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Abstract: For event dynamic K-coverage algorithms, each management node selects its assistant node
by using a greedy algorithm without considering the residual energy and situations in which a node is
selected by several events. This approach affects network energy consumption and balance. Therefore,
this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the
network achieves 1-coverage, the nodes that detect the same event compete for the event management
node with the number of candidate nodes and the average residual energy, as well as the distance
to the event. Second, each management node estimates the probability of its neighbor nodes’ being
selected by the event it manages with the distance level, the residual energy level, and the number of
dynamic coverage event of these nodes. Third, each management node establishes an optimization
model that uses expectation energy consumption and the residual energy variance of its neighbor
nodes and detects the performance of the events it manages as targets. Finally, each management
node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set
of the model and the best strategy via technique for order preference by similarity to an ideal solution
(TOPSIS). The algorithm first considers the effect of harsh underwater environments on information
collection and transmission. It also considers the residual energy of a node and a situation in which
the node is selected by several other events. Simulation results show that, unlike the on-demand
variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption,
thereby prolonging the network’s best service quality and lifetime.
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1. Introduction and Related Works

Underwater wireless sensor networks (UWSNs) are network monitoring systems that consist of
sensor nodes with self-organized perception, acoustic communication, and computation capabilities in
an underwater environment. UWSNs can be applied to event detection in underwater environments,
such as water pollution monitoring, underwater disaster warnings, and the detection of different types
of underwater biology [1–3]. Such applications require UWSNs for event detection, as they have strong
fault tolerance and robustness. Moreover, UWSNs have a network structure with a 3D distribution,
acoustic signals as a communication medium, limited node energy, and a high cost for deployment [4,5].
Because of the limited node energy, energy-efficient performance must be considered when designing
algorithms or protocols for wireless sensor networks [6–8]. For example, the authors of [9] proposed
that the sensor networks should be clustered unevenly to implement energy consumption evenly
among cluster head nodes, achieving effective use of the energy of the node; the authors of [10]
organized sensors in cooperative groups to reduce the number of messages transmitted inside the
network, thereby reducing the energy consumption of the network. Similarly, K-coverage in UWSNs
should also consider energy-efficient performance.
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K-coverage, in which each target monitoring area (or event) is required to at least be covered
by K-sensor nodes (K ≥ 1), can achieve network redundancy detection for events. It is one of the
technologies that are commonly used to improve network fault tolerance and robustness [11].

K-coverage has been studied extensively by some researchers [12–16]. Kumar et al. [17]
studied how the fewest nodes can be used to ensure network K-coverage at high probability for
a monitoring area, for deterministic and stochastic network deployment. Chen et al. [18] proposed
a probability-based K-coverage control approach for 3D WSNs. This approach first models the 3D
monitoring area by grid. Then, it uses a greedy iteration method to determine the position of each
node in the grid until either the node number reaches the preset value or all grid points are covered by
K-nodes at a certain probability. Compared with K-coverage methods with deterministic or stochastic
network deployment, the algorithm with fewer nodes achieves the same coverage level of a monitoring
area, but the overall network coverage could still be improved. Kim et al. [19] proposed a randomly
ordered activation and layering protocol for ensuring network K-coverage. This protocol divides all
network nodes into several disjoint sets (each disjoint set covers the monitoring area by 1-coverage),
i.e., by layering and then randomly selecting K-layer nodes to work together for the network to achieve
K-coverage within a certain period. This algorithm can achieve high-coverage level for a monitoring
area. Habib M et al. [20] proposed a K-coverage algorithm for a 3D area based on geometric properties.
The algorithm firstly analyzes the condition of the 3D area guaranteed to be K-coverage based on
Helly’s Theorem and the Reuleaux tetrahedron model, and, on this basis, the corresponding nodes
are selected to be active to complete the K-coverage of the network. The algorithm can fully complete
K-coverage in a 3D field and increase the lifetime of the network by scheduling the working mode of
nodes. A similar idea is studied by Gupta et al. [21]. To prolong the network lifetime, they present
a node scheduling strategy for K-coverage. It uses probability to schedule the node to minimize
the number of active nodes, according to the number of neighbor nodes and the stage of the node
(communication and sensing radius). Pal et al. [22] proposed a K-coverage algorithm based on the
Sixsoid. The algorithm finds that using the Sixsoid to fill the 3D area has less overlapping volume
than using the Reuleaux tetrahedron model and, according to the characteristic of the Sixsoid, deploys
the node in the target area. The algorithm can reduce the number of active nodes, but it can run
well also based on the assumption of high density deployment. These algorithms described here can
achieve K-coverage for the monitoring area and not the event and will cause numerous idle nodes,
thereby wasting energy when they are used in event monitoring. In addition, considering the UWSNs
characteristic of high cost and sparse deployment [23], these algorithms, where large numbers of
sensor nodes are needed, are unsuitable for event K-coverage for UWSNs.

Several works exist in the literature that covers the target or event on demand by the mobile
nodes. Liu et al. [24] uses game theory to determine the optimal mobility strategy of each node to
complete the dynamic coverage of the network. Chen [25] presents the energy-effective movement
algorithm. The algorithm divides the target area into subareas and then selects nodes to one of the
subareas to minimize the movement of nodes. Habib [26] proposed a mission-oriented K-coverage
algorithm for mobile WSNs. This algorithm first calculates where the nodes move by using Helly’s
theorem and the geometric analysis of the Reuleaux triangle. Then, it adopts the distributed strategy
to select a certain number of nodes to move to those positions to achieve K-coverage for the area.
The approach reduces the number of nodes deployed in UWSNs and guarantees good event coverage.
Xia et al. [27] proposed the fish swarm-inspired underwater sensor deployment algorithm (FSSDA),
which calculates the position that nodes will move to by the method inspired by the fish feeding
behavior, and combines the position with the crowded degree control to achieve coverage requirements
for the events. The algorithm has low complexity and a quick convergence rate, but it considers only the
required coverage for static events and ignores the dynamic and uncertainty of the events. Du et al. [28]
proposed the particle swarm-inspired underwater sensor deployment algorithm, which is similar to the
FSSDA, and considers event dynamic to make the algorithm more practical. Although the algorithm
is the same as other event K-coverage algorithms by mobile nodes, it greatly reduces the number
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of nodes in network deployment. However, it also consumes considerable energy because of the
nodes’ mobility [29]. Alam et al. [30] proposed the on-demand variable sensing K-coverage algorithm
(OVSKA), which implements event dynamic K-coverage in the network by adjusting the sensing
radius of node and analyzes its own practical application. The OVSKA better reduces the number
of nodes and redundant energy consumption by the dynamic event K-coverage method compared
with the static method. It also effectively avoids energy consumption produced by node mobility by
adjusting the sensing radius. However, for how to select the assistant nodes to achieve the K-coverage
for each event, the paper only proposed a greedy algorithm, in which each management node selects
its assistant nodes from its neighbor nodes to minimize the ratio of network energy consumption of its
neighbor nodes to detection performance of the events it manages. The process of selecting adjusting
nodes is simple. However, when the number of events is relatively large, the neighbor node of the
management node can cover some events, which several management nodes manage by adjusting the
sensing radius. At this time, in the method, a management node cannot consider a situation in which
other management nodes may select its neighbor node to cover the event they manage. As a result,
the number of nodes that broaden their sensing radius increases and network energy consumption to
some extent increases. In addition, the method selects the assistant node, ignoring the residual energy
of the node and causing some nodes to be scheduled frequently and die early. This approach makes
the network energy consumption unbalanced, degrades the quality of network service, and shortens
network lifetime.

