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Abstract: A laser stripe sensor has limited application when a point cloud of geometric samples
on the surface of the object needs to be collected, so a galvanometric laser scanner is designed
by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to
sweep along the object. A novel mathematical model is derived for the proposed galvanometer
laser scanner without any position assumptions and then a model-driven calibration procedure
is proposed. Compared with available model-driven approaches, the influence of machining and
assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach
is proposed to extract a large number of calibration points effectively and accurately to calibrate
the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are
evaluated on the automobile production line to verify the efficiency and accuracy of the proposed
calibration method. Experimental results show that the proposed calibration approach yields similar
measurement performance compared with a look-up table calibration method.

Keywords: galvanometric laser scanner; calibration; the screw theory; laser stripe sensor

1. Introduction

In recent decades, the laser stripe sensor has been widely used and is becoming promising in
many industrial applications, such as a seam tracking system [1], a weld quality inspecting system [2]
and an inspection system of automobile assembly [3], because of its fast acquisition speed, very simple
mechanical structure, low cost, and robustness. The main working principle of the laser stripe sensor
is that a laser line projector projects a single laser stripe plane onto the object’s surface, forming a light
stripe. The light stripe is modulated by the depth of the object’s surface and a camera records the 2D
distorted image. The 3D characteristic information of the object’s surface can be derived from the
2D distorted image after performing 3D reconstruction. However, a laser stripe sensor has limited
application when a point cloud of geometric samples on the surface of the object is needed to be
collected [4]. Taking an inspection system of automobile assembly, for example, the alignments of
holes and parts are important, because imprecise positioning of screw holes on a body frame can twist
the frame, loosen screws, produce vibration, and deteriorate other qualities. Consequently, the light
stripe needs to sweep through the surface of the hole by using mechanical devices to extract its center.
The system with such a scanning capability is called a laser scanner.

Tremendous efforts have been devoted to the field of developing and calibrating many laser
scanners with different mechanical devices and a wide range of methods have been developed. Li [5–7]
designed a laser scanner via mounting the laser stripe sensor to the end-effect of a robot. The accuracy
of the laser scanner is limited owing to the absolute accuracy of the robot. The laser stripe sensor can
also be fixed at the end of the coordinate measuring machine to form a highly accurate laser scanner [8];
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however, the coordinate measuring machine is not suitable for being installed on the production
line. There is also another form of laser scanner where the position of the projector with respect to
the camera coordinate system can be determined via additional reference frame [9,10] or physical
constraint [11,12]. Ren [13,14] proposed a linear laser scanner via mounting the laser stripe sensor to a
linear rail and the linear rail takes the vision sensor to perform linear scanning. The shortcoming of
the linear laser scanner is that its relatively large size and heavy load of the linear rail will limit its
industrial applications. Li [15] and Xiao [16] presented a rotational laser scanner by mounting the laser
stripe sensor to a turntable. This has the same drawbacks as the linear laser scanner.

The laser scanner using the galvanometric element as its mechanical devices can solve the
aforementioned drawbacks. The galvanometric element mainly consists of a precision motor and a
reflective mirror. The precision motor guarantees the accuracy of the galvanometric laser scanner.
Additionally, the load of the precision motor is just the lightweight mirror and it is much lighter than
the aforementioned laser scanners [13–16]. Furthermore, the galvanometric element is mounted inside
the laser scanner, so the size of the galvanometric laser scanner is relatively smaller. However, existing
methods [17–21] are only deal with the vision sensor calibration problem with a fixed light stripe
plane. Additionally, calibration of a linear laser scanner [13,14] or a rotational laser scanner [15,16] is
to determine the movement of the vision sensor, and movement of the whole vision sensor is easily
estimated via measuring a static sphere [13,14] or a planar calibration target [15] using the vision
sensor. All of the aforementioned calibration methods cannot be used to calibrate the galvanometric
laser scanner. Manakov [22] designed a two-mirror galvanometric laser scanner with a point-mark
laser projector and proposed a model-driven calibration method. However, the rotational axis that lays
on the reflective mirror is assumed in the mathematical model and initial estimations of the intrinsic
and extrinsic parameters of the scanning system are calibrated separately. Wagner [23] proposed a
look-up table (LUT) to calibrate the two-mirror galvanometric laser scanner and only the pre-defined
set of laser rays in LUT can be used in the measuring process. Wissel [24] presented a data-driven
learning method for calibrating the two-mirror galvanometric laser scanner, however, a large amount
of data is needed to train the data-driven model. The point-mark laser projector along with the
two-mirror galvanometric element spends a lot of time to sweeping through the surface of the object,
and consequently, the two-mirror galvanometric laser scanner is not suitable for measuring the shape
of the object on the production line. Recently, Chi [25] proposed a laser line auto-scanning system
for underwater 3D reconstruction, and it overcomes the time-consuming drawback of the point-mark
laser scanner [22]. However, the mathematical model [25] assumes that the galvanometer rotation
axis should completely coincide with the line intersected by the laser plane and the mirror of the
galvanometer. The assumption is relatively harsh for machining and assembly accuracy, because
the direction of the laser stripe plane is very hard to measure, and consequently, it is impossible to
adjust the incoming laser stripe plane to hit the galvanometer rotation axis. In summary, available
mathematical models [22,25] of the galvanometric laser scanner make some assumptions which require
the system to be manufactured and assembled well enough, so that the available mathematical models
are limited in actual applications.

