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Abstract: Water contamination is a main inducement of human diseases. It is an important step
to monitor the water quality in the water distribution system. Due to the features of large size,
high cost, and complicated structure of traditional water determination sensors and devices,
it is difficult to realize real-time water monitoring on a large scale. In this paper, we present
a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH,
conductivity, and temperature of water simultaneously. The sensor chip was fabricated using
micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as
the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray
photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian
response (−67.60 mV/pH) and good linearity (R2 = 0.9997), in the range of pH 2.22 to pH 11.81.
KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference
electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell
exhibited a linear determination range from 21.43 µS/cm to 1.99 mS/cm, and the electrode constant
was 1.566 cm−1. Sensitivity of the temperature sensor was 5.46 Ω/◦C. The results indicate that the
developed sensor chip has potential application in water quality measurements.
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1. Introduction

Protection of human health is one of the goals of social development, in which water plays an
extremely important role. However, the development of industry and agriculture has resulted in
water contamination as one of the unintended consequences. Due to the continued deterioration of
water sources, the number of water-related diseases and deaths is increasing annually [1]. Therefore,
it is intensely demanded to construct monitoring and early warning systems for water quality.
Water quality can be assessed from various aspects, through measuring many parameters, including
pH, oxidation reduction potential (ORP), conductivity, heavy metal, dissolved oxygen (DO), and so on.

It is cost-consuming and complicated to detect various contaminations separately. Hence,
some commercial integrated detection systems have become available [2], which mainly rely on
the combination of traditional water sensors, such as bulk pH electrodes and conductivity sensors.
Yet, these probes are unsuitable for being deployed on a large scale, because of the relatively high
price, complicated structure, and large size. With the progress of microfabrication technologies,
some MEMS-based solid sensors for water monitoring have been proposed, such as the Hemin-based
DO sensor [3] and carbon nanotube-based free chlorine sensor [4]. Researchers also have paid
attention to developing novel integrated sensors that are compact and low-cost for determination of
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multiple parameters simultaneously. For instance, Zhuiykov et al. [5] have reported an integrated
multi-sensor based on screen-printed RuO2 thick films to detect the main parameters of water, such as
pH, temperature, DO, conductivity, and turbidity. Guijarro et al. [6] have presented a multi-parametric
biochip fabricated by MEMS technique, which was capable of simultaneously detecting bioactive
pollutants in water. In addition, Wang et al. [7] proposed a microelectrode for simultaneous detection
of copper and lead heavy metallic ions.

One goal of this research is to develop a multi-parameter sensor, which has the characteristics of
low cost, small size, and convenient operation, for water quality detection. The sensor was expected
to be used in a distribution measurement system, where numerous environmental sensors might be
emplaced. The proposed sensor in this paper is competent for the detection of pH, conductivity, and
temperature in water. The World Health Organization (WHO) recommends that the pH of drinking
water should be maintained in the range of 6.5 to 8.5 [8]. Some problems might happen if pH value of
the drinking water goes outside the specified range, such as leaching, nitrification, or the presence
of microorganisms, which may lead to the gastrointestinal irritation or corrosion of metal pipes [9].
On the other hand, conductivity varies with the dissolved inorganic salts, and, thus, serves as an
important factor for indicating ionic contaminations [1]. Temperature is also an important parameter
to evaluate water quality and, additionally, it is a dependent factor of the pH value and conductivity.
Thus, it is of great significance to develop a miniature and low-cost sensor to measure these three
parameters simultaneously.

Traditional glass composite pH electrodes are not suitable for the application in integrated sensors
because of the size limitation and brittleness. In order to overcome these problems, researchers have
proposed sophisticated alternative pH sensors, such as optical fiber pH sensors [10], ion-selective
field-effect transistors [11], solid-state pH sensors [12], and hydrogel film pH sensors [13]. There are
extensive studies on potentiometric pH sensors based upon metal oxides, such as RuO2 [14], Ta2O5 [15],
SnO2 [16], TiO2 [12], and IrO2 [17], due to the features of mechanical stability, easy integration, and
direct electrical response. Among the abundant metal oxides, iridium oxide (IrOx) is one of the most
promising pH-sensing materials, owing to the fast response, chemical stability, and broad pH sensitive
range [17,18].

There are several methods for the preparation of IrOx, including thermal oxidation [19],
sputtering [17], sol-gel [20], and electrodeposition [21]. The properties of IrOx may vary with the
preparation methods, which affects the performances of IrOx-based pH sensors. For example, IrOx
films prepared by sputtering or thermal oxidation are dense and anhydrous, which have a sensitivity
close to 60 mV/pH. Whereas, electrochemical methods generate loose and hydrated films, which
show uncertain responses in the range of 60 to 90 mV/pH [22]. Some merits and demerits of these
fabrication methods have been described in [23]. In spite of the unpredictable potential response and
variation in stability for electrodeposited iridium oxide films, electrodeposition is still an attractive
way to synthesize IrOx for pH sensors, since there are no requirements for high-temperature operation,
vacuum environment, complicated instruments, and expensive targets.