To solve the aforementioned problems, this study proposes the distributed and energy-efficient
event K-coverage algorithm (DEEKA). The monitoring area achieves 1-coverage or approximately
1-coverage. At the start of each round of the algorithm, nodes that detect the same event compete
for the management node of the event by the indicator, including the number of candidate nodes,
the average residual energy of neighbor nodes, and the distance to the event. Each management node
then calculates the probability of each neighbor node’s being selected by the corresponding event it
manages. Then, each management node builds a multi-objective optimization model with regard to the
energy consumption expectation and residual energy variance of its neighbor nodes, and to the detected
performance for the events it manages as targets. Afterwards, each management node obtains Pareto
solutions by using the constrained elitist non-dominated sorting genetic algorithm (NSGA-II) method
and selects the best strategy by using the technique for order preference by similarity to an ideal solution
(TOPSIS) method according to the target bias of practical application. The algorithm can make some
nodes adjust the sensing radius to cover events that different management nodes manage synchronously,
thereby reducing the number of nodes that increase their sensing radius and energy consumption
over the whole network. In addition, determining management nodes by competition is beneficial
for balancing residual energy of the neighbor nodes among different management nodes. When each
management node selects its assistant nodes, it considers the residual energy of its neighbor nodes.
This approach is beneficial for balancing energy consumption of its neighbor nodes. Simulation results
show that, compared with the OVSKA, the DEEKA can better balance and reduce network energy
consumption, thereby prolonging the network’s best service quality and lifetime.

The rest of this paper is organized as follows: Section 2 describes the system model, assumptions,
and definitions considered in this study. Section 3 presents details of the DEEKA. Section 4 analyzes
the complexity of the DEEKA. Section 5 discusses the performance study and provides a detailed
analysis of its result. Finally, Section 6 concludes the paper and presents future research directions.

2. Preliminaries: Models and Definitions

2.1. Models

2.1.1. Network Model

A monitoring area achieves 1-coverage or approximately 1-coverage by N nodes. Meanwhile,
these nodes are anchored with weights to keep static in current positions. It is evenly divided into
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several sub-areas. Additionally, it has a mobile intermediate node (e.g., Autonomous Underwater
Vehicle, AUV) that serves as the router that receives information from management nodes and then
transmits that information to the sink node in every sub-area [31]. Every assistant node adjusts to the
appropriate sensing radius to help the corresponding management node monitor the event together
and sends the event sensing information to the management node. The management node obtains
the result about the event by using the fusion algorithm and waits for the mobile intermediate node
to gather this information. After the event leaves or disappears, the corresponding assistant nodes
revert to the minimum sensing radius. The network model is depicted in Figure 1. Every AUV is
responsible for handling the information of the management node with the same color as the AUV
and for transmitting the information to the sink node.
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Figure 1. Underwater wireless sensor network (UWSN) system model.

This study denotes the i-th node by si, and the corresponding node set S = {s1, s2, . . . sn}, as well
as the j-th event by ej and the corresponding event set E = {e1, e2, . . . ez}. Moreover, the number of
elements in the set S is N and that in the set E is Z. The following assumptions are considered:

1. Any node has the ability of communication and perception. Nodes communicate with one
another through acoustic channels, and the sink node communicates with the ground monitoring
station by radio.

2. All nodes are isomorphic before the algorithm runs. Then, the sensing radius of each node
can be adjusted between the minimum Rmin

s and maximum sensing radius Rmax
s according to

adjustment strategy.
3. The position of each event is randomly changed by the water current in the monitoring area but

not beyond that. Time interval T is one round of network run. In every round, the algorithm
readjusts the sensing radius of some corresponding nodes to achieve K-coverage for all events
whose position is changed.

2.1.2. Network Energy Consumption Model

In sensor networks, each node is mainly responsible for sensing the surrounding environment
and transmitting the sensing data. Therefore, in this study, the node’s energy consumption includes
sensing and communication [32,33].
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Energy Consumption Model of Communication

Underwater sensor network nodes communicate with one another through acoustic signals.
Accordingly, this study uses the energy consumption model of underwater sensor network data
communication by utilizing sound wave as the medium [33]. Underwater acoustic signal attenuation
model SA(d) is given as follows:

SA(d) = dλ · αd. (1)

Equation (1) describes energy attenuation when the transmission distance of data packet is d,
where λ is the energy diffusion factor (cylindrical diffusion is 1, actual situation is 1.5, and spherical
diffusion is 2). Parameter α = 10AC(f )/10, which is determined by absorption coefficient AC(f ), which is
shown as follows:

AC( f ) = 0.11
10−3 f 2

1 + f 2 + 44
10−3 f 2

4100 + f 2 + 2.75× 10−7 f 2 + 3× 10−6 (2)

where f is the carrier frequency with the kHz unit. Absorption coefficient unit is dB/m.
The energy consumption of communication on the distance d (ECC(d)) is expressed as follows:

ECC(d) = Pr × Tp × SA(d) (3)

where Tp is the data transmission time, and Pr is the minimum power packets that can be received.

Energy Consumption Model of Sensing

According to Reference [34], the ratio of sensing power to communication power is rp (0 < rp < 1).
Thus, in this study, the energy consumption model of sensing on the distance d ECS(d) is shown
as follows:

ECS(d) = rp × Pr × SA(d)× T. (4)

T is the time interval of the algorithms running.

2.1.3. Node Sensing Model

At present, the sensing model for the event can be divided into two categories: the Boolean sensing
model and the probability sensing model. The former is unsuitable for practical applications because
it is too idealistic. Therefore, this study uses the improved probability sensing model, which considers
sensing ability characteristics of the sensor and interference characteristics of noise in the environment.

At first, the model considers sensor characteristics, i.e., the sensing performance of detecting the
abnormal signal, including event and noise signals, which is good within a certain range but degrades
with distance beyond the range [35]. Sensing probability of an event is formulated as follows:

p
(
d
(
si, ej

))
=


1 if d

(
si, ej

)
≤ Rmin

s

e−γ1(d(si ,ej)−Rmin
s )

γ2
if Rmin

s < d
(
si, ej

)
< Rmax

s
0 if d

(
si, ej

)
≥ Rmax

s .
(5)

where γ1 and γ2 are specific parameters of the sensing device that are determined from physical
properties of the sensor. They determine the speed of sensing probability decay beyond Rmin

s .
The judgment result of one sensor node to the event is vulnerable to environmental noise (i.e.,

noise signal). Thus, the influence of environmental noise on the current sensing probability of an
event should be considered. Assuming that the noise signal can be expressed by Gaussian distribution
Ψ(0,1), whose average value is 0 and variance is 1, the abnormal signal threshold for event detection is
ηt. When the signal strength is lower than ηt, the probability that the event is correctly sensed by the
node reduces quickly. Therefore, the probability P(si,ej) that an event ej is correctly sensed by node si is
formulated as follows [30]:
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P
(
si, ej

)
= p

(
d
(
si, ej

))∫ ∞

ηt

1√
2π

e−(x−u(si))
2/2 dx (6)

where u(si) is the abnormal signal strength (including event and noise signals) node si receives, and
d(si,ej) is the distance between si and ej.

2.1.4. Event Mobility Model

The event randomly moves after it appears within the monitoring area through the water current.
Assuming that the position coordinate of the event at t time is (x(t), y(t), z(t)), the event mobility
model is

x(t) = x(t− 1) + dx(t)vcx

y(t) = y(t− 1) + dy(t)vcy

z(t) = z(t− 1) + dz(t)vcz

(7)

where

dx(t) =

{
1 t = 0
−dx(t− 1) t > 0

, dy(t) =

{
1 t = 0
−dy(t− 1) t > 0

, dz(t) =

{
1 t = 0
−dz(t− 1) t > 0

.

vcx, vcy, and vcz are the flow speed of x-axial direction, y-axial direction, and z-axial direction,
respectively. Their values are all randomly produced between 0 and maximum speed Vmax.

2.2. Definition

2.2.1. Nodes and Events

Neighbor Node: A node, whose distance to the node si is within its communication radius Rc, is
si’s neighbor node, and all of si’s neighbor nodes form the set of the neighbor node, denoted by SN(si).