In this paper, a novel laser scanner is designed via using a one-mirror galvanometer element as
the mechanical device. Then the corresponding mathematical model and calibration procedure for
the galvanometric laser scanner are proposed. Compared with the linear laser scanner [13,14] and
the rotational laser scanner [15,16], the advantage of the proposed galvanometric laser scanner is that
its size is very small and its light load increases the life of the motor, so the proposed laser scanner
has widespread application prospects in the industrial field, especially for on-line quality inspection.
Compared with the mathematical model and the calibration procedure proposed by Manakov [22]
and Chi [25], the proposed mathematical model is derived without any position assumptions and all
parameters are estimated by minimizing one objective function. The remaining sections are organized
as follows: Section 2 introduces the construction and inspecting principle of the galvanometric laser
scanner; in Section 3, the mathematical model of the proposed laser scanner is established. Based on the
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proposed mathematical model, a calibration procedure for the laser scanner is presented. To validate
the efficiency and accuracy of the proposed method, contrast experiments are conducted in Section 4;
and the paper ends with concluding remarks in Section 5.

2. System Working Principles

The galvanometric laser scanner is designed using a one-mirror galvanometer element as the
mechanical device to collect a point cloud of geometric samples on the surface of the object as shown
in Figure 1a. As shown in Figure 1b, the galvanometric laser scanner is mainly comprised of a CCD
camera (Basler acA1300/30 µm) with a 16 mm lens, a laser line projector (wavelength of 730 nm,
beam width ≤1 mm), and a one-mirror galvanometer element which was made by ourselves using a
reflective mirror and a stepper motor. The size of the galvanometric laser scanner is 158 × 116 × 43 mm.
Here, there are 23 stripe lines in the view of the sensor, and each pose of the stripe line is fixed in the
CCS owing to the high repeatability of the stepper motor. Each rotational step of the galvanometer
element is 0.1146◦, which is decided by both the speed of the galvanometer element and the frame rate
of the camera.
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Figure 1. (a) Schematic diagram of the one-mirror galvanometric laser scanner; and (b) construction 

of the one-mirror galvanometric laser scanner. 
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measuring process is as shown in Figure 2. In Figure 2a, the edge points of the circle are extracted in 

the ROI when the laser line scans across the work piece. Figure 2b shows the 3D point cloud of the 

measured circle after 3D reconstruction. Compared with the Digital TriCam FlexiCam [26], 

manufactured by Perceptron, Inc., the laser scanner cannot only provide a 3D point cloud without 

robot motion, but can also be less sensitive to the measurement position and environmental 

conditions, such as lighting.  

Figure 1. (a) Schematic diagram of the one-mirror galvanometric laser scanner; and (b) construction of
the one-mirror galvanometric laser scanner.