Although many studies have been done on the mechanism of IrOx electrodeposition, there is
no consistent explanation to it. Yamanaka [24] and other researchers [25–27] supposed that IrOx
was deposited on the surface of electrode because the carbon-carbon bonds in the oxalate ligand
are oxidized to form CO2. However, there are no report directly presenting the decomposition
process of mono oxalate complexes. In the Yamanaka solution, Patrick and coworkers [28] found
that there were only multinuclear oxyhydroxides and nanoparticles, instead of oxalate complexes,
based on which oxalic acid was perceived to merely act as a stabilizing agent. On the other
hand, similar IrOx films were prepared using the solutions containing no oxalate ligand [29–31],
which implied that the deposition may not involve the oxidation of oxalate complex. Recently,
researchers seemingly agree with that water is the actual species undergoing oxidization in the
deposition of IrOx. Zhao et al. [31] attributed the deposition to the oxidation of the water near
the anode. They suggested that the releasing H+ ions lower the local pH, which induces the acid
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condensation of IrOx·nH2O nanoparticles. This postulation matches that presented in [32], where the
authors synthesized the IrOx nanoparticles from a K2IrCl6 solution, and found that lower pH facilitates
the condensation of IrOx nanoparticles. In addition, Heather et al. [29] proposed that a loose polymeric
network was precipitated at the surface of electrode, as the result from the oxidization of the water
coordinated to Ir(IV).

The reference electrode is an important component in electrochemical measurements. Although
some types of standard reference electrodes are efficient, they usually have the features of large size
and complicated structure, which limits their applications in integrated sensors [33]. For instance, an
Ag/AgCl reference electrode is the most practical, but reducing its scale is difficult because of the
unavoidable inner liquid electrolyte and glass tubes. To realize integrated sensors, pseudo-reference
electrodes were often integrated on chips using modern fabrication technology. However, such
reference electrodes have unstable potentials [34]. The miniaturized liquid junction reference electrode
has a better performance than pseudo-reference electrodes, but there are still some challenges, such
as sealing a small volume of solution [35] and its maintenance [36]. Thus, it is more applicable for
miniature sensors to develop solid-state reference electrodes, where the inner electrolyte is solid [33].

Conductivity sensors are classified into two types: contacting and inductive sensors [37].
Contacting sensors may have two, three, or four electrodes. A four-electrode configuration was
perceived more accurate, eliminating the errors caused by polarization and double layers, compared
to the conductivity sensors which only have two electrodes [38]. On the other hand, different cell
geometries were designed to realize accurate detection of conductivities in various applications.
Parallel planar electrodes were usually used to construct miniature conductivity cells [39–41], whereas,
Heather et al. [42] have introduced a conductivity cell of circular geometry fabricated on the liquid
crystal polymer substrate using printed circuit board (PCB)-MEMS technique, a concept that fabricates
MEMS through PCB processes. Then the proposed sensor has been successfully employed in coastal
salinity measurements [43]. The concentric circular structure defined the directionless profiles,
preventing additional calibration. Although the PCB-MEMS technique is cost-efficient and rapid, these
two fabrication processes cannot be carried out simultaneously, which might lead to the problems of
mass production, and compatibility with the fabrication process of other sensors.

In this paper, we reported the design, fabrication, and experimental results of an integrated
sensor. The electrode array, including a four-electrode circular conductivity cell, three-terminal
resistive temperature detector (RTD), and substrate electrodes, was fabricated by MEMS techniques.
The amorphous hydrous IrOx film was electrodeposited on Pt electrode for pH sensing. A miniaturized
reference electrode was formed as reference for pH detection. According to the experimental results,
the sensing electrodes on the chip exhibited good performances as intended. The cost of each
device is low, since it can be produced in batches. Moreover, the sensor was suitable for various
applications, such as remote and distributed measurements, because of the features of small size and
mechanical robustness.