Management Node: The management node of one event ej is produced as discussed in
Section 3.2.1 and is responsible for scheduling its corresponding neighbor nodes to cover ej on demand.
In other words, ej is an event that the management node manages. In addition, all of the management
nodes form the set of the management node, denoted by M, where M = {m1, m2, . . . mm}, and mm is the
m-th element of M, namely, the m-th management node. Similarly, all of the events that mm manages
form the set denoted by EM(mm). In Figure 2, s2 is the management node of e2; the management node
of e1 is generated from the competition between s1 and s2.Sensors 2017, 17, 186 7 of 26 
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Candidate Node: The candidate node of one event ej is defined as the node in the neighbor node
set of ej’s management node SN(mm), which can adjust its sensing radius to cover ej. In other word, the
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candidate node of ej is in the neighbor nodes of ej’s management node mm, and its distance to ej is less
than Rmax

s . Therefore, when the management node of ej is mm, the set of the candidate node of ej can be
denoted by mm.C(ej) and formulated as follows:

mm.C
(
ej
)
=
{

si
∣∣d(si, ej

)
< Rmax

s and si ∈ SN(mm)
}

. (8)

Because the management node of each event is determined in the study, except in Section 3.2.1,
the study uses C(ej) to replace mm.C(ej) for simplified representation. Needless to say, the number of
ej’s candidate nodes is the number of elements in C(ej), denoted by |C(ej)|. In Figure 2, candidate
nodes of e1 and e2 for events e1 and e2 are both s1 and s2.

Dynamic Candidate Node: According to the description of the candidate node, the node whose
distance to an event ej is between Rmin

s and Rmax
s is defined as the dynamic candidate node, and the

kind of the node forms the set of the dynamic candidate node, denoted by Cd(ej):

Cd
(
ej
)
=
{

si

∣∣∣Rmin
s < d

(
si, ej

)
≤ Rmax

s , and si ∈ C
(
ej
)}

(9)

where the i-th element in Cd(ej) is assigned as ci
d. Clearly, the number of dynamic candidate nodes of ej

is denoted by |Cd(ej)|. As shown in Figure 2, the dynamic candidate node for event e1 is s3, and, for
event e2, dynamic candidate nodes are s1 and s3.

Static Candidate Node: Similarly, the static candidate node of an event ej is the node in ej’s
candidate node set, whose distance to ej is within Rmin

s . Correspondingly, the kind of the node forms
the set of the static candidate node, denoted by Cs(ej) and formulated as follows:

Cs
(
ej
)
=
{

si

∣∣∣d(si, ej
)
≤ Rmin

s , and si ∈ C
(
ej
)}

(10)

where the i-th element in Cs(ej) is assigned as ci
s. Clearly, the number of dynamic candidate nodes of ej

is denoted by |Cs(ej)|. In Figure 2, the static candidate node for event e1 is s1, while event e2 does not
have a static candidate node.

The difference between the dynamic candidate node and the static candidate node is the distance
between the node and the event. Because of the difference, the former needs to adjust its sensing
radius to cover the event. However, the latter does not need to do this.

Assistant Node: The assistant node of one event ej is defined as the node, which is scheduled by
the management node and assists the management node to cover ej. In this paper, the assistant node is
also described as selected by ej, and all of the nodes form the set of the assistant node, denoted by A(ej).

Whether or not the sensing radius is adjusted, the assistant node can be divided into two categories:
dynamic and static. The dynamic assistant node assists the management node to detect the event by
increasing its sensing radius. Conversely, the static assistant node does not need to increase its sensing
radius. In Figure 2, s1 and s3 are the selected assistant nodes of event e1. Between them, s1 is the static
assistant node of e1, and s3 is its dynamic assistant node.

Static Coverage Event: The static coverage event of one node si is defined as an event whose
distance to si is within minimum sensing radius Rmin

s , and all of the events form the set of the static
coverage event, denoted by Es(si) and formulated as follows:

Es(si) =
{

ej

∣∣∣d(si, ej
)
≤ Rmin

s

}
. (11)

Clearly, the number of si’s static coverage event is the number of elements in Es(si), denoted by
|Es(si)|. In Figure 2, the static coverage event for node s1 is e1.
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Dynamic Coverage Event: The static coverage event of one node si is defined as an event whose
distance to si is between Rmin

s and Rmax
s , and all of the events form the set of the dynamic coverage

event, denoted by Ed(si) and formulated as follows:

Ed(si) =
{

ej

∣∣∣Rmin
s < d

(
si, ej

)
≤ Rmax

s

}
. (12)

Clearly, the number of si’s dynamic coverage event is the number of elements in Ed(si), denoted by
|Ed(si)|. In Figure 2, e1 is the static coverage event of node s1. Both e1 and e2 are the dynamic coverage
events of s3.

The difference between the static coverage event and the dynamic coverage event can be
summarized as follows. As shown in Equation (11), the event can be sensed by the node directly,
because the distance between them is within the minimum sensing radius. Thus, the kind of the node
is named after the static coverage event. However, the event described in Equation (12) wants to be
covered by the node, which needs the node to adjust its sensing radius. Thus, the kind of the node is
named after the dynamic coverage event.

Actual Dynamic Coverage Event: The actual dynamic coverage event is the event that si actually
adjusts its sensing radius to cover after the algorithm runs, and the set is assigned as Ead(si). The element
number of the set is assigned as |Ead(si)|.

The difference between the dynamic coverage event and the actual dynamic coverage event is that
an event is the dynamic coverage event of si, but it does not have to be the actual dynamic coverage
event of si. Therefore, the number of actual dynamic coverage events is usually less than that of
dynamic coverage events.

2.2.2. Event Detection Performance

Event detection performance reflects the quality of the network service and the robustness of the
network to detect events. It is defined as the correct sensing probability of event ej. Event detection
performance is judged by information fusion center (i.e., the management node in this study) under
the circumstance that information may be lost in the transmission process because of the influence of
some interference in practice. The information fusion center uses the rule of k1 out of K [11]. Thus,
it considers event ej to be detected correctly when at least k1 nodes in K-nodes detect ej correctly.
Assuming that the failure probability of information transmission between two nodes is plost, the
probability that the information of node si correctly detecting ej is successful to be transmitted to the
fusion center is expressed as follows and is denoted by Preach(si,ej):

Preach
(
si, ej

)
= (1− plost) · P

(
si, ej

)
. (13)

The probability of the fusion center correctly detecting event ej is formulated and is denoted
by Presult(ej).

Presult
(
ej
)
= ∑K

b=k1

[
∑CK,b

(
∏b

i=1 Preach
(
ai, ej

)
∏K

i=b+1

(
1− Preach

(
ai, ej

)))]
(14)

where CK,b is the value of combinations of b nodes in K-nodes correctly detecting events; ai is i-th
elements in ej’s assistant node set A(ej); the order of the element in A(ej) is changed by different
combinations. In each combination, the nodes that detect the event correctly are in the front, while
others are at the back.

2.2.3. Network Lifetime

Network lifetime is an important basis for evaluating the effectiveness of the energy algorithm [36]
and is denoted by Lt. In this study, the network lifetime is defined as the value of the network running
round until the ratio of the number of survival nodes to the total number of nodes achieves rn
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(0 evrn < 1), where rn is the proportional threshold of surviving nodes. When the ratio is less than rn,
the network cannot complete normal monitoring function, and network running ends.