The working principle is as follows: an incoming laser stripe plane, which is projected by a laser
line projector, hits the reflective mirror and the light stripe formed by intersecting outgoing laser stripe
plane and the object’s surface is captured by the fixed camera. The 3D characteristic information
of the object’s surface can be derived from the 2D distorted structured light stripe images after 3D
reconstruction. The camera is triggered to acquire pictures continuously when the stepper motor
gives a hardware trigger signal. The hardware trigger signal is given when the stepper motor rotates
across its zero position. The reflected laser stripe plane scans across the object’s surface along with
the rotation of the galvanometer element, and the 3D information of the object’s whole surface can be
reconstructed. The measurement result is obtained within one second along with the scanning, so it
is very suitable for industrial applications, especially for on-line quality inspection. The measuring
process is as shown in Figure 2. In Figure 2a, the edge points of the circle are extracted in the ROI
when the laser line scans across the work piece. Figure 2b shows the 3D point cloud of the measured
circle after 3D reconstruction. Compared with the Digital TriCam FlexiCam [26], manufactured by
Perceptron, Inc., the laser scanner cannot only provide a 3D point cloud without robot motion, but can
also be less sensitive to the measurement position and environmental conditions, such as lighting.



Sensors 2017, 17, 164 4 of 14
Sensors 2017, 17, 164 4 of 14 

 

Laser Line ROI

Edge points 

  
(a) (b) 

Figure 2. The measuring process of the work piece feature: (a) the processed gray image; and (b) the 
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Figure 2. The measuring process of the work piece feature: (a) the processed gray image; and (b) the
corresponding 3D point cloud.

3. Modeling and Calibration of the Galvanometric Laser Scanner

The proposed galvanometric laser scanner is calibrated via calibrating the camera first and then
estimating the equation of each laser stripe plane with respect to the camera coordinate system
(CCS). The camera has been extensively studied in the past decades, and its modeling and calibration
techniques are very mature [27–29]. The main obstacle is to determine the equation of the reflected
laser stripe plane with respect to the CCS at a given rotational angle of the galvanometer element.
A mathematic model between the reflected laser plane and the given rotational angle is derived mainly
based on the screw theory, and the objective function is established to identify the unknown parameters
via minimizing the sum of distances from calibration points (control points) on the laser stripe plane
to estimated reflected laser planes. A large number of control points are extracted by employing a
plane-constraint-based method.

3.1. Camera Calibration

Camera calibration is to estimate intrinsic parameters which reflect the optical characteristic of the
camera, and extrinsic parameters that express the pose of the local world coordinate system relative to
the camera coordinate system. Zhang [29] presents a flexible camera calibration algorithm in which a
planar calibration target is observed by a camera from multiple points of view. Here, the camera is
fixed and the 7 × 7 dot array calibration target is freely moved and the relative calibration target poses
are unknown. After camera calibration, the pose of each calibration target with respect to the camera
coordinate system is determined.

3.2. Computing Control Points via the Plane-Constraint-Based Method

Here, a plane-constraint-based approach is proposed to extract a large number of control points
on the laser stripe plane to identify the system’s unknown parameters by viewing a planar calibration
target from multiple orientations. Compared with the invariance of cross-ratio [19,21] and the
invariance of double cross-ratio [20,30], the plane-constraint-based calibration approach extracts
the same number of control points as the invariance of double cross-ratio without error propagation.

Without loss of generality, the local world coordinate system (WCS) of each calibration target is
defined as follow: its original point is located at the upper left corner of the planar calibration target,
and its X axis is along one side of the target and its Y axis is along the other side, as shown in Figure 3.
As a result, the Z coordinates of any points located on the planar target is 0.
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Z = 0 (1)

The camera model can be expanded as:

µP̃i =
ci

TC
CTw P̃w =

 t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

P̃w (2)

where ci
TC and CTw contain intrinsic and extrinsic parameters separately, so they are known after

camera calibration. P̃i is the image plane coordinate of a control point which can be determined by
center of mass algorithm [31] and P̃ω is the corresponding world coordinates of the control point.

However, ci
TC·CTw is a 3 × 4 transformation matrix with row rank r = 3, so there is no left inverse

matrix of ci
TC·CTw. As a result, the world control point P̃ω cannot be derived only from Equation (2).

However, all the world control points are constrained on the surface of the planar target, so there is an
additional equation (Z = 0) for all the world control points. Equations (1) and (2) are combined to form
the plane-constraint-based method for extracting control points in the local WCS:

µ

[
P̃i
0

]
= TP̃w =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 1 0

P̃w (3)

where the transformation matrix T is a 4 × 4 invertible matrix, and the fourth row of the matrix T
indicates that all of the world control points are constrained on the OXY plane of the local world
coordinate system.

