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Abstract: Due to the unattended nature and poor security guarantee of the wireless sensor networks
(WSNs), adversaries can easily make replicas of compromised nodes, and place them throughout
the network to launch various types of attacks. Such an attack is dangerous because it enables
the adversaries to control large numbers of nodes and extend the damage of attacks to most of the
network with quite limited cost. To stop the node replica attack, we propose a location similarity-based
detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides
extra functionalities that prevent replicas from generating false location claims without deploying
resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate
the security performance of our proposal under different attack strategies through heuristic analysis,
and show that our scheme achieves secure and robust replica detection by increasing the cost of
node replication. Additionally, we evaluate the impact of network environment on the proposed
scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves
effectiveness and efficiency with substantially lower communication, computational, and storage
overhead than prior works under different situations and attack strategies.

Keywords: security in wireless sensor networks; replica node detection; location similarity;
deployment knowledge

1. Introduction

Low-power wireless sensor networks (WSNs) are known to be capable of rapid deployment
in large geographical area in a self-organized manner, which makes them particularly suitable for
real-time large-scale data collection and event monitoring for mission-critical applications, such as
border monitoring, target tracing, and in-network aggregation. In such applications, the sensors are
deployed in a hostile environment with potential security threats. However due to the constraints
of network scale and fabrication cost, the sensor nodes are usually exploited by adversaries with
poor security guarantees. Meanwhile, since in most cases WSNs are remotely administrated by the
network operator, the sensor nodes are often deployed in an unattended manner. Thus, compared
with traditional wired and wireless networks, WSNs are much more vulnerable to a variety of
attacks from the inside and outside of the network, such as eavesdrop, forge, and node compromise.
In recent years a large amount of research efforts [1–5] focus on the security issues of WSNs and their
corresponding fields.
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Among such attacks, the node replica attacks [6] may be particularly dangerous to WSNs because it
is difficult for the security mechanisms to identify the replica nodes with a reasonable time and resource
consumption. However, once an adversary possesses a small number of compromised nodes, he can
easily generate a large number of replicas which share the keying materials and IDs with the original
ones, spreading the replicas throughout the network. The sensor nodes, which pass the verification
of the network security protocols, are able to create pairwise shared keys with other nodes and the
basestation (BS) with legal keying materials and IDs and, thus, capable of encrypting, decrypting, and
authenticating their own communications on demand, as if they were the original compromised ones.
To our best knowledge, the cost of generating replicas for the adversary is much lower than that of
compromising equal quantities of sensor nodes, which makes it extremely economical to launch node
replica attacks. By injecting a large number of replicas into the target network, the adversary manages
to continuously undermine the network without being detected. For example, he can overhear
the traffic pass through his deployed replicas, and inject false data to disturb the data collection.
Alternatively, he could adopt more aggressive strategies which undermine the network protocols such
as clustering and in-network aggregation, thereby incurs continuous harm to the network operations.
To some extents, node replica attack are far more dangerous than node compromise attacks, as the
time and effort spent on the node replication are much less. However, compared with other security
threats, like eavesdropping, forgery, denial of service, and node compromise, the node replica attack
receives much less attention. We, thus, believe that it is necessary to develop distributed lightweight
countermeasures to address the threat of node replicas in an early stage of network.

A straightforward solution to the node replica problem is to equip the tamper-proof hardware
on each node in the network against illegal loading of security materials and malicious program
rewriting. However such a solution is much too expensive for most sensor network applications.
Additionally, although tamper-proof hardware has the adversaries spending more time and effort on
node compromise, it may still be possible to bypass tamper-resistance for a small number of nodes
in reasonable amounts of time. Another class of solutions [6–11] identifies the replica nodes based
on the location claims reported by the sensor nodes themselves. These solutions deduce the location
anomalies based on the conflicts existing in the location claims. However, these location-claim-based
schemes are vulnerable to the falsified location claims generated by the replicas. The replica nodes
manage to elude the detection by reporting the same location as the original compromised nodes to BS.

To address the limitation of the prior works, we propose a location-free scheme to detect node
replica attacks in sensor networks using group deployment knowledge. Our scheme adapts the
location claim idea presented in [6]. The basic idea behind our proposal is that it is reasonable to treat
a node as a replica when its claimed location is far away from its true location. However, the exact
physical positions of sensor nodes are difficult to obtain since accurate localization is not practical in
sensor networks due to high cost and various types of environmental uncertainties. Thus, instead
of deploying resource-consuming localization techniques on resource-constrained sensor nodes, we
design a novel metric named location similarity to quantify the deviation between true and claimed
location using locality sensitive hashing (LSH) based similarity estimation techniques [12]. Such a
metric only requires the sensor nodes to collect their neighbors’ IDs as well as receiver signal strength
indicator (RSSI) [13] of the top four nearest deployment points. In addition, our scheme works on
the basis of the assumption that sensor nodes are deployed in groups and the nodes in each group
are placed around the predefined location named deployment point. In such a case, our work allows
most nodes within a group to communicate without generating any location claims. Due to the
aforementioned advantages, our scheme achieves an effective and efficient replica detection with low
communication, computation, and storage overhead.

Furthermore, we validate the security performance of the proposed scheme through heuristic
analysis under different attack strategies and demonstrate that our scheme provides robust replica
detection even under the condition that there are considerable nodes compromised by adversaries.
In addition, we also evaluate the effectiveness and efficiency of the proposed scheme through both
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theoretic analysis and simulation experiments. The results show that our approach achieves effective
and efficient replica detection while incurring significantly low overhead.

The rest of paper is organized as follows: in Section 2, we propose the preliminaries of this
paper, including the network assumptions, attacker models and the group based random deployment
strategy. In Section 3, we present the mathematical definition of the node replica attack and the location
similarity, In Section 4, we describe the details of the proposed LR2ND scheme. In Sections 5 and 6,
we present the security analysis and the performance evaluation, respectively. Finally in Section 7,
we summarize our work.

2. Related Works

The discussion about the replica node attack in WSNs was firstly found in Parrno et al’s. work [6],
in which randomized multicast and line-selected multicast schemes are proposed to address such
problems. In the Randomized Multicast scheme, signed location claims are sent to randomly chosen
witness nodes for the validation of consistency. A node will be considered to be replicated if two
conflicting location claims about this node are found. The improved line-selected scheme effectively
reduces the communication overhead incurred by location claim transmission of the randomized
multicast scheme by having every claim-relaying node participate in the replica detection and
revocation process. However, these multicast-based schemes [6] and their variants [7], have to
periodically multicast the location claims over the whole lifetime of the network, resulting in very
large communication and computation overhead. In our scheme, replica detection works on the basis
of group deployment knowledge. Only the nodes placed outside its home group are required to send
location claims, which achieves significant higher resource efficiency than [6] does.

Based on the line-selected multicast scheme of [6], Conti et al. [8] proposed a randomized
improved scheme RED to enhance the performance in terms of replica probability, storage and
computation overheads. However, compared with [6], the communication resource efficiency of RED
scheme has no significant improvement. Furthermore, the protocols require repeated claims over
time, which means that the communication overhead of such scheme needs to be multiplied by the
number of runs during the entire network lifetime. In contrast, our proposed scheme achieves higher
communication resource efficiency than RED by only requiring location claims when new arrivals are
placed in the network.

Abinaya et al. [9] proposed the improved scheme X-RED on the basis of RED [8]. The main design
principle of X-RED is similar to RED, but the witness is selected dynamically using a randomized
hash function. The approach of randomized witness selection can evenly distribute overhead among
nodes, which effectively prevent single point of failure. However, the drawback of very large overhead
caused by periodic claim examination is still not improved in X-RED.

Zhu et al. [7] proposed a replica detection scheme based on grid cell topology, which detects
replicas by multicasting location claim to single cell or multiple cells. The chief advantage is that it
enhances the detection accuracy of schemes proposed in [6]. However, its communication overhead
has no significant improvement compared with [8]. Our scheme can achieve similar detection accuracy
with much lower communication overhead.

Choi et al. [10] proposed a localized replica detection scheme for sensor networks based on
regionalized deployments. In this work, the network is viewed as a subsets of non-overlapping
subregions, each of which has an exclusive subset. If the intersection of these subsets is not empty, it is
reasonable to imply that replicas are included in such subsets. However, the adversary can bypass the
detection of Choi’s et al. work by some specific replica placing methods. Our scheme can effectively
address this problem.