3. Algorithm Description and Process

3.1. Problem Description

Some research has been conducted on the K-coverage problem of sensor networks [12].
Most existing algorithms for static K-coverage of an area need numerous nodes. The existing algorithms
also cause great redundant energy consumption for event K-coverage in UWSNs. Others achieve
event K-coverage by assisting mobile nodes, which consumes considerable energy because of nodes
moving. A dynamic event K-coverage method, by adjusting the sensing radius of nodes, can reduce the
required number of deployment nodes. This approach also considerably reduces the redundant energy
consumption produced by the moving nodes. For assistant node selection, each management node
selects the corresponding assistant nodes to achieve K-coverage and minimizes the ratio of network
energy consumption to the detecting performance of the event it manages. The method can achieve
a relatively good result when the neighbor node of the management node can only cover the event
that the management node manages on its own. However, when the number of events is relatively
large, the neighbor node can usually cover more than one event that different management nodes
manage. At this condition, the method will also increase the number of nodes that adjust their sensing
radius in the network and the energy consumption of the network. In addition, each management
node in the algorithm ignores the residual energy of its neighbor nodes when it selects the assistant
nodes. As a result, the sensing radius of some nodes increases frequently, thereby causing network
energy consumption imbalances, degrading the quality of network service, and reducing network
lifetime. Therefore, after the network achieves 1-coverage or approximately 1-coverage by N-nodes,
an energy-efficient event K-coverage algorithm should be designed to achieve dynamic K-coverage for
UWSNs, balance and reduce network energy consumption, prolong network lifetime, and increase
network K-detecting performance.

This study proposes the DEEKA to solve this problem. The monitoring area achieves 1-coverage
or approximately 1-coverage. First, at the start of each round of the algorithm, nodes that detect
the same event compete for the management node of the event by the indicator, including the
number of candidate nodes, the average residual energy of neighbor nodes, and the distance to the
event. This process balances residual energy among neighbors with different management nodes and
considers network detecting performance. Second, each management node calculates the probability
of its neighbor nodes’ being selected by the corresponding event it manages, according to levels
of distance and residual energy of nodes in the set of the dynamic candidate node, as well as the
number of dynamic coverage events of the node. This process is beneficial for each management
node in that its neighbor nodes may dynamically cover several events when it selects assistant nodes.
Moreover, it is beneficial for each management node to select synchronously and achieve distributed
implementation of the algorithm. Third, each management node builds a multi-objective optimization
model of the energy consumption expectation of its neighbor nodes, the residual energy variance of
its neighbor nodes, and the detection performance of the events it manages as targets. Afterwards,
the management node obtains Pareto solutions by using a constrained NSGA-II method. This process
allows each management node to obtain all the best solutions (namely, node selection strategy) with
three objectives constrained with one another. It is also beneficial for algorithm extension. Finally, mm

selects the best strategy using the TOPSIS method according to the target bias of practical application.
Corresponding nodes adjust their sensing radius to achieve K-coverage for the event. A detailed
description is presented below.
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3.2. Algorithm Description

The DEEKA is divided into the following four steps: (1) management node formation;
(2) calculation probability of an event-selected node; (3) a multi-objective optimization model;
(4) a methodology of a constrained NSGA-II and optimization strategy.

3.2.1. Management Node Formation

At the beginning of each round of the algorithm, dynamical assistant nodes at the last round
broadcast their residual energy. Each node updates the state information of its neighbor node, including
residual energy and survival node number (the first round of the algorithm ignores this step). After the
nodes detect the event (e.g., ej), each node that detects ej (e.g., si) calculates the distance between its
neighbor nodes and ej. Then, it compares the distance with the maximum sensing radius to produce
the candidate node set of ej within si (si.C(ej) ) and si.|C(ej)|. Si then broadcasts message Ic (node ID,
ID of events it detects, and average residual energy of nodes in si.C(ej) and si.|C(ej)|). After si receives
Ic from other nodes (e.g., sm), it saves the related information of other nodes who also detect ej and
then determines if it becomes the management node of ej according to the cases as follows:

• If si.|C(ej)| is less than K − 1 and the candidate node number of the other nodes detecting ej is
also less than K − 1, si judges its |C(ej)| among nodes detecting ej. If si.|C(ej)| is not the largest,
it automatically gives up the competition of the management node; otherwise, it becomes the
management node of ej and joins the management node set M, as well as skips the rest of the
process described in this section.

• If si.|C(ej)| is less than K − 1 and the candidate node number of the other nodes detecting ej is
not all less than K − 1, si gives up the competition of management node.

• If si.|C(ej)| is greater than K − 1, si then calculates its score Score1(si) and other nodes’ score
Score1(sm) by Equation (15). It calculates according to the indicators of the average residual energy
of and number of candidate nodes, and the distance to ej. Score1(si) is formulated as follows:

Score1(si) = w1
REav

(
si, ej

)
− REmin

av

REmax
av − REmin

av
+ w2

dmax − d
(
si, ej

)
dmax − dmin

+ w3
si.
∣∣C(ej

)∣∣− ∣∣C(ej
)∣∣

min∣∣C(ej
)∣∣

max −
∣∣C(ej

)∣∣
min

(15)

where REav(si,ej) is the average residual energy of si’s candidate node for ej, REmax
av and REmin

av are
the maximum and minimum average residual energy of the candidate node of nodes detecting ej,
respectively; dmax and dmin are the maximum and minimum distances to ej, respectively;

∣∣C(ej
)∣∣

max
and

∣∣C(ej
)∣∣

min are the maximum and minimum numbers of the ej candidate node, respectively.

si then compares its score with others. If its score is not the greatest, then si gives up the competition
for the management node of ej. Otherwise, si becomes the management node of ej and joins
management node set M.

• If the information si receives does not include event ej, which is to say, only si detects ej, si becomes
the management node of ej and joins management node set M.

The flowchart of the management node of each round is shown in Figure 3, with event ej as
an example.
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3.2.2. Calculation Probability of Event-Selected Node

After the management node is determined, each management node (e.g., mm) broadcasts a helping
message (node ID) with the communication radius Rc. Each node that receives the helping message
sends its state message (node ID and number of dynamic coverage event |Ed(si)|) to the corresponding
management node. After node mm receives the state message, it calculates the distance between its
neighbor nodes (e.g., si) and each event it manages (e.g., ej). Then, it compares the distance with the
minimum sensing radius Rmin

s . If d(si,ej)≤ Rmin
s , si joins into static candidate node set Cs(ej). Otherwise,

si joins dynamic candidate node set Cd(ej). If
∣∣Cs
(
ej
)∣∣ is greater than K − 1, then the probability of

the node in Cd(ej) being selected by ej is 0. That is to say, to achieve K-coverage for ej, none of the
nodes need to adjust its sensing radius. Thus, mm skips ej, removes it out of EM(mm), and calculates
the probability of the node selected by other events it manages, namely, for ej, it skips the rest of the
process described in this section. Otherwise, mm then calculates levels of residual energy LRE(ci

d) and
distance Ld(ci

d) of each dynamic candidate node (e.g., ci
d) in Cd(ej). The process is shown as follows:

LRE

(
ci

d

)
=

RE
(
ci

d
)
− REmin

REmax − REmin
, Ld

(
ci

d

)
=

dmax − d
(
ci

d, ej
)

dmax − dmin
(16)

where RE(ci
d) is the residual energy of dynamic candidate node ci

d; REmin and REmax are the minimum
and maximum residual energy among nodes in Cd(ej), respectively; dmin and dmax are the minimum
and maximum distances to ej among nodes in Cd(ej), respectively.

According to the number of its dynamic coverage event
∣∣Ed
(
ci

d
)∣∣, LRE(ci

d), and Ld(ci
d), mm then

estimates the probability that ci
d is selected to assist it to detect ej, namely, ej’s assistant node.