2. Experimental

2.1. Reagents and Instruments

Iridium (IV) chloride (99.95%) was purchased from Alfa Aesar Co. (Haverhill, MA, USA).
Hydrogen peroxide (30%), potassium carbonate, oxalic acid, boric acid, phosphoric acid, sulphuric
acid, potassium chloride, sodium chloride, and ferricyanide were purchased from Beijing Chemical
Works Co. (Beijing, China). All chemicals were analytical grade and used without further purification.
All of the water used in the experiments was deionized (18 MΩ·cm) with a Millipore Direct-Q
3 UV (ultraviolet) system (Merck Millipore Co., Billerica, MA, USA). A KCl saturated Ag/AgCl
reference electrode was used as a reference, and all potentials were referred to this unless there is an
explicit description.
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A CHI620e (CH instruments Co., Shanghai, China) electrochemical workstation was used to
control the electrochemical experiments. The pH of solutions was verified with a pHS-3C meter
(Shanghai INESA Scientific Instrument Co., Shanghai, China). The surface morphology of the IrOx film
was investigated using a field emission scanning electron microscopy (FE-SEM) of Merlin Compact
(Zeiss Co., Oberkochen, Germany). The chemical composition of the IrOx film was detected by
an imaging X-ray photoelectron spectrometer of Axis Ultra (Kratos Analytical Co., Manchester,
United Kingdom). The resistance of the RTD was determined using a digital multimeter Agilent
34410A (Agilent Technologies Co., Santa Clara, CA, USA).

2.2. Design

The multi-electrode consisting of a pH sensing electrode, an Ag/AgCl-based solid-state reference
electrode, a four-terminal conductivity cell, and a three-end RTD was distributed on the silicon chip,
as shown in Figure 1a. Sputtered Pt was used as the materials for conductivity and temperature
sensing, because of its good electrical conductivity and temperature characteristic. Additionally,
Pt acts as the substrate electrode for pH sensing. The hydrous IrOx film was electrodeposited on
the Pt surface for pH sensing. In order to prevent introducing an external macroscopic reference
electrode, a solid-state reference electrode was integrated on the chip. Ag/AgCl ink was coated on the
Pt electrode. Agar gel containing KCl was used as the inner electrolyte, replacing the liquid junction.
Epoxy adhesive keeps the agar from directly contacting to sample solutions. The conductivity cell was
designed to be a four-terminal configuration, so that the effect of double electric layer capacitance can
be prevented. In the measurement of conductivity, an alternative exciting signal should be applied to
the electrodes, which may cause interference with other components. Thereby, our conductivity sensor
has a circular geometry, which keeps the electrical field within the defined region from disturbing
the other components. Moreover, the RTD has a three-end structure, eliminating the errors caused by
lead impedance.
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Figure 1. (a) Photograph of the multi-parameter sensor chip; and (b) a cross-sectional view of the pH
sensor; the third (right) electrode acts as the counter-electrode for the electrodeposition of IrOx.

2.3. Fabrication of Multi-Parameter Sensor Chip

Standard MEMS techniques were used to fabricate the sensor chip. At first, a p-type silicon
wafer was treated by a thermal wet oxidation process and nitration process of low-pressure chemical
vapor deposition (LPCVD). Secondly, the substrate metal layer was deposited on the wafer by a direct
current (DC) magnetron sputtering method, and then patterned using standard photolithographic and
lift-off techniques. The thickness of Pt and Ta (adherent layer) were 300 nm and 30 nm, respectively.
A layer of SU-8 negative photoresist was used as an insulation layer, which defines the sensing areas
of the electrodes and its pads. Meanwhile, a micro-pool surrounding the reference electrode was
formed using SU-8. Specifically, the first SU-8 layer was spin-coated on the wafer and explored with
ultraviolet (UV) light. Then, a second layer of SU-8 was immediately coated and explored. Next,
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one-step development was carried out to shape the insulation layer, combined with the micro-pool.
After that, the wafer was diced into chips with a size of 8 mm × 7 mm. Finally, the individual chips
were wire-bonded and encapsulated on PCBs.

2.4. Fabrication of the Solid State Reference Electrode

The reference electrode was made in three steps. Firstly, Ag/AgCl ink was coated on the Pt
electrode, followed by curing at 90 ◦C for 1 h. Then, an appropriate amount of KCl-saturated agar
was sealed in the micro-pool with epoxy adhesive. Finally, we removed the potential gas bubbles in a
vacuum desiccator, and then left the electrode at room temperature for about 48 h before coagulation
of the epoxy adhesive.

2.5. Preparation of pH Sensing Electrode

The IrOx was electrodeposited with a solution introduced by Yamanaka [24]. Briefly, an amount
of 0.075 g iridium (IV) chloride was dissolved in 50 mL deionized water with magnetic stirring
for 30 min. Then, 0.5 mL hydrogen peroxide (30%) was dripped into the solution with stirring for
another 10 min. Subsequently, 0.25 g C2H2O4·H2O was added and the solution was kept stirring
for 10 min. As the next step, we adjusted the solution pH to 10.5 with potassium carbonate. Finally,
the solution was left at room temperature for at least two days until a stable state was reached.