Ho et al. [11] proposed replica detection schemes based on group deployment knowledge which
adapts the location claim idea from [6]. In these schemes, the sensor nodes inside their home zone
can transmit their ordinary messages without any extra validation of security protocols, whereas
the sensor nodes outside their home zone are not allowed to transmit messages unless they are
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authenticated by location claims. Compared with prior works, this scheme eliminates most of the
communication, computational, and storage overheads, since it only requires part of nodes to generate
and send their location claims. However, the scheme is built on the assumption that every node
knows its own position by some kind of localization protocols, and its detection performance depends
on the accuracy of localization. Actually, it is very expensive to deploy localization schemes on
the resource-limited sensor nodes, and accurate localization is hard to get since there are various
uncertainties in WSNs. In addition, the usage of localization may introduce more potential threats
due to the security vulnerabilities of existing localization schemes [14]. Our scheme achieves secure,
effective, efficient replica detection with similar low communication, computational, and storage
overheads in a localization-free manner.

Khedim et al. [15] propose a mobile assistant clone detection (MCD) protocol aiming at mitigating
the dependence on the GPS and beacon nodes. MCD is a hybrid protocol which uses patrol robots
and honeypots for the node replication detection in static sensor networks to enhance the detection
performance. However this scheme requires extra expensive hardware which substantially increases
the deployment costs. Meanwhile the scheme requires periodic examination on all of the nodes in
the network over the entire network lifetime. In contrast, the proposed scheme only starts the node
replication detection on demand and the detection is limited in a local region. Chen et al. [16] propose
an intrusion detection algorithm to address the problem of replication attacks in the clustered wireless
sensor networks based on a novel clustering protocol NI-LEACH. The main advantage is that the
scheme is configurable according to the performance requirements by choosing appropriate encoder
functions. However, this scheme requires the witness nodes to be randomly selected from network in
order to undertake large amount of computation intensive and energy consuming tasks. The sensor
nodes which act as witnesses will rapidly run out of energy.

Ho et al. [17] propose a node replication detection scheme which is composed of quorum-based
multicast (QBM) and star-shape line-selected multicast (SLSM), which can deterministically detect the
replicas. However this scheme still requires repeated claim checking, which results in large amount
of communication.

Additionally, a Sybil attack [18] can be regarded as an extended form of node replication attacks,
there are also some typical schemes. Pecori [19] proposes a security protocol which resists Sybil attacks
through the use of a combined trust-based algorithm exploiting reputation techniques. Compared to
similar methods, such a trust-based algorithm shows promising results in thwarting a Sybil attack in a
Kademlia network.

3. Preliminaries

In this section, we first present the underlying assumptions and sensor deployment strategy, and
then describe the detailed attack model of our scheme.

3.1. Network Assumptions

We assume that the proposed scheme works in a typical two-dimension static sensor networks in
which every node holds their own position immediately after deployment. All direct communications
links in the network are bidirectional. This assumption is common in the current generation of sensor
networks. We assume that the sensor nodes in the network can be divided into two categories from
the duty perceptive: the ordinary nodes and BS, where the ordinary nodes generate ordinary data
and location claim related messages, and send them to BS via single- or multi-hop transmission,
whereas BS collects location claims for further analysis of similarity estimation and the final decision
on the suspicious replicas. We also assume that the sensor network are deployed in an open space
which allows us to perform distance measurement using the Receiver signal strength indication (RSSI)
extracted from media access control layer protocols. This assumption is common in current generation
of WSNs. Additionally, BS may take further security measurements such as software attestation
and node revocation if necessary. We also assume that BS is a trusted entity. This is a common and
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reasonable assumption since if BS is compromised, the sensor networks suffers a risk of a single-point
of failure, which means that the entire mission of the sensor network can be easily undermined.

Furthermore, we assume that each node in the network has and only has a unique ID so that
BS is able to correctly parse the source of location claims. Moreover, we assume that the message
authentication code (MAC) is adopted to filter the unauthorized modification on the network traffic
and verify the message source. In this work we adopt the MAC algorithm proposed in [20], whose
main advantage is that the authentication tag of such a MAC algorithm can be aggregated, resulting in
a substantial reduction of the location claim size.

3.2. Sensor Deployment Strategies

We adopt a group-based random deployment strategy in our scheme. In this work, we assume
that the whole network is divided into grids as shown in Figure 1, and define the grid intersection
points as predefined deployment points. Before deployment, we firstly place sensor nodes exactly at
these deployment points as beacons. The rest of sensor nodes are allocated into groups and programed
with the corresponding group information, such as Group ID. We assume that the number of nodes
in each group is even. Then, during the deployment, the nodes in the same group are randomly
placed around corresponding deployment point. We assume that the coordination of the sensor nodes
within one single group follows the two-dimensional Gaussian distribution. This is reasonable and
practical deployment strategy since in most sensor network applications sensor nodes are spread over
the target region in a randomly scatter manner such as dropped from airplane or spread by hand.
This assumption is supported by the fact that the group deployment strategy has been used for various
applications in sensor networks, such as key distribution [21,22] and public key authentication [23].
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Figure 1. The group-based random deployment strategy for WSNs.

The detailed deployment rules and basic assumptions are described in the form as follows:
(1) assuming that there are m predefined deployment points that are placed at the grid intersection
points, denoted by g1, g2, . . . , gm; (2) assuming that there are a total of M nodes in the network
and these nodes are divided into m groups, denoted by G1, G2, . . . , Gm, namely M/m nodes in each
group; and (3) the nodes within the same group are i.i.d., following a two-dimensional Gaussian
joint distribution. For example, for the node k (k = 1, 2, . . . , M/m) in group Gi (i = 1, 2, . . . , m),
the probability density function of node k’s coordination (xk, yk) is represented as:

f (x, y|k ∈ Gi ) =
1

2πσ2 exp

(
− (x− xi)

2 + (y− yi)
2

2σ2

)
, (1)
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where (xi, yi) is the coordination of predefined deployment point gi, whereas the coordination of
the sensor nodes from different groups are independent from each other. Figure 2 illustrates the
distribution of the probability density distribution over the entire deployment region.
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3.3. Attack Model

In this work, we assume that the adversary can launch a node replication attack by compromising
a subset of nodes, generating a large amount of their replicas, and spreading the replicas throughout
the networks. Upon compromising a node u, the adversary is able to produce a group of replicas
u′ = {u′1, u′2, . . . , u′r} of which the IDs and secret materials are the same as the original compromised
node u. The replicas can easily bypass the authenticity and integrity validation of the existing
cryptographic security mechanism since they can sign, encrypt, and decrypt the message to play
the role just like their original compromised node. Once the replicas are recognized as a legal part of
the network, they can launch a variety of attacks, such as false data injection, protocol disruption, and
traffic jamming. Moreover, replicas can also assist the original compromised nodes to extend the attack
range, as well as reduce the attack cost.

However, we impose several constraints on the adversary’s behaviors. We assume that the
adversary is not able to generate new legal IDs since all of the nodes’ IDs are determined before
deployment following the deployment strategy. Additionally, the adversary also cannot extract the
data in the nodes’ memory before they are compromised. We also assume that the adversary can only
compromise a minority of sensor nodes since if he can compromise a major fraction of the network, he
will not benefit much from the node replica attack. Furthermore, the adversary would make every
effort to extend the deployment range of the replicas; in other words, the replica should be placed at a
distance from its origins. Although the replica nodes are hard to detect when they are place close to
their original compromised nodes, this will not bring any benefits to the adversary.

The adversary can undermine the location claim-based protocols by deploying large amounts
of compromised nodes to report fake locations and participate in local control protocols. However,
such an attack strategy requires the adversary to place one compromised node to accompany each
replica in the network, resulting in a very high cost for launching node replica attacks. We suppose
that the adversary does not adopt this attack strategy. This assumption goes unstated but is implied by
the use of signed location claims in other replica detection schemes [6,8]. In addition, it is worthwhile
to note that deploying multiple replicas of a single compromised node into the same region does not
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bring the adversary more benefits. This is because the output of multiple replicas would be treated
as redundant and discarded. Multiple replicas with the same ID would not have more influence in a
region than a single replica. Furthermore, due to page limitation, in this work we only discuss the case
in which no collisions exist between the compromised nodes and their replicas.