The number of ci
d’s actual dynamic coverage event Ead(ci

d) is usually less than
∣∣Ed
(
ci

d
)∣∣, and it is

not a certain value before the algorithm run. Therefore, mm considers a situation in which ci
d is selected

by ej with different combinations of the actual coverage event number, which is produced by the
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dynamic coverage event number of nodes in cd(ej), and mm then estimates the probability of the node’s
being selected by ej. In other words, mm produces all the different combinations, and every combination
consists of a number within the dynamic coverage event number of each node in Cd(ej). For example, if
c1

d, c2
d, c3

d are the dynamic candidate nodes in Cd(ej), and |Ed(c1
d)|, |Ed(c2

d)|, and |Ed(c3
d)| are 1, 2, and 3,

respectively, then all of the combinations of the actual dynamic coverage event are (0,0,0), (0,0,1), (0,0,2),
(0,0,3), (0,1,0), (0,1,1), . . . , etc. Then, mm determines ci

d is selected or not according to Equation (17)
for each combination and finally regards the frequency of ci

d’s being selected as the probability of ci
d’s

being selected by ej.
The total number of combination increases in factorial form with

∣∣Ed
(
ci

d
)∣∣ and |Cd(ej)|. Thus,

this study estimates the probability of ci
d’s being selected by ej by sampling the part among the total

combinations. In order to improve the accuracy of the probability, repeat the above process one round
and the average of the result of total rounds is regarded as the probability of ci

d’s being selected by ej.
According to Reference [37], when the sample size is greater than 10,000,000, the sample number is 400
with a 0.05 margin of error, and the confidence level is 95%. Thus, in this study, the sample number is
400 regardless of the sample size.

(1) For each node ci
d, mm randomly selects an integer in the interval [0, |Ed(ci

d)| − 1] as the number
of ci

d’s actual dynamic coverage events, and these integers that mm selects form a combination of
the number of actual coverage events, namely, one sampling.

(2) mm calculates the score Score2(ci
d) of each node ci

d in the current combination by Equation (17),
according to LRE(ci

d), Ld(ci
d), and

∣∣Ead
(
ci

d
)∣∣:

Score2

(
ci

d

)
= w1LRE

(
ci

d

)
+ w2Ld

(
ci

d

)
+ w3

∣∣Ead
(
ci

d
)∣∣− Emin

ad
Emax

ad − Emin
ad

(17)

where w1, w2, and w3 are indicator weights whose values are set according to the application
focusing on the relevant indicators and w1 + w2 + w3 = 1; Emin

ad and Emax
ad are the minimum and

maximum numbers of the actual coverage events in the current combination, respectively.
(3) mm selects K – 1 −

∣∣Cs
(
ej
)∣∣ nodes as the dynamic assistant nodes of ej, according to the scores in

descending order (nodes in Cs
(
ej
)

must be the assistant nodes of ej because they do not need to
increase their sensing radius to cover ej). Other nodes are not selected in the current combination.

(4) If the sample number is less than 400, then Step 1 is repeated. Otherwise, the next step
is performed.

(5) For each node ci
d, mm records and calculates the frequency of ci

d’s being selected to cover ej
Frequency(ci

d, ej) in the current round of sampling.

Steps 1–5 are repeated a times, and the average value of Frequency(ci
d, ej) is calculated as the

probability of ci
d’s being selected to cover ej (Pselect(ci

d, ej)). Then, each management node mm sends
probability Pselect(ci

d, ej) to the corresponding node ci
d. ci

d saves and broadcasts this message (its dynamic
assistant event, the corresponding Pselect(ci

d, ej), and the number of its static assistant event |Es(si)|).
Each management node mm receives the message and saves the information.

The flowchart for calculating the probability of node selected by event is shown in Figure 4, with
management mm as an example.
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3.2.3. Multi-Objective Optimization Model

After the process of Section 3.2.3, each management node knows the probability of its neighbor
nodes’ being selected by other corresponding events. Each management node (e.g., mm) then calculates
the expectation of the number of other events that its neighbor node (e.g., si) may cover Ead(mm, si):

Ead(mm, si) = ∑
ej∈Ed(si)−EM(mm)

Pselect
(
si, ej

)
. (18)

In Equation (18), Pselect(si,ej) is the probability of si’s being selected by ej; in other words, Pselect(si,ej)
is the probability that si assists the corresponding management node in covering ej. Thus, the sum of
the probability of events that si can cover, except what mm manages, is the average number of events
that si actually covers, namely, the expectation of the event si actually covers.

Meanwhile, mm calculates the corresponding expectation of si’s sensing radius Rs(mm, si).
This problem is equivalent to the question of calculating the expectation of si’s sensing radius, with all
known possible sensing radii of the node si and corresponding probabilities.

After mm learns the number of events that its corresponding neighbor node covers and that the
other management nodes manage, it builds optimization models according to the information, the
residual energy of the node, and the distance to the corresponding event. For the event mm manages
and whose static assistant node number is greater than K − 1, mm need not consider it for the adjusting
strategy because the events have been K-coverage without any nodes adjusting the sensing radius.
Thus, the event is removed out of EM(mm) before the optimization models are built.

Assuming that xij denotes whether si is selected to cover ej or not, and that bij expresses whether
ej is the dynamic coverage event of si or not (for mm, if d(si,ej) is known, then bij is also known),
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xij =

{
0 si does not cover ej
1 si covers ej

, bij =

{
1 Rmin

s < d
(
si, ej

)
≤ Rmax

s
0 else

.

If xijbij equals 1, then si is selected to adjust its sensing radius to cover ej, namely, the dynamic
assistant node of ej, which is also the solution of the multi-objective optimization model.

Therefore, the energy consumption, the residual energy variance, and event detection performance
are described after the strategy of the node adjusting sensing radius.

Energy Consumption

At first, the process whereby each management node (e.g., mm) calculates the energy consumption
of its neighbor nodes (e.g., si) with three cases is analyzed as follows:

(1) si dynamically covers one event or more, namely, si dynamically covers the event mm manages, or
its Ead(mm, si) is not equal to 0; then, mm calculates the energy consumption of si produced
by the cover of these events that mm manages. For example, for the node s2 in Figure 5,
its detecting energy consumption is ECS(R2) in the network, but m1 calculates its energy
consumption produced by covering e1; in other words, the ECS(R2) is divided into two parts by
e1 and e4. Because m1 does not know whether s2 covers e4 or not, in this study, the number of
events that other nodes manage and that s2 covers is estimated by the expectation of the actual
coverage event number Ead(m1, s2). Therefore, s2’s energy consumption that m1 calculates is
ECS(R2)/

(
1 + Ead(m1, s2)

)
.

(2) si only covers some static events, while mm calculates the energy consumption of si produced by
the cover of these events that mm manages. In Figure 5, the energy consumption of s1 is ECS(Rmin

s )
and is divided into two parts by e2 and e5. Because the static cover event number of s1 is definite,
the s1’energy consumption m1 calculates is ECS

(
Rmin

s
)
/(1 + 1).

(3) si does not cover any event, and the total energy consumption of si is calculated. In Figure 5, s3’s
energy consumption m1 calculates ECS(Rmin

s ).
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Figure 5. Schematic diagram.

(Assuming that m1 manages events e1 and e2, m2 manages events e3 and e4, and m3 manages e5, s2

dynamically covers events e1 and e4, s1 only covers events e5 and e2, s3 does not cover any events, the
sensing radius of s1 and s3 are both Rmin

s , and the sensing radius of s3 is R2).
The sensing energy consumption of its neighbor nodes is the sum of the energy consumption of

each neighbor node and formulated as follows:

Energy(mm) = ∑
si∈SN(mm)

renergy(si) · ECS(Ri) (19)
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where Ri is the current sensing radius of si, whose value is the maximum among Rs(mm, si) and is the
distance to the event it covers in EM(mm). When both of them are zero, Ri is the minimum sensing
radius. The expression for Ri as follows:

Ri = max
(

Rmin
s , xijbijd

(
si, ej

)
, Rs(si)

)
j = 1, 2, . . . |EM(mm)|. (20)

renergy (si) is the proportionality coefficient, and its expression under the three case above is formulated
as follows:

renergy(si) =


∑
|EM(mm)|
j=1 xijbij/

(
Ead(mm , si) + ∑

|EM(mm)|
j=1 xijbij

)
i f Ead(mm, si) + ∑

|EM(mm)|
j=1 xijbij 6= 0

k2/|Es(si)| i f Ead(mm, si) + ∑
|EM(mm)|
j=1 xijbij = 0, and |Es(si)| 6= 0

1 i f Ead(mm, si) + ∑
|EM(mm)|
j=1 xijbij = 0, and |Es(si)| 6= 0

(21)

where k2 is the number of events that mm manages; meanwhile, si can also cover statically. In the
expression, the first item corresponds to Case (1), where the denominator expresses the number of
events si dynamically covers in the whole network and the numerator expresses the number of events
si dynamically covers in the event set EM(mm). Similarly, the second item corresponds to Case (2), and
the last one corresponds to Case (3).

