prohibited airspace; both agents have to land on the same runway

Sim9 4 1 Medium-sized obstacle positioned mid-way along the flight paths of the four aircraft
(with different overlapping flight paths)

Sensors 2017, 17, 188 20 of 27

In each of the simulations, 60,000 different trials were carried out. Due to the sheer volume of the
generated data, one out of every 50 trials was sampled (60,000/50 = 1200 sampled trials). Each sampled
trial was composed of 600 learning cycles in order to reach the target specified in the flight path of
each aircraft. For example, Figures 15 and 16 recreate the scenarios for simulations Sim5 and Sim7.

Sensors 2017, 17, 188 20 of 27

In each of the simulations, 60,000 different trials were carried out. Due to the sheer volume of

the generated data, one out of every 50 trials was sampled (60,000/50 = 1200 sampled trials). Each

sampled trial was composed of 600 learning cycles in order to reach the target specified in the flight

path of each aircraft. For example, Figures 15 and 16 recreate the scenarios for simulations Sim5 and

Sim7.

Figure 15. Visualization of the scenario designed in simulation Sim5.

Figure 16. Visualization of the scenario designed in simulation Sim7.

5.2. Results and Discussion

The benchmark used to evaluate the quality of the learning achieved by agents that adopt our

model in the simulated environment included several quality indicators:

(a) Agent learning. An agent is considered have learned if the trial ended successfully (the aircraft

reached its destination safely) in at least 99% of the last 10,000 simulated trials.

(b) The overall success rate (number of successful trials/total number of trials).

(c) Number of learning trials for all the different agents. The different agents are considered to

have learned by a specified cycle when the success rate for the 500 trials preceding that cycle is

greater than or equal to 95% for all agents.

(d) Total simulation time. In order to express the above indicator in more universal terms, we

considered the total simulation time elapsed (in minutes) before the agents learned on the

benchmark computer.

Figure 15. Visualization of the scenario designed in simulation Sim5.

Sensors 2017, 17, 188 20 of 27

In each of the simulations, 60,000 different trials were carried out. Due to the sheer volume of

the generated data, one out of every 50 trials was sampled (60,000/50 = 1200 sampled trials). Each

sampled trial was composed of 600 learning cycles in order to reach the target specified in the flight

path of each aircraft. For example, Figures 15 and 16 recreate the scenarios for simulations Sim5 and

Sim7.

Figure 15. Visualization of the scenario designed in simulation Sim5.

Figure 16. Visualization of the scenario designed in simulation Sim7.

5.2. Results and Discussion

The benchmark used to evaluate the quality of the learning achieved by agents that adopt our

model in the simulated environment included several quality indicators:

(a) Agent learning. An agent is considered have learned if the trial ended successfully (the aircraft

reached its destination safely) in at least 99% of the last 10,000 simulated trials.

(b) The overall success rate (number of successful trials/total number of trials).

(c) Number of learning trials for all the different agents. The different agents are considered to

have learned by a specified cycle when the success rate for the 500 trials preceding that cycle is

greater than or equal to 95% for all agents.

(d) Total simulation time. In order to express the above indicator in more universal terms, we

considered the total simulation time elapsed (in minutes) before the agents learned on the

benchmark computer.

Figure 16. Visualization of the scenario designed in simulation Sim7.

5.2. Results and Discussion

The benchmark used to evaluate the quality of the learning achieved by agents that adopt our
model in the simulated environment included several quality indicators:

(a) Agent learning. An agent is considered have learned if the trial ended successfully (the aircraft
reached its destination safely) in at least 99% of the last 10,000 simulated trials.

(b) The overall success rate (number of successful trials/total number of trials).
(c) Number of learning trials for all the different agents. The different agents are considered to have

learned by a specified cycle when the success rate for the 500 trials preceding that cycle is greater
than or equal to 95% for all agents.

Sensors 2017, 17, 188 21 of 27

(d) Total simulation time. In order to express the above indicator in more universal terms,
we considered the total simulation time elapsed (in minutes) before the agents learned on the
benchmark computer.