4. Localization-Free Replica Detection Based on Similarity Estimation

In this section, we first present a formal statement of the node replica problem, and propose
a neighborhood relationship knowledge-based metric that allows us to detect replicas without
assistance of nodes’ positions using local sensitivity hashing (LSH)-based location similarity estimation
techniques. We then describe the details of proposed protocol that stop node replica attacks without
resource-consuming localization mechanisms. Finally we present a simulation model that estimate
the detection threshold of the proposed scheme. Table 1 lists the most frequently used notation in
this paper.

Table 1. Frequently-used notations in this paper.

Rz
the communication radius of sensor
nodes and beacons

k〈i, j〉
secret key shared between
node i and j

dth the trust threshold k〈i, BS〉
secret key shared between
node i and BS

τCD the threshold of confliction detection Ckprv the certification signed by BS

τRD the threshold of replica detection LAQ/LAR the location authentication
request/reply

Snei−D the derived neighboring vector NAN the node authentication
needed request

Sob the observed neighboring vector LCQ/LCD the location claim
request/decision

kprv/kpub private/public key of BS

4.1. Problem Statement

Once the adversary succeeds in compromising a node, he can create replica nodes as follows: he
extracts ID and all secret materials from the compromised nodes and loads these key information into
the replicas so that the replica has the same ID and secret materials as its origin node. The adversary
can compromise multiple nodes and generate multiple replicas of a single compromised node. For a
specific compromised node v, there may be n replica nodes in the network, denoted by v1, v2, . . . , vn.
We assume that compromised node v is placed at the location Lv (xv, yv) while the replicas are placed
at locations Lvk

(
xvk , yvk

)
, k = 1, 2, . . . , n. To bypass the location claim conflict detection, the replicas

may falsify the location claims denoted by L′vk

(
x′vk , y′vk

)
, which equals to Lv. A straightforward

solution for this problem is to build a threshold-based detection mechanism on the distance between
the claimed location L′vk and the true location Lvk . However, the true location Lvk is not visible for BS
without accurate localization by multiple witness nodes. Actually, in most sensor network applications,
accurate localization is difficult to achieve due to strict resource constraints. The inaccuracy existing
in localization may incur large amounts of uncertainties and false alarms in the replica detection
schemes. How to handle these uncertainties and enhance the effectiveness with a substantially low
communication, computation, and storage overheads is an important issue explored in this paper.

4.2. Neighborhood-Based Detection Metric

To address the limitation of the localization based replica detection schemes, we propose a novel
detection metric named location similarity based on neighborhood relationship knowledge. The basic
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idea behind location similarity is that the neighborhood situation of two nodes should be very different
when they are far away from each other. Taken the deployment situation shown in Figure 1 as example,
the nodes u, v, and w are placed at locations Lu, Lv, and Lw, respectively. The location Lu has quite a
long distance from Lv, while Lu are near Lv. From Figure 1, we can see that the neighboring nodes of u
mostly reside in the groups GA, GB, GC, and GD, which is quite different from the neighboring nodes’
distribution of node v (in GH , GI , GJ , GK), but similar to the neighboring distribution of node w. Hence,
we believe that it is reasonable to judge a node as a replica as long as the deviation of the neighboring
node distribution between its claimed location and true location exceeds a predefined threshold.

We first introduce a notation neighboring vector to indicate the distribution of one node’s
neighborhood. We further define derived neighboring vector as the vector that indicates the neighboring
distribution derived from one node’s claimed location. Then we have:

Definition 1 (Neighboring Vector (NV)). For any node u, the normalized vector Snei(u) is NV if and only if

Snei(u) =

(
S(G1)

Lu
, S(G2)

Lu
, . . . , S(Gm)

Lu

)
∑m

i=1 S(Gi)
Lu

, (3)

where m is the number of groups while S(Gi)
Lu

accounts for the number of u’s neighboring nodes which belongs to
group Gi when u is at its true location Lu.

According to Definition 1, we try to find out the mathematical mapping relationship between
NV and the physical location based on the group deployment knowledge so that we can derive the
neighboring distribution from the claimed location of sensor nodes. Theorem 1 and Inference 1 show
such a relationship.

Theorem 1. Let Rz be the communication radius of a sensor node. Let g(z|k ∈ Gi ) be the probability that node
k from group Gi resides within the neighborhood of a node which is z distance from the predefined deployment
point gi. Then the probability g(z|k ∈ Gi ) is:

g(z|k ∈ Gi ) = I{z < Rz}
[

1− e−
(Rz−z)2

2σ2

]
+

z+Rz∫
|z−Rz |

feu(l|k ∈ Gi ) · 2l arccos

(
l2 + z2 − Rz

2

2lz

)
dl, (4)

where function feu(l|ni ∈ Gi ) is the node distribution function illustrated in Equation (2), constant value Rz

represents the communication radius of each node, and I{·} is the set indicator function. The value of I{·} is 1
when z < Rz holds, and 0 otherwise.

Proof. For group Gi, the sensor nodes that are l-distance from deployment point gi should reside in a
circle which is centered at gi with the radius l. If these nodes also reside in the communication
range of the node u, they should reside in a circle which is centered at u with the radius Rz.
In other words, as illustrated in Figure 3a,b, the nodes that satisfy the conditions under the lemma
hypothesis should resides on the gi’s arc within the u’s circle. Let Larc(l, z, Rz) denote the length of
such arc. Based on the node distribution presented in Section 3.2, the probability that the nodes reside
in u’s communication range when they are l-distance from gi, denoted by g(z|dist(k, gi) = l ), can be
derived as the probability that the node k falls on an infinitesimal ring area (the bold area in Figure 3)
Larc(l, z, Rz) · dl. Then we have:

g(z|dist(k, gi) = l ) = feu(l|k ∈ Gi ) · Larc(l, z, Rz) · dl. (5)
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Based on the basic geometry knowledge, we can derive the length of arc Larc as:

Larc(l, z, Rz) = 2l · arccos
(

l2 + z2 − R2
z

2zl

)
. (6)

When the condition z ≥ Rz holds, the line segments l, z, Rz form a triangle in which z is longer
than Rz. Using the triangle axiom, l ranges from z− Rz to z + Rz. Then g(z|k ∈ Gi) can be derived as:

g(z|k ∈ Gi) =
∫ z+Rz

z−Rz
feu(l|k ∈ Gi ) · Larc(l, z, Rz) · dl

=
∫ z+Rz

z−Rz
feu(l|k ∈ Gi ) · 2l · arccos

(
l2+z2−R2

z
2zl

)
· dl.

(7)

On the other hand, when the condition z < Rz holds, we consider two different cases. In the
first case, l ranges from Rz − z to Rz + z, the value of Larc is the same as Equation (6). In the second
case, l ranges from 0 to Rz − z, the whole circle centered at gi with the radius l resides inside the circle
centered at α with the radius Rz. Then we have:

g(z|k ∈ Gi ) =

Rz−z∫
0

feu(l|k ∈ Gi ) · 2πl · dl +
Rz+z∫

Rz−z

feu(l|k ∈ Gi ) · 2l · arccos
(

l2 + z2 − R2
z

2zl

)
· dl (8)

We can then merge Equations (7) and (8) with the assistant of indicator function, as follows:

g(z|k ∈ Gi ) = I{z < Rz}
[

1− e−
(Rz−z)2

2σ2

]
+

z+Rz∫
|z−Rz |

feu(l|k ∈ Gi ) · 2l · arccos

(
l2 + z2 − Rz

2

2lz

)
· dl. (9)

Hence, Lemma 1 has been proved. Similar derivation can also be found in [24]. �
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(a) z ≥ Rz; (b) z < Rz.