The local world control points can be transformed into the global camera coordinate system via
extrinsic parameters as shown in Figure 3. The planar calibration target can be placed in multiple
poses, so the plane-constraint-based method easily extracts a large number of control points. It is
should be noticed that the invariance of the cross-ratio method only extracts, at most, seven control
points at each position of the 7 × 7 dot array calibration target, so it is inconvenient for a large number
of control points to fit the laser stripe plane. Though the invariance of the double cross-ratio method
theoretically extracts all control points on the calibration target, the accuracy of the control points is
limited owing to error propagation using the invariance of the double cross-ratio twice.

Sensors 2017, 17, 164 5 of 14 

 

The camera model can be expanded as: 

11 12 13 14

21 22 23 24

31 32 33 34

ic C

i C w w w

t t t t

P T T P t t t t P

t t t t



 
 

 
 
  

 (2) 

where 𝑇 
𝑐𝑖

𝐶 and 𝑇 
𝐶

𝑤 contain intrinsic and extrinsic parameters separately, so they are known after 

camera calibration. 𝑃𝑖̃ is the image plane coordinate of a control point which can be determined by 

center of mass algorithm [31] and 𝑃𝜔̃ is the corresponding world coordinates of the control point. 

However, 𝑇 
𝑐𝑖

𝐶 ∙ 𝑇 
𝐶

𝑤 is a 3 × 4 transformation matrix with row rank r = 3, so there is no left inverse 

matrix of 𝑇 
𝑐𝑖

𝐶 ∙ 𝑇 
𝐶

𝑤. As a result, the world control point 𝑃𝜔̃ cannot be derived only from Equation 

(2). However, all the world control points are constrained on the surface of the planar target, so there 

is an additional equation (Z = 0) for all the world control points. Equations (1) and (2) are combined 

to form the plane-constraint-based method for extracting control points in the local WCS: 

11 12 13 14

21 22 23 24

31 32 33 340

0 0 1 0

i

w w

t t t t

t t t tP
TP P

t t t t


 
 

 
   
  
 
 

 (3) 

where the transformation matrix T is a 4 × 4 invertible matrix, and the fourth row of the matrix T 

indicates that all of the world control points are constrained on the OXY plane of the local world 

coordinate system. 

The local world control points can be transformed into the global camera coordinate system via 

extrinsic parameters as shown in Figure 3. The planar calibration target can be placed in multiple 

poses, so the plane-constraint-based method easily extracts a large number of control points. It is 

should be noticed that the invariance of the cross-ratio method only extracts, at most, seven control 

points at each position of the 7 × 7 dot array calibration target, so it is inconvenient for a large number 

of control points to fit the laser stripe plane. Though the invariance of the double cross-ratio method 

theoretically extracts all control points on the calibration target, the accuracy of the control points is 

limited owing to error propagation using the invariance of the double cross-ratio twice. 

iZ

C

WiT

 iW
iX

iY


jW

j
X

j
Y

z
 C

Camera

x

y

jZ

C

WjT

 

Figure 3. The diagrammatic sketch of transforming the multiple local world coordinate systems into 

a global camera coordinate system. 

  

Figure 3. The diagrammatic sketch of transforming the multiple local world coordinate systems into a
global camera coordinate system.
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3.3. Mathematical Model of the Galvanometric Laser Scanner

The laser line projector can be modeled as a plane equation and the reflective mirror also can be
modeled as a plane equation. The rotational axis of the galvanometric is represented by a spatial line.
What is more, all of the equations are expressed in the CCS.

3.3.1. Mathematical Model of Basic Elements

The plane ∏p equation of the laser line projector (incoming laser plane) is given below

apxc + bpyc + cpzc + dp = 0 (4)

where
(
ap, bp, cp, dp

)
are the estimated plane parameters and np =

(
ap, bp, cp

)
are the normal vector

of the plane.
The original plane ∏0 equation of the reflective mirror is:

a0xc + b0yc + c0zc + d0 = 0 (5)

The rotational axis l of the galvanometer element is expressed using the directional vector ω and
a point P on l.

It is should be noticed that there are 11 independent parameters to describe two planes and
one spatial line, and no position assumptions are made during the mathematical model of the basic
elements. Consequently, machining and assembly errors, which affect the position of basic elements,
are considered in the mathematical model. Meanwhile, the position of the laser projector is fixed in the
CCS, so the plane equation of the laser line projector is fixed, but unknown, and the equation of the
reflective mirror changes along with the rotation of the galvanometer element.