(e) Average agent learning time, calculated by dividing the total simulation time by the number of
agents in the simulation. This is a more practical indicator, as the proposed procedure can be
built into each agent separately and distributed, in which case the real learning time in a real
distributed environment is the mean time per agent.

(f) Success rate considering the trials performed after agent learning.

Table 5 shows the results for these five indicators in each of the nine simulations.

Table 5. Results for the proposed model in each of the simulations.

Simulation Learned Overall
Success Rate

Learning
Trials

Learning Time
(minutes)

Time per Agent
(minutes)

Success Rate
after Learning

Sim1 Yes 99.9 500 1 1 100
Sim2 Yes 99.7 4700 3 1.5 99.9
Sim3 Yes 99.7 3200 2 2 100
Sim4 Yes 99.2 9100 7 3.5 99.8
Sim5 Yes 99.4 8300 5 5 99.8
Sim6 Yes 98.9 12,450 12 6 99.5
Sim7 Yes 99.5 9400 74 74 99.7
Sim8 Yes 98.3 16,200 163 81.5 99.3
Sim9 Yes 98.1 14,850 239 59.8 99.1

We find that the agents managed to learn during the simulation and reached their target in all the
simulations. To check the statistical behavior of the different quantitative indicators, we calculated the
mean, standard deviation, and maximum and minimum considering all the simulations. The results
are shown in Table 6.

Table 6. Basic statistics of goodness-of-fit indicators for the proposed model in each of the simulations.

Statistic Overall
Success Rate

Learning
Trials

Learning Time
(minutes)

Time per Agent
(minutes)

Success Rate
after Learning

Mean 99.2 8744.4 56.2 26 99.7
Std Dev 1 0.6 5272.8 87.3 34.8 0.3
Minimum 98.1 500 1 1 99.1
Maximum 99.9 16,200 239 81.5 100

1 Standard Deviation.

Table 6 shows that there is a sizeable variance between learning trials and learning time,
which makes a lot of sense in view of the disparity between scenarios and the clear relationship
between their complexity and learning difficulty. However, when considering the time per agent
(as we will see later in a more detailed study of this question), the results are less variable (dropping
from 87.3 in overall terms to 34.8 when analyzed by agent). Additionally, the mean learning time
per agent is perfectly feasible in computational terms: 26 min on average, after which the achieved
learning is ready to be built into the real system for later use. As regards what is, in our view, the most
important indicator (success rate after learning), it is never under 99%, with a mean performance
of 99.7%. This confirms the reliability of the model in such complex scenarios such as the above.
Furthermore, we find that, after learning, the model is positively stable and behaves rather well, as the
deviation for the respective learning rate is low (no more than 0.3).

In the next part of the evaluation study, we compared our proposal with other state-of-the-art
methods designed for similar environments described in Section 2: the Monte Carlo method (MC),
temporal difference reinforcement learning (TD) and Q-learning (QL). The results of the comparison

Sensors 2017, 17, 188 22 of 27

using the same quality indicators as above are shown in Table 7 (for all simulations, specifying the
percentage value for the column headed Learned and the mean values for the other indicators).

Table 7. Comparison of overall results of state-of-the-art approaches with the proposed model.

Simulation Learned
(%)

Overall
Success Rate

Learning
Trials

Learning Time
(minutes)

Time per Agent
(minutes)

Success Rate
after Learning

Proposed
model 100 (9/9) 99.2 8744.4 56.2 26 99.7

MC 1 88.9
(8/9) 93.6 12,546.8 63.6 29.5 98.5

TD 2 100 (9/9) 97.5 9546.3 97.2 45 99.2
QL 3 100 (9/9) 99.1 7934.6 70 32.3 99.4

1 Monte Carlo; 2 Temporal Difference; 3 Q-Learning.

As the above table shows, most of the compared methods (except MC) achieve 100% learning
in the nine designed scenarios. The difference lies, however, in the time that it takes to achieve such
learning and the behavior after learning. In this respect, our model is the one that learns on average in
less time (26 min on average per agent versus 29.5 for the next fastest method). Besides, after learning,
the proposed model is the one that generally exhibits a better behavior with a success rate of 99.7%
compared with 99.4% for QL, which is the next best method.