Thus, the total sensing energy consumption of the network approximates to the sum of the energy
consumption that each management node calculates, denoted by Equation (19).

Residual Energy Variance

The residual energy variance of neighbor nodes of mm is Variance(mm) after the adjusting strategy
runs one round.

Variance(mm) = ∑
si∈SN(mm)

(
REa f ter(si)− REa f ter

)2
(22)

where REa f ter is the average residual energy of mm’s neighbor nodes after mm uses the adjusting
strategy, and REafter(si) is the residual energy of si, which can describe the residual energy before using
the adjusting strategy RE(si)minus for the energy consumption of sensing and communication in the
current round. The formulation as follows:

REa f ter(si) = RE(si)− ECS(Ri)− bool · ECC(Rc) (23)

where bool is a Boolean parameter, which determines if si should transmit information to mm. Its
formulation as follows:

bool =

{
1 xijbij = 1 or d

(
si, ej

)
< Rmin

s
0 else

.

This equation indicates that, when the node is selected as the dynamic assistant node of ej or the node
statically cover ej, the node should detect ej and transmit information about ej to mm.

Event Detecting Performance

The detecting performance of all events in EM(mm) (Performance(mm)) is equal to the sum of that
individual event:

Per f ormance(mm) = ∑
ej∈EM(mm)

Presult
(
ej
)
. (24)

In the process of calculating the detecting performance, the assistant node set of each event ej
(A(ej)) is formulated as follows:

A
(
ej
)
=
{

a
∣∣a = xijbijsi, i = 1, 2, . . . |SN(mm)|

}
∪ Cs

(
ej
)
− {0}. (25)
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The element in A(ej) is the ID of the assistant node of ej, consisting of the dynamic assistant node (the
first item in the equation) and the static assistant node (the second item in the equation). Because the
first item includes the element 0, which does not belong to the node ID, the set with the element 0 is
removed (the last item in the equation).

The multi-objective optimization model that each management node mm builds is discussed
as follows:

Objective 1: The energy consumption of mm neighbor nodes is minimized.

min Energy(mm).

Objective 2: The residual energy variance of mm neighbor nodes is minimized.

min Variance(mm).

Objective 3: The detecting performance of the event mm that manages is maximized.

max Per f ormance(mm).

Some constraint conditions also exist, which are as follows:
Constraint condition 1: Each event must cover at least K − 1 assistant nodes.

∣∣Cs
(
ej
)∣∣+ |SN(mm)|

∑
i=1

xijbij ≥ K− 1 j = 1, 2, . . . |EM(mm)|.

Constraint condition 2:
xij = 0, 1.

3.2.4. Methodology of the Constrained NSGA-II and Optimization Strategy

NSGA-II [38] is the improved version of the NSGA. It adopts a fast non-dominated sorting
procedure, a crowded comparison operator, and a controlled elitism mechanism, and overcomes
certain disadvantages in the NSGA, such as high computing complexity, premature convergence,
and the requirement of an assigning sharing parameter. The progress of solving the multi-objective
optimization model in Section 3.2.3 is shown as follows (if the space of the multi-objective optimization
model is less than the number of population np, then the solution set is solved by an exhaustive method
directly and ignores the following steps):

(1) Encoding the solution

To select the best node set in the neighbor nodes of each management node mm, the solution can
be expressed as bit string bs (bs [1] is the first element in bs, and bs [2] is the second element in bs).
Specific coding is shown in Figure 6, and the bit number of bs is |SN(mm)|·|EM(mm)|.

Then,
xij = bs[(i− 1) · |EM(mm)|+ j]. (26)

(2) Fast Non-Dominated Sorting Procedure

After the value of each solution in the current generation is obtained, the rank of each solution is
distributed by a fast, non-dominated sorting procedure. The rank of some non-feasible solutions may
be greater than that of feasible solutions. Thus, the case may degrade the convergence speed of the
algorithm. Therefore, during the rank distribution for each solution, this study adds the following two
rules [39]:

1. Feasible solutions are greater than non-feasible solutions.
2. In non-feasible solutions, the rank of solution with a lower degree of restriction is greater.



Sensors 2017, 17, 186 17 of 26

(3) Selection, Evolution, and Recombination [39]

Selection involves choosing excellent individuals from one generation to implement evolution
operation. This study uses the championship method to select parent individuals. Evolution includes
crossover and mutation, and this study uses two-point crossover. Recombination involves eliminating
inferior individuals to form new species groups of the same scale, according to a situation of
parent-and-son generations. This study uses the recombination method in Reference [40].

The population in each generation produces a population of the next generation by using Steps (2)
and (3). The method ends until the generation value achieves the maximum iteration number.

After NSGA-II obtains the Pareto solution, this study uses the TOPSIS method [41] to obtain the
best strategy according to the energy consumption of detection, the residual energy variance, and the
event detecting performance.
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4. Algorithm Analysis

The message and time complexity of the DEEKA are evaluated in this section.

4.1. Message Complexity

The total number of sent and received messages determines message complexity. At the beginning
of every round of the algorithm, each dynamic assistant node at the last round broadcasts its residual
energy, and the nodes that receive the message save and update the state information of its neighbor
nodes. The average number of dynamic assistant nodes in each round is assumed as nd (nd ≤ N), and
the average number of neighbor nodes is assumed as na. In this stage, the number of sent and received
messages are nd and nd·na, respectively. In the stage of management node formulation, the node
broadcasts message Mc after it detects an event. The number of sent messages is nc (nc is the number of
nodes detecting the event; nc ≤ N), and the number of received messages is nc·na. Each management
node broadcasts a “help” message after its formulation. Other nodes receiving this message broadcast
their state message. In the two processes, the number of sent messages is nm + nr (nm is the number
of management nodes in every round, nm ≤ N; and nr is the number of nodes receiving the “help”
message, nr ≤ N), and the number of received messages is na·(nm + nr). Then, each management node
sends the message about the probability of a node’s being selected to the corresponding node after
the probability has been calculated. Then, each node broadcasts its probability of being selected by
the event. In the two processes, the number of sent and received messages is nm + nr and na·(nm + nr),
respectively. In the last stage, each management node broadcasts to direct the corresponding nodes to
adjust their sensing radius when it has calculated the best strategy. In this process, the number of sent
messages is nm, and the number of received message is na·nm.

Therefore, the total number of sent messages for every round is expressed as follows:

nd + nc + 2(nm + nr) + nm ≤ 5N. (27)

The complexity of sent messages is O(N).
The total number of received messages for every round is expressed as follows:
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nd · na + na · nc + 2na · (nm + nr) + na · nm ≤ 5N2. (28)

The complexity of received messages is O(N2).

4.2. Time Complexity

In management node formulation, all nodes that detect the same event compete to formulate the
final management node of the event. The worst aspect of the process is that all of the nodes detect
all of the events. In this situation, every node for each event calculates the score of all of the nodes
about the event. Thus, the time complexity of the process is Z·N. In the process of calculating the
probability of the node’s being selected by events, each management node synchronously calculates
the probability of its neighbor nodes’ being selected by each event by a sampling and statistics method.
According to Reference [37], when the number of combinations is greater than 10,000,000, the number
of samplings does not exceed 400. Thus, this study sets the sample number regardless of the total
number of combinations. In addition, for a more accurate and reliable result, this study samples at
round a and uses the average as the probability of the node’s being selected. The worst aspect of the
process is that all the events are managed by a management node, and other nodes are the neighbor
nodes of the management node. In this situation, time complexity does not exceed MN(400aK + 1).
In the process of solving the multi-objective optimization model, the time complexity of NSGA-II is
O
(

3n2
p

)
, where np is the population number. Finally, each management node selects the best strategy

from the Pareto solution set by the TOPSIS method. The TOPSIS method in this study does not need to
sort for all the results and selects only the best one. Assuming that the number of Pareto solution sets
is ns, the time complexity of the process is ns.