3.3.2. Equation of the Rotated Reflective Mirror

Based on screw theory [32], the transformation matrix T of the rotational axis l can be easily
expressed as follows, and the twist coordinates ξ for the rotational axis l is given below:

ξ =
[

v ω
]T

(6)

v = −ω× P = −ω̂P (7)

where ω is the directional vector of l and P =
(

Px, Py, Pz
)

is a point on l.
The operator, ∧ (wedge), forms a R4 × 4 matrix (the twist ξ̂ ) out of a given vector ξ in R6:

ξ̂ =

[
v
ω

]Λ

=

[
ω̂ v

01×3 0

]
(8)

Then the transformation matrix T can be expressed via the exponential map from the twist ξ̂:

T = eξ̂θ =

[
eω̂θ

(
I − eω̂θ

)
(ω× v)

01×3 0

]
(9)

If the rotational angle θ of the galvanometer element is given, the transformation matrix T is
determined. The equation of the rotated reflective mirror ∏i at the given θi can be easily expressed
as follows:

ñi = eξ̂θi ñ0 (10)

P̃i = eξ̂θi P̃0 (11)
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where ñ0 = [a0, b0, c0, 0]T is the homogeneous coordinate of the original reflective mirror’s normal
vector in the CCS, and P̃0 =

[
P0x, P0y, P0z, 1

]T is the homogeneous coordinate of the point P0 on the
original plane ∏0.

3.3.3. Equation of the Reflected Laser Plane

If the incoming laser plane ∏p and the rotated reflective plane ∏i are determined, the equation of
the reflected laser plane can be given below.

The normal vector noi of the reflected laser plane is estimated as shown in Figure 4 and
given below:

noi = 2 · (ni, np) · ni − np (12)

where np is the normal vector of the incoming laser (laser projector) plane, and ni is the normal vector
of the rotated reflective plane ∏i.

The intersection point of the incoming laser plane and the rotated reflective plane ∏i can be easily
calculated, and then the equation of the reflected laser plane can be easily estimated using the normal
vector and a point on the plane. The reflected laser plane at a given θi is given below:

aoixc + boiyc + coizc + doi = 0 (13)
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3.4. Estimation of the Galvanometric Laser Scanner’s Parameters

There are, in total, 11 independent unknown parameters in the aforementioned model. These
parameters can be estimated by minimizing the following objective function:

E(X) =
n

∑
i=1

m

∑
j=1

dij (14)

dij =
∣∣aoixj + boiyj + coizj + doi

∣∣ (15)

where dij is the distance from the control point Pj
(
xj, yj, zj

)
to the ith estimated reflected laser plane,

and the point Pj
(

xj, yj, zj
)

is the point on the ith real reflected laser plane. X are the 11 independent
unknown parameters. A large number of control points are extracted via the plane-constraint-based
method as described in Section 3.2.

The Levenberg-Marquardt algorithm [33] is employed to optimize aforementioned parameters.

3.5. Summary

To sum up, the procedure of the proposed calibration method is described in Figure 5 is as follows:
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1. The planar calibration target is located at several different poses, and each pose of the planar
calibration target is captured by the galvanometric laser scanner. The last two poses are captured
twice in two cases, one with no laser stripe line projected onto the planar calibration target for
camera calibration and the other with the laser stripe line for projector calibration.

2. The captured images without the laser stripe line are used for camera calibration and both
intrinsic parameters and extrinsic parameters are determined.

3. Extracting all image coordinates of control points in two captured images.
4. Correcting distortion for those image coordinates according to the lens distortion model.
5. Calculating control points in the local world coordinate system based on plane-constraint method

and transforming the local world coordinate of control points to the global camera coordinate
system according the extrinsic parameters.

6. Estimating the 11 independent unknown parameters according to Equation (14).
7. Calibration of the galvanometric laser scanner is completed.
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4. Experiments

Here, the galvanometric laser scanner is made to be used on the automobile production line.
The proposed calibration method is used to calibrate the laser scanner and then repeatability and
accuracy of the laser scanner is evaluated via measuring four standard workpieces (a standard
sphere feature, a standard hole feature, a standard slot feature, and a standard square feature).
The aforementioned features are very common in quality control of body-in-white. Meanwhile,
there are 23 stripe lines in the view of the sensor, and each pose of the stripe line is fixed in CCS owing
to high repeatability of the stepper motor, so a LUT method can be employed to calibrate the laser
scanner. Contrast experiments are conducted to verify the efficiency and accuracy of the proposed
calibration method.