In order to round out this study, we have built a comparative boxplot based on the analysis
of the covariances of the study variables shown in Table 7 using only one explanatory variable:
technique type used in the same scenario. The results are shown in Figure 17, illustrating the response
variable: Learning Time taken by each of the techniques to achieve a 99% success rate after learning
(threshold established in the ANCOVA model). The proposed model is the one that scores highest
for the respective times, with a significance level α of 0.01%. We also found, from the resulting data,
that, even in the worst scenario for the proposed mechanism, it still outperformed the best of the other
techniques by several minutes.

Sensors 2017, 17, 188 22 of 27

Table 7. Comparison of overall results of state-of-the-art approaches with the proposed model.

Simulation
Learned

(%)

Overall

Success Rate

Learning

Trials

Learning

Time

(minutes)

Time per

Agent

(minutes)

Success Rate

after Learning

Proposed model 100 (9/9) 99.2 8744.4 56.2 26 99.7

MC 1 88.9 (8/9) 93.6 12,546.8 63.6 29.5 98.5

TD 2 100 (9/9) 97.5 9546.3 97.2 45 99.2

QL 3 100 (9/9) 99.1 7934.6 70 32.3 99.4
1 Monte Carlo; 2 Temporal Difference; 3 Q-Learning.

As the above table shows, most of the compared methods (except MC) achieve 100% learning in

the nine designed scenarios. The difference lies, however, in the time that it takes to achieve such

learning and the behavior after learning. In this respect, our model is the one that learns on average

in less time (26 min on average per agent versus 29.5 for the next fastest method). Besides, after

learning, the proposed model is the one that generally exhibits a better behavior with a success rate

of 99.7% compared with 99.4% for QL, which is the next best method.

In order to round out this study, we have built a comparative boxplot based on the analysis of

the covariances of the study variables shown in Table 7 using only one explanatory variable:

technique type used in the same scenario. The results are shown in Figure 17, illustrating the

response variable: Learning Time taken by each of the techniques to achieve a 99% success rate after

learning (threshold established in the ANCOVA model). The proposed model is the one that scores

highest for the respective times, with a significance level α of 0.01%. We also found, from the

resulting data, that, even in the worst scenario for the proposed mechanism, it still outperformed the

best of the other techniques by several minutes.

Figure 17. Boxplot comparison of results for Learning Time (minutes) variable (MC: Monte Carlo;

TD: Temporal Difference; QL: Q-Learning).

Additionally, we conducted a study of each agent separately, calculating its learning time (time

per agent) depending on the number of obstacles and the number of other agents present. In order to

use a reduced dimensionality measurement that accounts for both scenarios, we calculated the

Figure 17. Boxplot comparison of results for Learning Time (minutes) variable (MC: Monte Carlo;
TD: Temporal Difference; QL: Q-Learning).

Sensors 2017, 17, 188 23 of 27

Additionally, we conducted a study of each agent separately, calculating its learning time (time
per agent) depending on the number of obstacles and the number of other agents present. In order
to use a reduced dimensionality measurement that accounts for both scenarios, we calculated the
learning time depending on the total percentage of occupied space in which the agent is to operate,
where the 0% scenario is an obstacle-free scenario and the 100% scenario is a worst-case scenario.
In this worst-case scenario, the agent will be unable to reach its destination because it is unable to
maneuver in the environment. With this premise, we conducted an ANOVA study that analyses the
variance of the results for each technique in more than 1000 simulated scenarios with each percentage
point of occupancy, where these 1000 scenarios are random distributions of obstacles depending on
the available space (a 500 × 500 two-dimensional grid). The results are shown in Figure 18.

Sensors 2017, 17, 188 23 of 27

learning time depending on the total percentage of occupied space in which the agent is to operate,

where the 0% scenario is an obstacle-free scenario and the 100% scenario is a worst-case scenario. In

this worst-case scenario, the agent will be unable to reach its destination because it is unable to

maneuver in the environment. With this premise, we conducted an ANOVA study that analyses the

variance of the results for each technique in more than 1000 simulated scenarios with each

percentage point of occupancy, where these 1000 scenarios are random distributions of obstacles

depending on the available space (a 500 × 500 two-dimensional grid). The results are shown in

Figure 18.