Theorem 1 indicates that for a specific node u, we can obtain the probability that the nodes from
any group Gi reside in its neighborhood given node u’s radio radius Rz, and its distance z from the
corresponding deployment point gi. Then we can derive the average number of nodes that reside in
node u’s communication range for every group in the deployment region given the physical location
of u. We use a derived neighboring vector (DNV) to describe such average neighboring distribution of
a node. Inference 1 shows how we get DNV, based on Theorem 1.
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Inference 1. Given the location Lu of node u and deployment points {g1, g2, . . . gm} over the entire network,
the normalized DNV derived by location Lu can be obtained as

Snei−D =

(
µ
(G1)
Lu

, µ
(G2)
Lu

, . . . , µ
(Gm)
Lu

)
∑m

i=1 µ
(Gi)
Lu

, µ
(Gi)
Lu

=
M
m

g
(
dist

(
Lu, Lgi

)
|k ∈ Gi

)
, (10)

where M is the total number of nodes in the network, m is the number of deployment groups, whereas
g
(
dist

(
Lu, Lgi

)
|k ∈ Gi

)
accounts for the probability that the nodes from group Gi reside in the communication

range of node u.

Proof. Consider group Gi, according to the deployment strategy described in Section 3.2, the number
of nodes in such group is M/m. Since every node in group Gi resides in the communication range
of u with a success probability g

(
dist

(
Lu, Lgi

)
|k ∈ Gi

)
. The number of nodes from Gi residing in u’s

range is a random value which follows Bernoulli distribution. Hence, the mean of such random values
comes to (M/m)g

(
dist

(
Lu, Lgi

)
|k ∈ Gi

)
. �

Based on the bijective relationship between the physical location and neighboring distribution
shown in Theorem 1 and Inference 1, we use the deviation of the neighboring vector instead of
the Euclidian distance to characterize the difference between two physical locations. The former is
much easier to obtain and compute in a practical sensor network deployment. To further reduce the
complexity of computation of inter-vector distance, we adopt the locality sensitive hashing (LSH)
coding algorithms, such as MinHash and SimHash [12], to encode the neighboring vector, so that the
computation of the inter-vector distance can be simplified as a computation of the Hamming distance
between two binary sequence. We define the NV-based location similarity as follows.

Definition 2. Neighboring vector-based location similarity (NV-LS). Let Snei−I, Snei−II ∈ Rm denote
neighboring vectors corresponding to two different locations. Let LSH(·) be LSH encoding function whose
output is b-bit binary code. According to LSH sequence similarity defined in [12], the NV-LS of Snei−I and
Snei−I I is

sim(Snei−I, Snei−II) = 1− Dh(LSH(Snei−I), LSH(Snei−II))

b
, (11)

where Dh(LSH(Snei−I), LSH(Snei−II)) is the Hamming distance between the binary sequences LSH(Snei−I),
LSH(Snei−II). The location similarity is a real-value that ranges from 0 to 1. The two locations are very close to
each other when the value of location similarity tends to 1.

4.3. Protocol Description

We assume that M sensor nodes in the network are divided into m groups and each group has
M/m nodes. As illustrated in Figure 1, the beacon nodes are placed accurately at the deployment
points which are distributed in grids with grid spacing dg. Every node has a unique identity (ID) which
includes two parts: the node ID (NID) and group ID (GID). We also assume that key materials are
pre-loaded to sensor nodes for pairwise key establishment and other security mechanisms. In addition,
we adopt an aggregated MAC approach proposed in [20] for all of the MAC generation and verification
in our work. The aggregated MAC is a lightweight data integrity verification technique. In our previous
works [25], we demonstrate that the aggregated MAC is affordable for sensor networks by evaluating
the computation overhead on the MICA2 motes. Additionally, the trust-based scheme [19] is also
an alternative solution for the integrity verification. In this approach, the authentication tags can be
aggregated by performing an XOR operation, namely the aggregated tag can be obtained by:

Tag =
n
⊕

i=1
tagi =

n
⊕

i=1
MACki (datai), tagi = MACki (datai). (12)
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The size of the aggregated tag equals to any single tagi. Whereas it can be used to verify the
integrity of data1‖data2‖. . . ‖datan. The proposed protocol includes three phases as follows:

Phase 1: Initiation. We first define a system parameter trust threshold, denoted by dth. Consider
a particular node u from group Gi; we define Gi as u’s home group. Node u accepts and forwards
the messages from the nodes in group Gj if the Euclidian distance between gi and gj is smaller
than dth. This means that if nodes from the group whose deployment point is far enough from the
deployment point of u’s home group, the probability that they become u’s neighbors is small enough to
be ignored. Thus, prior to deployment, for each group, the network deployer draws a circle centered at
its deployment point with radius dth, records the deployment points that falls in such circle region on a
trust list, and pre-loads the trust list into all the members of this group. Moreover, the network deployer
uses a non-interactive public key establishment algorithm named SOK [26] to build pairwise keys
shared between BS and sensor nodes. Let kprv be the private key held by BS, and kpub be the public key
preloaded into sensor nodes. Using the private key kprv, the network deployer generates a certification
Ckprv(NIDu‖GIDu) on node u’s ID and group ID, and preloads the certification together with node u’s
unique identity. In addition, BS shares a unique secret key with each node in the network, denoted by
k〈i, BS〉, i = 1, 2, . . . , M. This shared secret key is also preloaded into the nodes before deployment.

Immediately after deployment, the beacon nodes located at the deployment points start to
broadcast beaconing messages. The sensor nodes over the entire network keep on listening to the
beaconing messages and recording the RSSI of the beaconing messages using the techniques from the
Media Access Control layer protocols until the initiation phase ends. During the initiation phase, the
nodes pick the largest three RSSI values and the corresponding deployment points. Meanwhile, the
nodes start a neighbor discovery process and try to establish a unique pairwise key with each one of
their immediate neighbors using some secret sharing techniques such as key pre-distribution [21,22].
Let k〈u, v〉 be the pairwise key shared between node u and v. During this process, the nodes
also authenticate the integrity of their neighbors’ identities and belonging group by verifying the
certification Ckprv signed by BS. The nodes will rejects the forwarding requests by their neighbors
which do not pass such authentication.

Phase 2: Location Claim Generation and Probabilistic Forwarding. Suppose that a node u in
group Gi receives a request from node v to forward a message. Node u first checks the group part of
node v’s identity (NIDv‖GIDv) to make sure that node v’s identity is authenticated and its group ID is
on the trust list. If so, node u accepts node v as a benign node and forwards the message as requested.
Otherwise node u rejects to forward node v’s message and sends back a Node Authentication Needed
(NAN) request to ask for authentication that proves node v’s integrity.

Upon receiving the NAN request, node u broadcasts a location authentication request (LAQ)
around its neighborhood. The LAQ message consists of node u’s ID and corresponding timestamp,
denoted by:

LAQ = 〈IDu‖tsid〉. (13)

After sending LAQ, node u start a timer twait−LAR to wait for its neighbors’ reply.
Once the neighbors {v1, v2, . . . vr} of node u receive the LAQ request, they generate a message

authentication code of their own IDs and corresponding timestamps using the key shared with BS.
Then they encrypt all these data with the key shared with node u and send back the encrypted message
to node u. We define this encrypted message as location authentication reply (LAR), represented as:

LAR =
〈

enck〈vi , u〉

(
IDvi‖MACk<vi , BS>(IDvi )

)〉
, i = 1, 2, 3, . . . , r, (14)

where IDvi represents the ID of the neighboring node vi, tsidvi
is a timestamp representing the time

that LAR is sent back, k〈vi ,BS〉 and k〈vi , u〉 represent the key shared between vi and BS, as well as
between vi and u, respectively. The enc(·) and MAC(·) represent the encryption and MAC generation
functions, respectively.
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When the timer twait−LAR runs out, node u collects the received LAR messages, decrypts
them, and extracts neighbors’ IDs and corresponding authentication tags from decrypted messages.
Then node u obtains IDs = {IDv1 , IDv2 , . . . , IDvr} and Tags =

{
Tagv1

, Tagv21
, . . . Tagvr

}
, where

Tagvi
= MAC(IDvi ). Using the aggregated MAC approach, node u generates location claim request

(LCQ), as LCQ = 〈LRSS‖IDs‖Tag〉. The LRSS field contains the collected three largest RSSI and
corresponding IDs of beacons. The IDs field contains the IDs of node u’s neighbors which reply u’s
LAQ, as well as the ID of node u itself. The Tags field contains the authentication tags of IDs of node
u’s neighbors, as well as the authentication tag of LRSSI and node u’s ID. The detailed description of
node u’s LCQ is as follows:

LRSS =
〈
RSSIx‖RSSIy‖RSSIz‖gx‖gy‖gz

〉
,

IDs = 〈IDu‖IDv1‖IDv2‖. . . ‖IDvr 〉,

Tag =

〈
MACk〈u, BS〉(LRSSI‖IDu)⊕

(
r
⊕

i=1
MACk〈vi ,BS〉(IDvi )

)〉
,

LCQ = 〈LRSS‖IDs‖Tags〉.