4.1. System Calibration

The laser scanner is calibrated via minimizing the sum of distances from control points to the
estimated reflected laser plane with the Levenberg-Marquardt algorithm. Initial values of unknown
parameters can be determined by the structure of the laser scanner. As shown in Figure 1b, the nominal
value of the rotational axis l can be expressed via the directional vector ω = (1, 0, 0) and a point
P = (0,−94,−10). The incoming laser plane ∏p is adjusted to hit the rotational axis l, so the nominal
equation of the incoming laser plane is (0, 0, 1, 10). The nominal original plane ∏0 equation of the



Sensors 2017, 17, 164 9 of 14

reflective mirror can be determined by the incoming laser plane and the reflected laser plane, so the
nominal equation of the plane ∏0 is (0, 0.853, 0.477, 87). The aforementioned parameters are good
initial guesses for the Levenberg-Marquardt algorithm. The laser scanner is calibrated according to the
calibration procedure described in Section 3.5.

4.2. Repeatability Evaluation

As shown in Figure 6, the designed galvanometric laser scanner is mounted at the end of the
robot to construct a robot-based inspecting system. Coordinates of the spherical centers obtained by
the laser scanner are used to calibrate the inspecting system. Here, the standard sphere is a bearing
steel ball and is coated with matt material. Other three standard features are manufactured by a
five-axis CNC machine (DMG HSC 75 linear, DMG MORI Inc., Bielefeld, Germany), and all standard
features are inspected on a CMM (2 + (L/350) µm, Thome Präzision GmbH, Messel, Germany). The
definitions of the dimensions of the features are shown in Figure 6b and Table 1 shows true values
of the features’ dimensions. In Figure 7a, the surface points of four features are extracted in the ROI
and the corresponding 3D points cloud are obtained after calibrating the laser scanner. Figure 7b
shows the 3D point cloud and the fitted sphere by a nonlinear least-squares sphere fitting algorithm
(TLSA) [34], the fitted circle by the geometric circle fitting algorithm [35], and the fitted square by the
Hough transform [36]. Repeatability of the laser scanner is evaluated via measuring four features
10,000 times lasting from 10:00 a.m. to 8:00 p.m. with the inspecting system fixed at a certain pose. The
influence of the environmental condition changes, such as lighting, on the repeatability of the laser
scanner is studied during the long-time repeatability evaluation experiment. The coordinates of four
features’ centers with respect to CCS, and the dimension of them, are shown in Figure 8. As indicated
in Figure 8, the standard deviation (std) of the laser scanner is less than 0.02 mm and the laser scanner
is robust to environmental condition such as lighting. Edges of the square intersect the laser stripe
planes at, approximately, a 45◦ angle, which leads to edge effects in the extraction of the laser stripe
center, because the center of mass algorithm is performed for each column of the image independently.
Consequently, the laser scanner is less suitable for square features.
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Figure 6. (a) The experimental setup in the automobile production line; and (b) the experimental setup
in the laboratory condition.

Table 1. True values of four features’ dimensions.

Sphere (R) Slot (L) Square (H × W) Circle (R)

True value 12.7080 mm 9.9900 mm 10.01752 mm × 10.03618 mm 4.9862 mm
Std 12.1 µm 0.5 µm 0.8 µm × 2.1 µm 1.5 µm
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Figure 7. The measuring process of four features: (a) the processed gray image; and (b) the fitted
four features.
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Figure 8. Repeatability evaluation of four features. (a) Sphere feature; (b) Slot feature; (c) Square
feature; (d) Circle feature.
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4.3. Accuracy Evaluation

Here, accuracy of the laser scanner is evaluated via measuring four features from six different
poses. The proposed calibration method is compared with other three calibration methods, such as
a one-step calibration method (Huynh [19]), a two-step calibration method (Zhou [21]) and other
two-step calibration method (plane-constraint-based method). The aforementioned three calibration
methods only deal with the vision sensor calibration problem with a fixed light stripe plane. However,
there are 23 stripe lines in the view of the sensor, and each pose of the stripe line is fixed in the
CCS owing to the high repeatability of the stepper motor. Inspired by LUT, three other calibration
methods are repeated 23 times at each pose of the laser stripe plane to complete the calibration of the
galvanometric laser scanner and Zhou’s method stands for Zhou’s method with LUT in later paragraph
and so on. The LUT method consists of two parts: (1) storing calibration matrices for 23 pre-defined
laser planes in a LUT; and (2) usage of the calibration matrix at a pre-defined rotational angle for 3D
reconstruction. The LUT method is used as a reference for the proposed model-driven calibration
method. Four calibration methods use the same calibration images to complete the calibration
procedure and accuracy verification.