As we can see, when the percentage of occupancy increases (over 85%), the learning times tend

asymptotically towards infinity, as the space is sometimes completely blocked at some point. In any

case, the technique that behaves better with regard to learning efficiency is the model proposed in

the article, and this improvement is especially notable when the obstacles occupy from 35% to 80%

of the available space. Over and above 80%, the model learning time results explode, and it is, in any

case, inefficient. Under 35%, the results do not differ by many minutes, although, as demonstrated

earlier, learning time will be lower in 99.9% of the cases using the described model.

The results for simulated scenarios that recreate real situations are satisfactory, especially as

regards learning rate and efficiency, where it outperforms the classical state-of-the-art methods with

which it has been compared.

In view of these results, the proposed model requires application in non-simulated air

navigation environments that are closer to the real world.

L
e
a
rn

in
g

 T
im

e
 (

m
in

)

Obstacles (%)

Figure 18. TT21 Comparison of the study results for the Learning Time (minutes) variable depending

on the percentage of the environment that is occupied by obstacles (MC: Monte Carlo; TD: Temporal

Difference; QL: Q-Learning).

6. Proposal Applicability

The reinforcement learning method proposed in this paper aims to improve upon some of the

weaknesses of traditional reinforcement learning methods reported in the literature.

As explained above, our proposal uses associations (negative or positive numerical values)

between each possible perception pattern and each possible action. The method selects the action to

be taken in response to each pattern, attempting to maximize positive reinforcement. As shown by

Figure 18. TT21 Comparison of the study results for the Learning Time (minutes) variable depending
on the percentage of the environment that is occupied by obstacles (MC: Monte Carlo; TD: Temporal
Difference; QL: Q-Learning).

As we can see, when the percentage of occupancy increases (over 85%), the learning times tend
asymptotically towards infinity, as the space is sometimes completely blocked at some point. In any
case, the technique that behaves better with regard to learning efficiency is the model proposed in the
article, and this improvement is especially notable when the obstacles occupy from 35% to 80% of the
available space. Over and above 80%, the model learning time results explode, and it is, in any case,
inefficient. Under 35%, the results do not differ by many minutes, although, as demonstrated earlier,
learning time will be lower in 99.9% of the cases using the described model.

The results for simulated scenarios that recreate real situations are satisfactory, especially as
regards learning rate and efficiency, where it outperforms the classical state-of-the-art methods with
which it has been compared.

In view of these results, the proposed model requires application in non-simulated air navigation
environments that are closer to the real world.

Sensors 2017, 17, 188 24 of 27

6. Proposal Applicability

The reinforcement learning method proposed in this paper aims to improve upon some of the
weaknesses of traditional reinforcement learning methods reported in the literature.

As explained above, our proposal uses associations (negative or positive numerical values)
between each possible perception pattern and each possible action. The method selects the action to
be taken in response to each pattern, attempting to maximize positive reinforcement. As shown by
the experiments, our proposal outperforms other methods in terms of success rate and learning time.
From the viewpoint of principles, our proposal also has a number of advantages over other methods.

The key difference between our proposal and Monte Carlo methods is that Monte Carlo methods
require some previous experience of the environment. Additionally, unlike our proposal, Monte Carlo
methods do not update associations step by step but take into account episodes. Moreover, the value
of each state is the expected reward that can be gained from the respective state, whereas, in our case,
the association is linked to the action for successfully exiting the respective state rather than to the
actual state.

The ideas behind temporal difference methods are closer to the model proposed in this paper,
as they also use the idea of updating ratings step by step. However, temporal differences are generally
rated at state level. In our proposal, on the other hand, this rating is related not only to the state but
also to the actions that can be taken to move to a yet more positive state.

Analyzing the above two approaches, our proposal is better suited to environments where there
is no experience of the environment and where situations can occur suddenly (rather than for long
episodes) and require a rapid response from the agent (step or action) in order to satisfactorily move to
another, more positive state by executing the action. This applies, for example, to air navigation when
an agent abruptly changes direction and threatens the safety of another agent or other agents.