(15)

Note that the reason we add node u’s ID and corresponding authentication tag is to prevent the
replay and forgery attacks.

After the task of LCQ generation, node u selects several nodes from its neighbors in IDs fields
to forward the LCQ message. When the selected neighbors receive the LCQ from node u, they check
whether its ID is on the IDs filed. If so, they forward the LCQ message to BS with the probability Pf ,
otherwise directly discard such message.

Phase 3: Replica Detection and Revocation. Upon receiving LCQ message from node u, BS

computes Tag′ = MACk〈u, BS〉(LRSSI‖IDu)⊕
(

r
⊕

i=1
MACk〈vi , BS〉(IDvi )

)
using the key shared with node u

and its neighbors v1, v2, . . . , vr to find out whether Tag′ equals to Tag, so as to verify the integrity
of LRSS‖IDs. If LCQ does not pass integrity verification, BS directly discards the LCQ message.
Otherwise, BS parses the data payload LRSS‖IDs and accordingly decides whether node u is replica in
the following steps.

Step 1: DNV extraction. Using the RSSI distance measurement model proposed in [27], BS can
derive node u’s distance to the corresponding beacon nodes. Let constant A be the signal strength (in
dBm) received at the point that 1 meter away from the signal source, and r be multipath fading factor.
Both A and r are regarded as the prior network environment knowledge. Given the RSSI PR (in dBm)
about the signal source, the distance d between receiver and source is obtained by:

lgd = −PR − A
10r

. (16)

According to Equation (16), we can derive the distance from node u to deployment point gx

(respectively, gy, gz), denoted by d(gx, u) (respectively, d
(

gy, u
)
, d(gz, u)). The deployment points

gx, gy, gz are the nearest to node u. Based on the triangle axiom, it is easy to infer that node u is located
in a triangular region of which the vertexes are gx, gy, gz, as illustrated in Figure 4a.

Given the distances d(gx, u), d
(

gy, u
)
, d(gz, u), and angle α = π/4, the angle β can be

obtained by:

]β = arccos

(
2d2

g + d2(gx, u)− d2(gz, u)
2d(gx, u)d(gz, u)

)
. (17)

Based on the primary geometric theory, we can derive the distance between node u and
deployment point gw:

d(gw, u) =
√

d2(gx, u) + d2
g − 2dgd(gx, u) cos

(
β +

π

4

)
, (18)
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and the radian value of angle θ:

]θ = π − arccos

(
d2

g − d(gx, u)dg cos
(

β + π
4
)

d(gw, u)dg

)
. (19)

Consider that the deployment point gw1, gw2, . . . , gwk that in the three o’clock direction of gw,
as shown in Figure 4b, the distance between node gwi and gw is i · dg, i = 1, 2, . . . , k. Given the
distance d(gw, u), d(gwi, gw), and the angle θ, we can obtain the distance from node u to the nodes
{gi|i = 1, 2, . . . , k} as:

d(gwi, u) = i2d2
g + d2(gw, u)− 2i · dg · d(gw, u) cos θ, i = 1, 2, . . . , k (20)

By using similar methodology, BS can obtain the distance between node u and other deployment
points in the target region. Let Z =

{
zgi = d(gi, u)|i = 1, 2, . . . m

}
denote such distances to the

deployment points over the entire network. According to Inference 1, BS can derive the DNV with
respect to location information LRSS based on set Z, denoted by:

Snei−D(u) =

(
µ
(G1)
Lu

, µ
(G2)
Lu

, . . . , µ
(Gm)
Lu

)
∑m

i=1 µ
(Gi)
Lu

, µ
(Gi)
Lu

=
M
m

g
(
zgi |k ∈ Gi

)
, i = 1, 2, . . . , m. (21)

Step 2: Conflict detection. Using the method in Step 1, BS derives the distance between node
u and deployment point gu. If the value of distance d(u, gu) is larger than a threshold τCD, BS will
determine node u as replica. Furthermore, BS searches the cached location claims that pass the
detection to find out whether it has received a former version of node u’s location claim. If so, BS
compares the LRSS fields of the two versions to check whether a conflict exists. In the case that there
exists a conflict, BS removes the conflicted location claim from cache and start the replica revocation
operations in Step 3.Sensors 2017, 17, 160 14 of 27 
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distances between node u and the deployment points using the group deployment knowledge.

Step 3: Decision and revocation. BS parses the IDs field, and counts the IDs of node u’s
neighbors by groups to which they belong. Then BS obtain a observed neighboring vector (ONV),
which indicates the u’s neighboring distribution observed by BS. Note that the ONV is generated by
node u’s neighbors and its integrity is verified by BS, which means that it has high reliability. Let
Sob(u) =

{
S(G1)

ob (u), S(G2)
ob (u), . . . , S(Gm)

ob (u)
}

/∑m
i=1 S(Gi)

ob (u) denote the node u’s ONV. BS computes
the NV-LS between the Sob(u) and Snei−D(u). BS firstly encodes Sob(u) and Snei−D(u) using LSH
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coding algorithms like MinHash [12], of which the output are b-bit binary sequence. BS then computes
the Hamming distance Dh of the two output sequences, and finally obtain the NV-LS as:

sim(Snei−D(u), Sob(u)) = 1− Dh(LSH(Snei−D(u)), LSH(Sob(u)))
b

. (22)

If the NV-LS is larger than a threshold τRD, BS determines node u as benign and add the LRSS

field of node u’s location claim to cache of BS. Otherwise, it determines node u as replica and raises
an alarm. After the decision is reached, BS scans Sob(u) again to find the non-zero elements which
indicates the groups whose members reside in node u’s neighborhood, and directed broadcasts the
location claim decision (LCD) messages to such groups. The LCD can be represented as:

LCD =
〈

IDu‖RES‖Sigkpriv

〉
, (23)

where the field RES is the detection result about node u, and Sigkpriv
is the digital signature generated

by BS with its private key. BS send several copies of LCD message to ensure that the LCD message
reaches the node u’s neighboring groups. Once such message reaches one member of the target group,
it will be flooded throughout the entire group. The cost of such local flooding is limited because it
happens in a very small region. This ensures that every member in the target groups receives the LCD
message. The nodes in the target groups add node u to their conditional trust lists and start to forward
the messages from node u when the LCD message indicates that node u is benign.

4.4. Obtaining the Replica Detection Threshold

In this work, we adopt a training approach to estimate the replica detection threshold τRD,
and obtain the training data from network simulations. According to the deployment strategy
presented in Section 3.2, we generate a network simulation scenario, deploy our proposed protocol and
repeat the simulation for k rounds. In each round of simulation, we obtain the training data as follows:

Step 1. We obtain the actual physical position La(i) = (xai, yai), where i = 1, 2, . . . , N, and derive the
actual DNV for the selected nodes, represented as:

Sa
nei−D =

Sa
nei−D(i)

∣∣∣∣∣∣
(

µ
(G1)
La(i)

, µ
(G2)
La(i)

, . . . , µ
(Gm)
La(i)

)
∑m

i=1 µ
(Gi)
La(i)

, i = 1, 2, . . . , N

 (24)

Step 2. We collect the LRSS field of LCQ message from the N selected nodes, and compute the
corresponding estimated position Le(i) = (xei, yei) where i = 1, 2, . . . , N. Then we derive the
estimated DNV for the selected nodes, represented as:

Se
nei−D =

Se
nei−D(i)

∣∣∣∣∣∣
(

µ
(G1)
Lei

, µ
(G2)
Lei

, . . . , µ
(Gm)
Lei

)
∑m

i=1 µ
(Gi)
Lai

, i = 1, 2, . . . , N

 (25)

Step 3. We collect the IDs field of the LCQ message from the selected nodes, and derive the ONV for

them: Sob =
{

Sob(i)
∣∣∣(S(G1)

ob (i), . . . , S(Gm)
ob (i)

)
, i = 1, 2, . . . , N

}
.