The time complexity of the whole process of algorithm Tc is shown as follows:

Tc = ZN + ZN(400aK + 1) + 3n2
p + ns ≤ (400aK + 3)ZN + 3n2

p. (29)

Because np is the constant relative to Z and N, the time complexity can be expressed as O(ZN).

5. Simulation and Performance Analysis

In this study, the analysis of the DEEKA will be divided into two parts. At first, the validity of
the DEEKA is verified for the four indicators, namely, event detecting performance, network energy
consumption, network reliability, and energy consumption balance, compared to an algorithm of the
same class, the OVSKA. Then, the DEEKA is compared to an algorithm of another class (DMNSA [26])
in terms of network energy consumption, event detecting performance, and the event detecting delay
to verify the correctness of the analysis.

5.1. Simulation Scenario and Parameter Settings

A UWSN’s event K-coverage process is simulated by maxtrix laboratory (MATLAB) based on the
background of Zhejiang offshore breeding sites, in which the speed of the water current is relaxed,
underwater terrain is relatively flat and has little impact on the capability of communication and
sensing of the node, and there is enough deep to deploy the nodes. Therefore, during the simulation,
the target water area (length × width × depth) is set to 100 m × 100 m × 100 m.

After the target water area is determined, the network achieves 1-coverage by using deterministic
deployment of the truncated octahedron (the method needs the minimum number of nodes), in which
the number of nodes is 560. The network then is simulated according to the description of Section 2.1.1.
Because the paper focuses on the application effectiveness of the algorithm on event K-coverage, the
paper assumes an ideal physical layer, a MAC layer, and error-free communication links for simplicity,
namely, nodes can communicate with each other when they are in the communication range and all
of the data bags each node sends or receives are right, but may be lost in a certain probability in the
communication process, and the probability plost is set to 0.2. For the energy consumption during the
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network running, the paper use of the network energy model mentioned in Section 2.1.2 calculates the
energy consumption of each node. Meanwhile, the paper uses the detection performance model to
calculate the performance of the network by the algorithm running.

For the value of each indicator, it is produced by an average of 30 rounds of simulation data. The
parameters are set in Table 1 as follows:

Table 1. Simulation parameter table.

Parameter Value Parameter Value

Information transmission failure plost 0.2 Minimum sensing radius Rmin
s 10 m

Energy consumption of data reception Pr 5 mW Maximum sensing radius Rmax
s 28 m

Data transmission speed underwater 1000 bit/s Communication radius Rc 20 m
Interval of algorithm operation T 6 s Length of data packet l 150 bit

Adjusting parameters γ1, γ2 0.23, 0.71 Energy diffusion factor λ 1.5
k1, a 1, 10 Carrier frequency f 24 kHZ

Ratio of sensing to communication power rp 43/80 Maximum iteration number 300
Values of weight w1,w2,w3 1/3, 1/3, 1/3 Number of population np 60

5.2. Simulation Example

5.2.1. Comparison with the OVSKA

Figure 7 presents the average energy consumption of each node of both the OVSKA and the
DEEKA in every round with the varying number of events under different coverage requirements.
In Figure 7, under the same coverage requirements, the energy consumption of both the OVSKA and
the DEEKA increases. However, the trend gradually slows down with the increasing number of events.
When the number of events is also the same, the energy consumption of the DEEKA is lower than
that of the OVSKA. In addition, under different coverage requirements, the energy consumption of
the two algorithms also increases. In the DEEKA, each management node selects the assistant nodes
considering the expectation number of actual dynamic coverage events of the node. When selecting
the assistant node for one event, a situation in which the node is selected by other dynamic coverage
events is considered. The process will reduce the number of dynamic assistant nodes and the energy
consumption to a certain extent. It will also slow down the increasing speed of the number of dynamic
assistant nodes with the increasing number of events or the increasing value of K. On the contrary,
the OVSKA does not consider the above situation, which leads to the number of events or the value of
K having a relatively great influence on energy consumption.
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Figure 7. Average energy consumption of each node with event number and K-value.
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Figure 8 presents the network lifetime of each node of both the OVSKA and the DEEKA with
the varying number of events under different coverage requirements. As shown in Figure 8, the
network lifetime of both algorithms decreases with the increasing number of events. With the same
coverage requirements, the decreasing speed of the DEEKA is less than that of the OVSKA, and
when the number of events is the same, the network lifetime of the DEEKA is greater than that of the
OVSKA. In addition, the decreasing trend of the network lifetime of the DEEKA is less than that of the
OVSKA. In the OVSKA, each management node ignores the residual energy of the node and situations
in which a node is selected by several dynamic coverage events when it selects the assistant nodes.
The process produces several dynamic assistant nodes in the network and frequently makes some
nodes the dynamic assistant nodes, which is not beneficial to prolonging network lifetime. However,
the DEEKA considers these situations. In the DEEKA, a node can cover several dynamic coverage
events to a great extent, which can slow down the increasing speed of network energy consumption.
In addition, both the management node formulations of each event and the selection of the dynamic
assistant node in the DEEKA considers the residual energy of the node, which can balance network
energy consumption and is beneficial to prolonging network lifetime.
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Figure 8. Network lifetime with event number and K-value.

Figures 7 and 8 shows the trend of each indicator with the varying number of events and the
varying value of K. The trend of each indicator from the network starting to run to the network ending
will be shown in this section. The number of events is set 250, and the value of K is set 4.

Figure 9 presents the number of survival nodes with the network running round. As shown in
Figure 8, both the running time where none of the nodes died and the network lifetime are greater
in the DEEKA. Moreover, the number of survival nodes reduces slowly at first, and the trend then
increases gradually when the first dying node appears. In addition, the number of survival nodes of
the DEEKA under the same round is greater than that of the OVSKA. In the OVSKA, each management
node ignores the residual energy of the node when it selects the assistant nodes, which makes some
nodes become the dynamic assistant nodes frequently and then accelerates them to die. However, in
the DEEKA, each management node regards the residual energy variance of its neighbor nodes as
one of the optimization objectives to select its assistant nodes. Specifically, it considers the residual
energy of its neighbor node during the process, which can balance network energy consumption to
slow down node death and prolong network lifetime. In addition, in the DEEKA, each management
node calculates the energy consumption of its neighbor node, considering the expected actual dynamic
coverage event of the node, which reduces the energy consumption of the network. Thus, the process
is also beneficial to slowing down node death.



Sensors 2017, 17, 186 21 of 26
Sensors 2017, 17, 186 21 of 26 

 

 
Figure 9. Number of survival nodes with the number of network running rounds. 

Figure 10 presents the network detecting performance of both the OVSKA and the DEEKA with 
the network running round. When nodes did not die in the network, the network detecting 
performance of the OVSKA was better than that of the DEEKA with a slight difference. However, 
when the dying nodes appear, the network detecting performance of the OVSKA decreases quickly, 
and that of the DEEKA decreases slowly and maintains a relatively good performance in a certain 
round. In the DEEKA, each management node selects the assistant node considering the balance of 
the energy consumption of the node, which can reduce the speed of node death and maintain a 
relatively high number of survival nodes in certain rounds, as shown in Figure 9. 

 
Figure 10. Network detecting performance with the number of network running rounds. 