The root mean square error (RMSE) obtained by estimating the deviation between measurement
dimensions and the true value among the proposed calibration method are given in Table 2.
As indicated in Table 2 and in Figure 9, the RMSE of the one-step calibration method is much larger
than other three two-step calibration methods. This is because the one-step method is based on the
homography model [30,37] which neglects the lens distortion when the camera is modeled. The RMSE
of the plane-constraint-based calibration method is smaller than that of Zhou’s method, because there
are only 14 control points to fit each laser stripe plane in the calibration process described in Section 3.5.
As we known, the influence of noise contained in the control points will greatly affect the accuracy
of the fitted plane when control points are limited in quantity [20]. The 7 × 7 dot array calibration
target should be placed at many positions to extract a large of control points via Zhou’s calibration
method, and it is inconvenient to implement. The plane-constraint-based method theoretically extracts
all control points on the calibration target by imposing a plane constraint (Z = 0) on them, so it is
convenient to estimate the laser stripe plane effectively and accurately. The RMSE of the proposed
calibration method (model-driven method) is slightly worse than that of the plane-constraint-based
method (LUT method), because the model-driven method estimates the laser stripe planes via the
system’s mathematic model, while the LUT method fits each pre-defined laser stripe planes using
control points directly. However, the advantages of the proposed method over the LUTs are listed as
follows: (1) the LUT method is employed to calibrate only for the pre-defined set of laser stripe planes;
(2) the laser scanner needs to be recalibrated only when the structure of the laser scanner changes for
the proposed method, while the laser scanner needs to be recalibrated even when the rotational angle
changes for the LUT methods.

Table 2. Root mean square error (RMSE) comparison among four methods.

Feature Type Proposed Method (mm) Plane-Constraint-Based (mm) Zhou [21] (mm) Huynh [19] (mm)

Sphere (R) 0.0107 0.0084 0.0162 0.0473
Slot (L) 0.0329 0.0231 0.0483 0.0810

Square (H) 0.0488 0.0323 0.0652 0.1087
Circle (R) 0.0234 0.0139 0.0322 0.0527

In summary, repeatability and accuracy of the proposed laser scanner is enough for quality
inspecting of the automobile production line. In fact, accuracy of vision sensors is mainly related to the
working distance. The proposed laser scanner works at a very close distance (100 mm) with very high
accuracy. The rotational laser scanner’s working distance is 110 mm with high accuracy (0.024 mm) [15].
The linear laser scanner’s working distance is 175 mm and the accuracy is about 0.071 mm [14].
There are also laser scanners with long working distance. Chi [25] developed a laser line auto-scanning
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system for underwater 3D reconstruction at a long working distance (1000 mm) with lower accuracy
(0.382 mm). A rotary scanning system is proposed to measure a board from 2000 mm away and the
accuracy is about 10 mm [38].Sensors 2017, 17, 164 12 of 14 
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feature; (d) Circle feature.

5. Conclusions

In this work, a one-mirror galvanometric laser scanner is proposed to collect a point cloud of
geometric samples on the surface of the object. Compared with available laser scanners, the proposed
one has a relatively small size and its light load increases the life of the motor, so the proposed laser
scanner has widespread application prospects in the industrial field. Meanwhile, a mathematical model
of the galvanometric laser scanner is derived based mainly on screw theory, and then a calibration
procedure is presented. Repeatability and accuracy of the proposed laser scanner are evaluated in the
automobile production line and results show that the laser scanner and the calibration procedure are
very effective in the industrial applications, especially in the vision inspection system. In addition, the
idea of the screw theory-based calibration method can be used for reference when laser scanners with
other forms of mechanical devices are calibrated.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/17/1/164/s1,
Video S1: The one-mirror galvanometric laser scanner; Video S2: The robot-based inspecting station in the
automobile production line.
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