Step 4. We derive the NV-LS of La and Le, denoted by sima and sime, respectively,
where sima =

{
sima(i)

∣∣sim
(
Sa

nei−D(i), Sob(i)
)
, i = 1 . . . N

}
, and sime ={

sime(i)
∣∣sim

(
Se

nei−D(i), Sob(i)
)
, i = 1 . . . N

}
. Then we can compute the deviation χsim

between sima and sime caused by the network uncertainties and measurement errors,
represented as:

χsim = {χsim(i)||sima(i)− sime(i)|, i = 1, 2, . . . , N } (26)
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After k round repeated simulations, we obtain k sample sequence χsim, i.e., k× N samples of the
NV-LS deviation as the training data, which form a sample distribution. Then we use the ξ-percentile
to decide the threshold from these training data, which means that 1− ξ percent of the samples falls
within the range (τRD, 1) if τRD equal to the value of the ξ-percentile.

5. Security Analysis

Unlike other security threats against WSNs, such as node compromise and forgery, thorough
elimination of replica nodes in a sensor network is infeasible and uneconomic since there are several
choices for the adversary to hide the existence of replicas from the detection schemes at the cost of
minimizing the functionality of replicas. For instance, the adversary can place the replica nodes very
close to its original compromised ones, or strengthen the replicas’ transmission power towards the
original ones’ neighbors, to make the replicas act exactly the same as its original compromised nodes.
In this way, it is extremely difficult to find out which node is a replica, although the adversary benefits
very little from such a kind of node replica attack. Consequently, in the security analysis of this section,
we concentrate on the investigation of the effectiveness of our scheme that suppresses the damage
caused by the replicas of a given compromised node.

To evaluate the security performance of our proposal, we adopt an 80-bit security level (RSA-1024
equivalent) elliptic curve Diffie-Hellman (ECDH) scheme [28] to provide a security guarantee for the
key establishment during the process of neighbor discovery. We also adopt an 80-bit security level
Data Encryption Standard (DES) algorithm [29] for the LAR message transmission.

5.1. Limitation of the Impact Range of Node Replica Attack

We first define the number of ordinary nodes that accept the replicas and forward their messages
as the metric to quantify the damage of the node replica attack. Suppose the adversary compromises a
node v and scatters several replicas of node v in the target deployment region. Under the protection of
our scheme, we can observe that only the nodes which have node v’s group ID in their trust lists will
accept the replicas as trusted neighbors. Recall that the length of the trust list depends on the value of
dth. We can accordingly derive the upper bound of the impact of node replica attack with respect to
dth. We can infer that the nodes are impacted by node v’s replicas if and only if the deployment points
of their home groups falls in the circle region centered at node v with the radius dth. Then the upper

bound ς
(upper)
imp of the number of nodes impacted by node v’s replicas can be obtained by:

ς
(upper)
imp =

M
m

∥∥∥∥{gi

∣∣∣dist(gu, gi) = dg
√

k2 + r2 ≤ dth, 0 < k, r ≤
⌊√

m
2

⌋}∥∥∥∥
0
. (27)

To further investigate the impact of node replica attack under the limitation dth of our scheme,
we set an ideal scenario in which M = 2560 nodes are deployed in 700× 700 m2 area with m = 64
groups, the distance between deployment points dg = 100 m, and the communication radius of sensor
nodes and beacon nodes is 150 m. The numeric result about Equation (27) are shown in Figure 5. We
observe that the upper bound of replica impact step up with the increase of dth. That’s what we expect
since more groups are involved in the replicas’ range when the trust threshold rises. When dth falls
in the range (100, 150), about 6.25% of nodes are affected by the replicas. When dth falls in the range
(150, 200), the fraction of the affected nodes rise to 12.5%. This is still a small fraction considering the
very large impact range of replica attack. Thus, we should set dth to a small value so as to suppress the
impact of such a replication attack. However we would like to point out that the network connectivity
and communication efficiency will be severely degraded when the value of dth is very small since the
node will keep discarding the messages from the nodes whose group IDs are not on the trust list, as
shown in the analysis of next section.
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5.2. Defense Capacity Analysis on Location Claim-Based Detection

To compensate for the degradation of the network connection caused by the trust-based selective
forward, our scheme gives the nodes whose messages are rejected by their neighbors a second
chance to prove their integrity by a neighboring vector-based location claim. However, we infer that
the adversary can still take at least three potentially effective attack strategies against our scheme.
We analyze the defense capacity under the three attack strategies respectively in this subsection.

Strategy I: GID forgery. In this strategy, the adversary modifies the GID of the replicas so that
the replicas’ neighbors will accept them as nodes from trusted groups, and forward their messages.
However recall that the integrity of GID is protected by the certification Ckprv(NID‖GID) signed by
BS, as well as the BS being assumed to be a trusted entity, which means that its private key cannot be
compromised. Thus, to achieve the modification of GID, the adversary has to compromise the public
key certification algorithm. In this case, the defense capacity of this work depends on the security
strength of the adopted certification algorithm itself, which is beyond our discussion. In other words,
if the adopted certification algorithm provides enough security strength, our scheme can defeat such
an attack strategy.

Strategy II: LRSS forgery. In this strategy, the adversary generates falsified LRSS field of LCQ
according to the neighboring distribution derived from the IDs field so as to bypass the neighboring
vector-based replica detection at BS. This means that the value of LRSS should be kept consistent with
the true position of replicas. The replicas, thereby, should be placed at the position less than τCD

away from the deployment point of their home group, otherwise they will be caught by the conflict
detection of BS. This constrains the adversary’s benefits when the threshold τCD is small. For instance,
when τCD = Rz, the replicas and their origin compromised node should be deployed in the same
group under the limitation of our scheme, which gains little benefits than that of simply performing
node compromise attack. However according to the deployment model used in this work, the node
deployment is not accurate but follows two-dimension Gaussian distribution. Several nodes locate at
the positions outside the communication range of deployment points with probability, resulting in the
false positives in our work. Let Pa be the false positive rate, i.e., the probability that the benign nodes
are determined as replicas given they are located outside their home group. Then we have:

Pa = 1−
∫ 2π

0

∫ τCD
0 f (ρ cos θ, ρ sin θ) · dρdθ

= 1−
∫ 2π

0

∫ τCD
0

1
2πσ2 exp

(
− ρ2

2σ2

)
· dρdθ

= exp
(
− τ2

CD
2σ2

)
,

(28)
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where σ is the standard deviation of the two-dimension Gaussian distribution, and the indicator about
deployment accuracy in our context.

Using the same simulation scenario in Section 5.1, we consider three different cases in which
σ = 50, 100, 150, respectively. In each case, we vary τCD from 50 to 300, the numeric results about
the false positive rate of our scheme are shown in Figure 6. We observe that the false positive rate
Pa decreases significantly with the increase of the conflict detection threshold τCD. This is reasonable
since more suspected nodes pass the conflict detection when the value of conflict detection threshold
is larger. We also observe that Pa increases with the rise of σ when τCD is fixed, which indicates that
the security performance of our scheme enhances when the deployment accuracy improves. When
σ = 50, τCD = Rz = 150, the value of false positive rate is less than 1%, which means that the proposed
scheme achieves a promising performance when the parameter are properly configured.