Figure 11 shows the residual energy variance of both the OVSKA and the DEEKA with the 
network running round. As shown in Figure 10, the variance of both algorithms increases, but the 
increasing trend of the OVSKA is greater than that of the DEEKA. Additionally, they decrease 
quickly with the decrease in the number of survival nodes. This phenomenon benefits from each 
management node with regard to residual energy variance of its neighbor nodes as one of the 
optimization objectives in the DEEKA, that is, considering the residual energy of its neighbor when it 
selects the assistant nodes and making network energy consumption more balanced. 

1400 1500 1600 1700 1800 1900
0

100

200

300

400

500

600

Round

N
um

be
r o

f s
ur

vi
va

l n
od

e

 

 
OVSKA
DEEKA
Network critical node number

1400 1500 1600 1700 1800 1900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

N
et

w
or

k 
de

te
ct

in
g 

pe
rfo

rm
an

ce

 

 
DEEKA
OVSKA

Figure 9. Number of survival nodes with the number of network running rounds.

Figure 10 presents the network detecting performance of both the OVSKA and the DEEKA
with the network running round. When nodes did not die in the network, the network detecting
performance of the OVSKA was better than that of the DEEKA with a slight difference. However,
when the dying nodes appear, the network detecting performance of the OVSKA decreases quickly,
and that of the DEEKA decreases slowly and maintains a relatively good performance in a certain
round. In the DEEKA, each management node selects the assistant node considering the balance of the
energy consumption of the node, which can reduce the speed of node death and maintain a relatively
high number of survival nodes in certain rounds, as shown in Figure 9.
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Figure 10. Network detecting performance with the number of network running rounds.

Figure 11 shows the residual energy variance of both the OVSKA and the DEEKA with the
network running round. As shown in Figure 10, the variance of both algorithms increases, but the
increasing trend of the OVSKA is greater than that of the DEEKA. Additionally, they decrease quickly
with the decrease in the number of survival nodes. This phenomenon benefits from each management
node with regard to residual energy variance of its neighbor nodes as one of the optimization objectives
in the DEEKA, that is, considering the residual energy of its neighbor when it selects the assistant
nodes and making network energy consumption more balanced.
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Figure 11. Residual energy variance with the number of network running rounds.

Figure 12 shows the average energy consumption of each node of the OVSKA and the DEEKA with
the network running round. In Figure 12, the network energy consumption of the two algorithms in the
network without node death moves down and up among certain values, but the energy consumption
of the DEEKA is less than that of the OVSKA. Because in the DEEKA, each management node selects
the assistant node considering a situation in which the node may be selected by several dynamic
coverage events, which can reduce the number of dynamic assistant nodes to a certain extent and
reduce network energy consumption. When the death node appears in the network, the average
energy consumption of both algorithms increases at first and then decreases, but the increasing trend
of the DEEKA is less than that of the OVSKA because the number of survival node decreases as round
number increases, which makes the average sensing radius of the node increase in turn. In other words,
network energy consumption increases. When the number of survival nodes decreases to a certain
value, dynamic assistant nodes do not exist for some events. Thus, energy consumption decreases.
The DEEKA considers the balance of network energy consumption, thereby slowing down the death
rate of the node and maintaining the number of survival nodes at a high level for a period of time,
thereby slowing down the increasing rate of the average sensing radius of the node, i.e., slowing down
the increasing speed of the network energy consumption.
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Figure 12. Average energy consumption of each node with the number of network running rounds.

5.2.2. Comparison with the DMNSA

The DEEKA is compared to another class of algorithm in this section. For the kind of algorithm
used for static K-coverage for the area, the K-coverage for the area, regardless of whether a sleep
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strategy of the node is used, should be completed. Clearly, the number of nodes that the K-coverage
network needs is K times as much as that 1-coverage needs. Thus, this study does not compare
the DEEKA to this kind of algorithm because the result is obvious. For the kind of algorithm that
assisted mobile nodes, we chose instead the distributed mobile node selection algorithm (DMNSA)
proposed by reference [26] for event K-coverage using mobile nodes. The position of the mobile node
is randomly distributed in the area, and the number of mobile nodes is equal to the number of nodes in
the network for K-coverage. Meanwhile, the energy consumption of moving unit distance is 1.2 J [26].

Figure 13 presents the energy consumption of the DEEKA and the DMNSA, and the average
moving distance of the DMNSA with the varying value of K. In Figure 13, energy consumption
increases with increasing coverage level, but the trend of the DEEKA is less than that of the DMNSA.
Meanwhile, the energy consumption of the DEEKA is less than the DMNSA with the same coverage
level. The reason is that the DEEKA completes the event K-coverage by adjusting the sensing radius
of the node, and the sensing energy consumption is much lower than the energy consumption of
the moving node. In addition, the average moving distance of the node decreases as coverage level
increases. However, the node still needs some time to move to the destination because of the low
moving speed of the node in water [29]. Contrarily, the method of adjusting the sensing radius that the
DEEKA uses only needs to adjust the transmit power of the sensor, which is completed instantaneously.
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Figure 13. Energy consumption and average moving distance with varying K.

Figure 14 shows that the network detecting performance of the DEEKA and the DMNSA with
the varying coverage level. In the figure, the network detecting performance of the DEEKA is less
than that of the DMNSA, but the difference closes with increasing coverage level and the greatest
difference between them is also no more than 5% because the DMNSA uses mobile nodes to complete
K-coverage and the event is all within the minimum sensing radius of the node. However, the DEEKA
adjusts the sensing radius to complete the event K-coverage, and, for each event, there are some nodes
among the K nodes that need to increase their sensing radius to cover the event, which degrades the
detecting quality of the event. When the coverage level increases, its impact on the network detecting
performance, caused by the increasing the sensing radius, weakens gradually. That is to say, the
robustness of the network increases.
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6. Conclusions 

This study presents the DEEKA and considers the effect of harsh underwater environments on 
information collection and transmission. It also considers the residual energy of the node and a 
situation in which the node is selected by several other events. At the beginning of each round of the 
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the node. Afterwards, each management node builds a multi-objective optimization model of the 
expected energy consumption of its neighbor nodes, the residual energy variance of its neighbor 
nodes, and the detecting performance of the events it manages as targets. Then, the management 
node obtains Pareto solutions by using the constrained NSGA-II method. Finally, mm selects the best 
strategy using the TOPSIS method, according to target bias of practical application. Simulation 
results show that, unlike the OVSKA, the DEEKA balances and reduces network energy 
consumption, thereby prolonging the network’s best service quality and lifetime. 

In future work, we plan to find a more precise method to establish the multi-objective 
programming model combining the characteristics of UWSNs. In addition, we will try to find a 
special or simple method to solve the model to further optimize our algorithm. 
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6. Conclusions

This study presents the DEEKA and considers the effect of harsh underwater environments
on information collection and transmission. It also considers the residual energy of the node and
a situation in which the node is selected by several other events. At the beginning of each round of
the algorithm, the nodes that detect the same event compete for the management node of the event
with the number of neighbors and the average residual energy, as well as distance to the event. Then,
each management node calculates the probability of each dynamic candidate node’s being selected
by the corresponding event it manages according to the levels of distance and the residual energy of
nodes in the set of dynamic candidate nodes, as well as the number of dynamic coverage events of the
node. Afterwards, each management node builds a multi-objective optimization model of the expected
energy consumption of its neighbor nodes, the residual energy variance of its neighbor nodes, and the
detecting performance of the events it manages as targets. Then, the management node obtains Pareto
solutions by using the constrained NSGA-II method. Finally, mm selects the best strategy using the
TOPSIS method, according to target bias of practical application. Simulation results show that, unlike
the OVSKA, the DEEKA balances and reduces network energy consumption, thereby prolonging the
network’s best service quality and lifetime.

In future work, we plan to find a more precise method to establish the multi-objective programming
model combining the characteristics of UWSNs. In addition, we will try to find a special or simple
method to solve the model to further optimize our algorithm.
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