Like Monte Carlo methods, our proposal also uses a ∈-greedy exploratory policy (the most
promising action is selected, whereas a different action has a ∈ probability value of being selected).

The evolution of the above two approaches in the field of reinforcement learning led to the
appearance of Q-learning. Instead of estimating how good or bad a state is, Q-learning estimates
how good it is to take each action in each state. This is the same idea as considered in the proposed
method. Q-learning methods work especially well in environments where there are a discrete number
of states and a discrete number of actions. In continuous environments, however, where there are
an infinite number of states, it is less efficient to bank on associations between states and actions and it
may become unmanageable due to the huge amount of information. Our proposal, on the other hand,
associates perception patterns with actions rather than states with actions. Note, therefore, that the
perception system reported in this article discretizes the continuous environment into perception
patterns. This leads to complexity reduction, as different states that have similar perceived elements
are mapped to the same perception pattern.

Q-learning methods address the above problem differently. Instead, they use learning structures to
determine which action to take in response to any state. Techniques based on deep learning, like deep
neural networks, and other alternative approaches, like fuzzy inference systems, work particularly well
in this respect. While we appreciate that deep neural networks are good at classifying and selecting
which actions should be taken in each state, their structures are opaque, and the knowledge that they
store cannot be specified. On the other hand, by maintaining a table of associations between patterns
and actions, our proposal provides access to easily understandable knowledge that can be accessed
at any time by the application domain experts. This works particularly well in critical domains like
medicine or air navigation. In such domains, the agents concerned would not be at ease working with
opaque systems like neural networks, as they would not be able to analyze the knowledge that led
the system to take a wrong action (as required in critical environments). As regards fuzzy inference
systems, we acknowledge the potential of soft computing techniques for improving the selection of
actions for each perception pattern. In fact, as we will see in the future lines of research, it is one of the
alternatives that are being weighed up for incorporation to the model.

Sensors 2017, 17, 188 25 of 27

Following on from the above, we briefly outline the circumstances under which the proposed
model works particularly well below:

- There is no previous knowledge of the environment to be explored.
- The system has to respond to sudden circumstances occurring in the environment and needs

to take on board the notion of short-term action in order to be able to deal with such
circumstances positively.

- Actions should be or are more important (for moving to a better state) than the actual states in
the environment.

- The number of states in continuous environments is infinite, and they need to be discretized as
perception patterns.

- Opaque learning structures, such as neural networks, may be rejected by experts.

Indeed, the main contribution of this article with respect to the reinforcement learning area is
the proposal of a method that, as the results (Section 5) and the above analysis of principles show,
is recommended for use in the above situations where existing methods are insufficient or do not
perform as well.

In other fields where no such circumstances occur, conventional approaches that, as reported in
the literature, have proven to be applicable and useful, are applicable.

7. Conclusions and Future Lines

As explained throughout the paper, we propose a reinforcement learning model that perceives
the environment by means of sensors which rely on ADS-B technology for application in the air
navigation domain.

From the technological viewpoint, ADS-B is considered as the technology of the future in the field
of air navigation surveillance. Its use brings research into line with navigation policies that will be
adopted by most countries in the coming years, making this proposal more valuable and useful.

From the learning viewpoint, on the other hand, despite working well in their respective areas,
many of the proposed reinforcement learning techniques are hard to adapt to deal with other issues
for which they were not specifically designed. However, the model proposed in this paper has the big
advantage that neither the module inputs nor the outputs are integral parts of the model. Notice also
that thanks to input and output independency, more complex or general input and output modules
can be coupled to basic input or output modules. Another noteworthy model feature is that it is
unsupervised and adaptable to many different environments and applications. Finally, it is worth
mentioning that the proposed model also quite successfully deals with one of the biggest problems of
artificial intelligence methods: the combinatorial explosion of inputs and outputs

Although commercial air navigation would be too ambitious at this stage, we are planning to
apply the proposed model using drones or RPAS (remotely piloted aircraft systems) in scenarios
such as are described in this paper. In fact, we are now at the early stages of negotiations with sector
companies and institutions with respect to the implementation of this proposal. All parties have shown
a great deal of interest so far.