Strategy III: IDs forgery. We assume that the adopted aggregated MAC and encryption
algorithms provide enough security strength for our scheme to protect the integrity and
non-repudiation of LAR message. This prevents the adversary from misleading the replica decision
of BS by generating falsified LAR messages. However the adversary still has a chance to drive the
compromised nodes to modify the IDs field. The replica nodes can deliberately remove several
neighbors’ identities in the IDs field of LCQ message. For a particular replica node v, it can remove the
identities of neighbors belonging to node v’s nearest groups, denoted by Gv1, . . . Gvk, so as to reduce
the corresponding elements S(Gv1)

ob , . . . , S(Gvk)
ob of node v’s ONV Sob(v). Note that since node v cannot

add falsified IDs into the IDs field, the value of S(Gv1)
ob , . . . , S(Gvk)

ob should be reduced to a very low level
if node v is far away from its origin. Recall that because node v has to select neighbors in the IDs field
for message forwarding, the behavior of removing a neighbors’ identity from the IDs field results in a
significant decrease in the success probability that node v’s LCQ message arrives at BS. Hence, the
negative ID forgery is limited by the probabilistic LCQ forwarding mechanism.
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6. Performance Evaluation

In this section, we evaluate the performance of our proposed scheme from both an effectiveness
and efficiency perspective. Firstly, we theoretically analyze the efficiency of our proposed
scheme in terms of the communication, computation, and storage overheads, and then provide
further quantitative evaluation on the effectiveness of our scheme through simulation experiments.
Furthermore, we compare the performance of our scheme with the previous replica detection
approaches [6,11].
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6.1. Communication, Computation, and Storage Overhead

Communication overhead. In our context, the communication overhead is defined as the extra
traffic brought by our scheme. We consider a worst case in which the trust threshold dth is set to a
small value so that the nodes will be asked for location claims if they are placed outside the range of
its home group. According to Equation (28), the number to nodes that are required to forward location
claims is M · Pa = M · exp

(
− τCD

σ2

)
. For a particular node v, the average number of its neighbors is

Nv = M
m ∑m

i=1 g
(
dist

(
Lv, Lgi

)
|k ∈ Gi

)
. During the process of node v’s location claim, r out of node v’s

neighbors ask node v for node authentication, node v sends LAQ to all its Nv neighbors, receives, at
most, the same amount of LAR from those neighbors, and then forwards the LCQ to BS. Finally BS
forwards LCD to the target groups. According to [6], the average hops between two randomly-selected
nodes is approximately O

(√
N
)

. Thus, we can derive the communication overhead for a particular
node as:

ccomm = r · lNAN + Nv · (lLAQ + LLAR) + O
(√

M
)
· lLCQ + k ·O

(√
M
)
· lLCD, (29)

where lNAN, lLAQ, lLAR, lLCQ, lLCD are the message length of NAN, LAQ, LAR, LCQ, and LCD,
respectively, whereas k is the number of nonzero elements of Sob.

Then we have the upper bound of total communication overhead, as follows:

Ccomm = M · Pa ·
(

r · lNAN + Nnei · (lLAQ + LLAR) + O
(√

M
)
· lLCQ + k ·O

(√
M
)
· lLCD

)
= O

(
Pa ·

(
MNnei + M

√
M
))

,
(30)

where Nnei is the average number of neighbors for a node. From Equation (30), we can see that the
upper bound of communication overhead in the worst case depends on the total number of nodes in
the entire network and average number of neighbors.

Computation overhead. Since, in our scheme, the cryptographic operations consume the
overwhelming majority of the computation resources, we use the average number of cryptographic
operations as a metric to measure the computation overhead for our scheme. We assume that BS is
a trusted entity with strong computation and storage capacity, so we only focus on the computation
overhead that incurs at the ordinary sensor nodes. Let Qcert denote the computation overhead for the
single-time operation of certification verification, let QMAC denote the overhead for the single-time
operation of MAC generation, and let QENC denote the overhead for the single-time operation of
message encryption. Besides, we assume that fc is the fraction of the nodes are replicas, and they are
placed randomly following a two-dimensional uniformly distribution. For a particular node u, it has
to verify the certifications of their neighbors’ IDs Nu times during neighbor discovery, where Nu is the
number of node u’s neighbors. Node u also has to generate the MAC and encrypt the LAR message for
the nodes needed to be location authenticated. Note that. in the worst case, there are Nu · fc replicas
and Pa(1− fc)Nu benign nodes are asked for location claims. Finally, in the case that node u is asked
for location claims (the case incurs with the probability fc + (1− fc)Pa), node u generates an extra
MAC of its own ID for LCQ message. Then we obtain the computation for a particular node by:

ccmp = NneiQcert + Nnei( fc + (1− fc)Pa)(QMAC + Qenc) + ( fc + (1− fc)Pa)QMAC. (31)

The total computation overhead for our scheme is accordingly:

Ccmp = MNneiQcert + M
(

Nnei + 1
)
( fc + (1− fc)Pa)QMAC + M( fc + (1− fc)Pa)Qenc

= O
(

Nnei( fc + (1− fc)Pa) + ( fc + (1− fc)Pa)
)
.

(32)

Storage overhead. As aforementioned, we focus on the storage occupation of our scheme on
the resource-constrained sensor nodes. Recall that the conflict detection and replica detection are
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performed at BS, thus, the sensor nodes in the network do not need to cache other nodes’ location
claims. In this work, the nodes only keep the secret key and certification signed by BS in memory,
whose size is negligible compared to that of location claims.

Comparison of the resource efficiency. We compare the resource efficiency with the prior
works [6,14] in terms of communication, computation, and storage overhead. The corresponding
comparison results are shown in Tables 2–4. We present the results on the additional traffic incurred
by the schemes all over the network in Table 2, the results on the average computation overhead on
each node in the network in Table 3, and the results on the storage occupation for the location claims
in Table 4.

Table 2. Communication overhead comparison.

Scheme Communication Overhead

Randomized Multicast [6] O
(
k∗M2)

Line-selected Multicast [6] O
(

k∗ ·M
√

M
)

Location Claim Scheme I [11] Negligible

Location Claim Scheme II [11] O
(

Pa ·M
√

M
)

Location Claim Scheme III [11] O
(

Pa ·M
√

M · log2(m)
)

Our proposed scheme O
(

Pa ·
(

MNnei + M
√

M
))

* k is the rounds of location claim executed in [1].

Table 3. Computation overhead comparison.

Scheme Computation Overhead

Randomized Multicast [6] O
(

k∗
√

M
)

Line-selected Multicast [6] O
(

k∗
√

M
)

Location Claim Scheme I [11] Negligible

Location Claim Scheme II [11] O
(

Nnei + Pa ·
(

M
m P∗∗s +

√
M
))

Location Claim Scheme III [11] O
(

Nnei + Pa ·
(

M
m P∗∗s + log2(m)

√
M
))

Our proposed scheme O
(

Nnei( fc + (1− fc)Pa) + ( fc + (1− fc)Pa)
)

** Ps is the probability that the nodes in the replica’s home group caches the replica’s location claim.

Table 4. Storage overhead comparison.

Scheme Claim Storage Overhead

Randomized Multicast [6] O
(

k∗
√

M
)

Line-selected Multicast [6] O
(

k∗
√

M
)

Location Claim Scheme I [11] Negligible

Location Claim Scheme II [11] O
(

Nnei + Pa · M
m · ps

)
Location Claim Scheme III [11] O

(
Nnei + Pa · M

m · log2(m) · ps

)
Our proposed scheme Negligible

As illustrated in Tables 2–4, the overhead of the line-selected and randomized multicast scheme
in [6] linearly increases with the rounds of location claim over the network lifetime, which means that
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the overhead of these schemes will exceed the other reference schemes as time increases. The scheme I
in [11] is clearly the most resource efficient since it hardly brings any additional tasks to network
routines for replica detection. However, this scheme only provides primary security services and will
be defeated if the replica nodes modify their group ID to bypass the trust threshold-based detection
of scheme I. Compared with scheme I, the scheme II and III in the same paper provide much better
security performance at the cost of extra overhead incurred by location claims. However those two
schemes still cannot resist the attack strategy in which the replicas provide the falsified location claims
that exactly the same as their original compromised nodes. In contrast, our scheme can effectively
resist the falsified group ID and falsified location claim attack strategies. The communication overhead
of our scheme is slightly higher than that of Scheme II, and much lower than that of Scheme III,
given that the average number of neighbors Nnei is much less than the total number of nodes M
in most cases, whereas the computation and storage overhead of our scheme is much lower than
similar schemes including Scheme II and III. This is because, unlike Scheme II and III, our scheme is
able to protect integrity of the location claims without the en-route digital signature used in the two
schemes. Additionally, the conflict check and replica detection in our scheme is performed at BS, which
significantly reduces the computation overhead and storage occupation on the resource-constraint
sensor nodes.

From the analysis above, we believe that compared with the prior works [6,11], our proposed
scheme enhances the security resilience to the various attack strategies at the cost of a reasonable
increase of communication overhead. Additionally, our work achieves promising performance in
terms of computation and storage overhead. This is because the major computation tasks are deployed
on BS.

6.2. Experimental Setup and Methodology

To validate the previous theoretical analysis results, we conduct experiments on the TOSSIM [30]
platform to evaluate effectiveness and efficiency in terms of the detection rate and communication
overhead under various network configuration. Based on the experiment results, we compare the
performance of the proposed scheme with the previous discussed works, namely the randomized
multicast and line-selected multicast schemes in [6], as well as Schemes I–III in [11].

In this simulation, following the network deployment strategy in Section 3.2, we establish a
simulation scenario by placing M sensor nodes, which is averaged to m = 64 groups, in a 700 × 700 m2.
The target area are divided into a 8 × 8 mesh grid, and the deployment points of each group are placed
at the cross points of such grid. The group members are deployed following the two-dimension joint
Gaussian distribution, where the mean is the coordination of corresponding deployment point while
the standard deviation is σ. We set the maximum communication radius Rz = 150 m, and the distance
between two neighboring deployment points dg = 100 m. We assume that the target area is located in
an open space with a low-level asymmetric radio channel, and choose the corresponding simulation
parameters as shown in Table 5.

Table 5. Simulation parameters.

Parameter Value

Power decay in reference distance (A) 55 dB
Maximum data rate 250 Kbps

Packet size 36 Bytes
Average radio noise floor −110 dBm

Standard deviation for WGN 4.0 dB
Receiving Sensitivity −105 dBm

To emulate the three aforementioned attack strategies, we take the following procedure:
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Step 1. After deployment, we randomly pick k (k = b0.005×Mc) nodes from the network topology,
and mark them as compromised nodes. Let Lc1, Lc2, . . . , Lck denote the locations of these k
compromised nodes.

Step 2. For each compromised node, we generate r replica nodes and place them D meters away from
their original compromised nodes. Lci

p1, Lci
p2, . . . Lci

pr denote the locations of compromised node

i’s (i = 1, 2, . . . , k) replicas, where
∣∣∣Lci

pj − Lci

∣∣∣ = D.

Step 3. In attack strategy I, the replica node modifies its group identity GID to the nearest group while
keeping its NID the same with its origins. In attack strategy II, the replica nodes keep their
LRSS field consistent with the IDs field in their LCQ message. In attack strategy III, the replica
nodes make their LRSS field the same with their original compromised nodes, and keep their
IDs field consistent with the LRSS field in the LCQ message.

Moreover, in order to investigate the performance of the proposed scheme under different
environments, we adopt a variety of network configurations by varying the deployment standard
deviation σ from 50 to 150, the number of replicas for each original compromised node r from one to
five, as well as the distance between replicas and origins D from 150 to 300. We use two metrics to
evaluate the proposed scheme: (1) detection rate: suppose there are m replica nodes in the network,
and n of them are detected, the detection rate is measured as n/m; and (2) average communication
overhead: during the entire lifetime of the simulation, the average packets of the proposed scheme
sent per node. For each network configuration, we conduct our simulation for 6000 s, and repeat the
simulation 100 times, using the average value of the above metrics as the experiment results.

6.3. Results and Discussion

Detection Rates under Attack Strategy I. To investigate the effectiveness under various attack
strategies, we present the detection rate of the proposed and prior works under different D, and σ.
We set the total number of sensor nodes M = 2560, the number of compromised nodes k = 12, and
the number of replicas for each compromised node r = 3. The detection rates of the proposed and
previous works under attack strategy I are shown in Figures 7 and 8. We observe that the Scheme I–III
have almost no resilience to attack strategy I, since the adversary can make sensor nodes accept the
replicas as trusted neighbors by falsifying the GID field of the replicas’ message. In this case, Schemes
I–III will not trigger the location claim detection mechanism. On the other hand, our proposed scheme
and the randomized and line-selected multicast can effectively resist such attack strategies since all of
these schemes do not rely on the trusted neighbor detection mechanism. Furthermore, our proposed
scheme achieves a promising effectiveness and robustness under different D and σ, the detection
rate comes to around 97% in all of the network configurations. This is because, in our scheme, the
integrity of GID is guaranteed by the certification signed by BS, which can hardly be compromised by
the adversary.
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Detection Rate under Attack Strategy II. The detection rates under attack strategy II are shown
in Figures 9 and 10. We observe that both the proposed and previous works can achieve relatively high
detection rates against attack strategy II. This is because they adopt similar location claim confliction
detection mechanisms. Furthermore, the detection rates of all the schemes rise when the distance D
between replicas and their origins becomes higher. We infer that is because the deviation between the
replicas and their origins becomes larger, resulting in higher detection rates, whereas the detection
rates of all of the schemes decrease as the standard deviation σ increases. This means that the detection
rates are hindered by the deployed accuracy.
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Detection Rate under Attack Strategy III. The detection rates under attack strategy III are shown
in Figures 11 and 12. We observe that the Randomized Multicast, Line-selected Multicast, and Scheme
II and III have almost no resilience to attack strategy II. This is because all of these schemes do
not take the case that replica nodes generate falsified location claims into consideration. Once the
adversary generates the falsified location claim that is identical to their origin compromised nodes, the
multicast-family schemes will accept the replicas as benign nodes since the falsified location claim will
bypass the confliction detection whereas Schemes II and III will detect the location anomaly of the
falsified location claim and send them to their home group, the confliction detection will still accept
these falsified claims since they are exactly the same as their original compromised nodes. Nevertheless,
Scheme I can detect the replicas, which limits the damage of attack strategy III to some extents. This is
because the trusted neighbor detection will block the suspicious replicas’ communication. However,
note that the detection of Scheme I will still be disabled when the adversary combines attack strategies
I and III. In contrast, our proposed scheme reveals the significant advantage of resilience to attack
strategy III since we use a neighboring-based location similarity estimation. For all of the network
configurations, our scheme has at least 85% probability to detect the replicas which adopt attack
strategy III. Furthermore, the detection rate becomes higher with the increase of distance D, as well
as the decrease of the deployment standard deviation σ. The reason behind such a tendency is quite
similar to the tendency of the detection rate under attack strategy II.
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Sensors 2017, 17, 160 24 of 26

schemes. We set Pa = 0.3 and Ps = 0.8 while varying M from 2560 to 10,240. The corresponding
simulation results are shown in Figure 13. As illustrated in Figure 13, the simulation results on the
communication overhead are closely match our theoretical analysis in Section 6.1. The communication
overhead of our scheme only grows at O

(√
M
)

with the number of nodes M in the network. The value
of communication overhead of our proposal falls in between that of Scheme II and Scheme III. When
the number of nodes ranges from 2560 to 10,240, our scheme requires each node to transmit up to an
average of 76.3628 packets. This is because, in our scheme, the nodes are required to reply the LAQ
in addition to sending location claims. However it is worthwhile to point out that compared with
the aforementioned Scheme II and Scheme III, in our scheme fewer sensor nodes are involved in the
location claim transmission, which results in a lower value of total communication overhead for the
entire network.Sensors 2017, 17, 160 25 of 27 
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7. Conclusions

We have proposed a collaborative replica detection scheme for sensor networks that takes
advantages of location similarity estimation techniques to provide high resiliency to a variety of
dangerous attack strategies. Our scheme detects the replicas by verifying the authenticity and
consistency of the nodes’ location claims using the neighborhood relationship derived from the
group deployment knowledge. Specifically, we introduce the metric neighboring vector based location
similarity (NV-LS) in this work to quantify the difference between the true and claimed location of
each node in the network, and perform a threshold decision to find the replicas. Compared with the
previous works, our scheme provides additional security services to prevent the replica nodes from
falsifying their location claims without deploying resource-consuming localization algorithms on the
resource-constraint sensor nodes.

Additionally we present heuristic analyses to evaluate the security strength against potentially
effective attack strategies and show that the adversary’s benefits are significantly limited by the
constraint of the proposed scheme for all the presented attack strategies. Furthermore, we evaluate the
effectiveness and efficiency of our approach through theoretical analysis and simulation experiments,
and compare them with that of prior works. Both of the results demonstrate that our approach provides
better security resilience against the presented types of attack strategies in terms of a higher detection
rate with a reasonable increase of communication overhead, as well as lower costs of computation and
storage overhead.
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