The use of ADS-B technology definitely facilitates the process of applying the proposed model
in real environments as ADS-B resources are used to implement the sensors provided by the above
model. However, ADS-B is still in its infancy, and it will take time for it to be adopted and consolidated
as a standard technology. The research conducted over the coming years should allow for such
a process of technology growth and maturity which may have a major impact on our proposal and its
future applications.

As regards the proposed learning model, we are planning some research lines that could improve
learning. The first is related to perception and perception pattern mapping (procedure step 1).
This process is now performed mostly manually. We are considering using clustering techniques
(data mining) to group similar perceptions with each other as part of the same pattern that could

Sensors 2017, 17, 188 26 of 27

be represented by the cluster centroid or medoid. On the other hand, the associations are currently
deleted (Step 5) when they are below a specified threshold. Generally, thresholds make problems
binary (in this case, the association is retained or eliminated). This is not always flexible enough.
As a line of this research, we plan to use more flexible techniques in this respect (fuzzy logic) in
order to determine when an association should or should not be deleted. We intend to analyze the
potential impact of using such soft computing techniques for association deletion on both the success
rate and the computational efficiency of the learning process. Such techniques may also be useful in
other parts of the proposed method (action selection, for example, as it is not always clear from the
stored associations which action is to be taken). Accordingly, we also plan to deploy and evaluate the
techniques in the above modules.

Finally, note that we have compared the proposed method with other existing methods at the
level of results (Section 5.2) and concepts (Section 6) only. Therefore, a more formal and mathematical
validation is required to be able to analyze the properties of the proposed method separately
and compared with other existing methods. The project will focus on this line of research in the
coming months.

Acknowledgments: The authors would like to thank Rachel Elliott for translating this paper.

Author Contributions: Santiago Álvarez de Toledo conceived and designed the original reinforcement learning
model. José M. Barreiro and Juan A. Lara designed and implemented the air navigation simulated environment.
Aurea Anguera and David Lizcano designed and performed the experiments. All of the authors analyzed the
results and took part in writing and revising the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Simon, H.A. Why Should Machines Learn? In Machine Learning; Springer: Berlin/Heidelberg, Germany,
1983; pp. 25–38.

2. Airservices. How ADS-B Works. Available online: http://www.airservicesaustralia.com/projects/ads-b/
how-ads-b-works/ (accessed on 15 September 2016).

3. Rubinstein, R.Y. Simulation and the Monte Carlo Method; Wiley: New York, NY, USA, 1981.
4. Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods; Wiley: New York, NY, USA, 1986.
5. Ulam, S.M. Adventures of a Mathematician; University of California Press: Oakland, CA, USA, 1991.
6. Sutton, R.S. Learning Theory Support for a Single Channel Theory of the Brain, Ph.D. Thesis, Stanford

University, Stanford, CA, USA, 1978.
7. Sutton, R.S. Single channel theory: A neuronal theory of learning. Brain Theory Newslett. 1978, 4, 72–75.
8. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike elements that can solve difficult learning control

problems. IEEE Trans. Syst. Man Cybern. 1983, 13, 835–846. [CrossRef]
9. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
10. Michie, D.; Chambers, R.A. BOXES: An Experiment in Adaptive Control; Dale, E., Michie, D., Eds.;

Elsevier/North-Holland: New York, NY, USA, 1968; Volume 2, pp. 137–152.
11. Singh, S.P.; Sutton, R.S. Reinforcement learning with replacing eligibility traces. Mach. Learn. 1996, 22,

123–158. [CrossRef]
12. Barto, A.G.; Duff, M. Monte Carlo matrix inversion and reinforcement learning. In Proceedings of

the 1993 Conference on Advances in Neural Information Processing Systems; Cohen, J.D., Tesauro, G.,
Alspector, J., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1994; pp. 687–694.

13. Tsitsiklis, J.N. Asynchronous stochastic approximation and Q-Learning. Mach. Learn. 1994, 16, 185–202.
[CrossRef]

14. Busoniu, L.; Ernst, D.; De Schutter, B.; Babuska, R. Online least-squares policy iteration for reinforcement
learning control. In Proceedings of the 2010 American Control Conference (ACC), Baltimore, MD, USA,
30 June–2 July 2010; pp. 486–491.

15. Werbos, P.J. Building and understanding adaptive systems: A statistical/numerical approach to factory
automation and brain research. IEEE Trans. Syst. Man Cybern. 1987, 17, 7–20. [CrossRef]

http://www.airservicesaustralia.com/projects/ads-b/how-ads-b-works/
http://www.airservicesaustralia.com/projects/ads-b/how-ads-b-works/
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1007/BF00114726
http://dx.doi.org/10.1007/BF00993306
http://dx.doi.org/10.1109/TSMC.1987.289329

Sensors 2017, 17, 188 27 of 27

16. Thathachar, M.A.L.; Sastry, P.S. Estimator algorithms for learning automata. In Proceedings of the Platinum
Jubilee Conference on Systems and Signal Processing, Bengalore, India, December 1986.

17. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, Cambridge University, Cambridge,
UK, 1989.

18. Antos, A.; Munos, R.; Szepesvari, C.S. Fitted Q-iteration in continuous action-space MDPs. In Advances
in Neural Information Processing Systems 20; Platt, J.C., Koller, D., Singer, Y., Roweis, S.T., Eds.; MIT Press:
Cambridge, MA, USA, 2008; pp. 9–16.

19. Farahmand, A.M.; Ghavamzadeh, M.; Szepesvari, C.; Mannor, S. Regularized fitted Q-iteration for planning
in continuous-space Markovian decision problems. In Proceedings of the 2009 American Control Conference
(ACC-09), St. Louis, MO, USA, 10–12 June 2009; pp. 725–730.

20. Szepesvari, C.S.; Smart, W.D. Interpolation-based Q-learning. In Proceedings of the 21st International
Conference on Machine Learning (ICML-04), Bannf, AB, Canada, 4–8 July 2004; pp. 791–798.

21. Gambardella, L.C.; Dorigo, M. Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman
Problem. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, USA,
9–12 July 1995; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 252–260.

22. Tesauro, G. TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play. Neural Comput.
1994, 6, 215–219. [CrossRef]

23. Crites, R.; Barto, A. Improving Elevator Performance Using Reinforcement Learning. In Advances in Neural
Information Processing Systems 8; MIT Press: Cambridge, MA, USA, 1996; pp. 1017–1023.

24. Tesauro, G.; Das, R.; Walsh, W.E.; Kephart, J.O. Utility-Function-Driven Resource Allocation in Autonomic
Systems. In Proceedings of the 2nd International Conference on Autonomic Computing (ICAC 2005), Seattle,
WA, USA, 13–16 June 2005; pp. 342–343.

25. Silver, D.; Sutton, R.; Muller, M. Reinforcemen learning of local shape in the game of Go. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007;
pp. 1053–1058.

26. Guez, A.; Vincent, R.D.; Avoli, M.; Pineau, J. Adaptive Treatment of Epilepsy via Batch-mode Reinforcement
Learning. In Proceedings of the 23rd AAAI National Conference on Artificial Intelligence, Chicago, IL, USA,
13–17 July 2008; pp. 1671–1678.

27. Ipek, E.; Mutlu, O.; Martinez, J.F.; Caruana, R. Self-optimizing memory controllers: A reinforcement learning
approach. In Proceedings of the 35th International Symposium on Computer Architecture, Beijing, China,
21–25 June 2008; pp. 39–50.

28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 1998.
29. International Civil Aviation Organization (ICAO). ICAO Doc 9871, Technical Provisions for Mode S and Extended

Squitter, 2nd ed.; ICAO: Montreal, QC, Canada, 2012.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1162/neco.1994.6.2.215
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Concepts
	Proposed Model
	General Operation of the Proposed Model
	Proposed Model Execution Cycle

	Model Deployment
	Air Navigation: Current Application
	Underlying Sensor Technology

	Experimentation and Results
	Test Scenarios
	Results and Discussion

	Proposal Applicability
	Conclusions and Future Lines