A three-electrode system was employed to electrodeposit the IrOx. The fabricated Pt
microelectrode was connected to the electrochemical workstation, acting as working electrode,
with an Ag/AgCl (sat. KCl) as the reference electrode, and the third microelectrode on the chip
as the counter electrode. After being electrochemically cleaned in 0.05 M H2SO4, the electrode was
immersed in the electrolyte. Deposition was carried out by cyclic voltammetry. After that, the electrode
was rinsed with deionized water and dried with fresh air. A cross-sectional view of the pH sensor is
showed in Figure 1b.

2.6. Measurement Procedure

The properties of IrOx film were investigated with SEM and XPS. Therefore, information can
be collected about the morphology and chemical composition of the film. The pH sensing electrode
was tested by measuring the open-circuit potential (OCP). Sensitivity of the pH sensing electrode was
validated with solutions of different pH levels. Dynamic properties was investigated by a titration test.
The performance of the on-chip solid state reference electrode was investigated by cyclic voltammetry
(CV) and potentiometry, with a standard Ag/AgCl reference acting as a comparison. The conductivity
measurement was conducted with standard buffer solutions of various conductivities. Finally, a water
bath experiment was carried out to calibrate the temperature sensor. All of the measurements were
performed at room temperature, except for the calibration of the temperature sensor.

3. Results and Discussion

3.1. Electrodeposition of IrOx

The properties of the IrOx film depend on the composition and morphology of the oxide film,
which are mainly dominated by the preparation condition [44]. Thus, potential was investigated as
the parameter which could affect the surface morphology of IrOx film, and a SEM was employed to
observe morphologies of the films. Different potential ranges (0–0.6 V, 0–0.7 V, and 0–0.75 V) were
carried out, while the scan rate (100 mV/s) and the number of voltammetric cycles (100) were kept
constant. The SEM images of prepared films were displayed in Figure 2, which illustrate that IrOx
nanoparticles have been deposited on the surface of electrode. By comparing the films obtained with
different potential conditions, it could be found that a more positive potential induced a lager particle
size, and rougher surface. We suppose that a higher potential promotes the process of nucleation of
IrOx nanoparticles. Considering the films with rougher surface provide larger number of adsorption
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centres of pH measurements, a higher anodic potential is desirable. However, if we kept raising
the anodic potential limit to 0.75 V, obvious aggregation of IrOx nanoparticles can be found on the
surface. Meanwhile, the film showed micropores, some examples being pointed out by the white
arrows (Figure 2c). The possible explanation for this phenomenon is that oxygen was released in
the process of deposition. When the anodic potential was applied, the water was oxidized to form
IrOx nanoparticles, which was reported as an excellent catalyst material for the oxygen revolution
reaction [45,46]. With increasing the anodic limits of the potential, the deposited IrOx promoted
the abundant release of oxygen, conversely, leading to the micropores. The micropores may lead to
the potential drift since the water may diffuse through the pores contacting with the substrate Pt,
which affect the potential measurement [47]. Thus, 0–0.7 V was the preferable potential range
to synthesize IrOx pH sensing layer. All IrOx films were prepared in this condition in the
further experiments.
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A XPS measurement has been performed to analyze the chemical composition of the film.
The spectra were shown in Figure 3. From the high-resolution spectra of the Ir4f region (Figure 3a),
it can be found that the binding energy of Ir 4f7/2 and Ir 4f5/2 lines are located at 62.4 eV and
65.4 eV, respectively. According to the curve fitting, which was performed with the constraints
described in [48], the ratio of Ir(III) to Ir(IV) was calculated to 1.38. The O 1s signal (Figure 3b) has
illustrated the presence of hydroxide and water of hydration on the surface of the film, which implied
the prepared film was hydrous.

3.2. pH Measurement

The sensitivity of our pH sensing electrode was investigated with different pH standard
solutions, which were prepared by mixing 0.2 M NaOH and Britton-Robinson (B-R) buffer solution
(0.04 M H3BO3, 0.04 M H3PO4, and 0.04 M CH3COOH) with various volume ratios. Fourteen solutions
with pH levels from 2.22 to 11.81 were used. The electrode was successively dipped in these solutions
until the potential reached an equilibrium value. Between the measurements, the electrode was
washed with deionized water and dried with fresh air. The test was repeated three times. The potential
response was plotted against pH values, as shown in Figure 4a. The pH-sensing electrode exhibited a
linear response in the test range, and the sensitivity was calculated to be −67.60 mV/pH.

The pH sensing mechanism of IrOx films is based on the equilibrium between oxides, in which
the iridium has different oxidation states [22]. Generally, the mechanism could be described as the
following reaction [49]:

IrIVoxide + xH+ + ne− ↔ IrIII oxide + yH2O (1)

where the values of n, x, and y varied with the preparation method of IrOx, and are essential
for determination of the potential response. Thermal oxidation or sputtering methods usually
yield anhydrous IrOx films, which have near-Nernstian response with the sensitivity of about
59 mV/pH, because there is an electron per proton transferred in the redox reaction. Nevertheless,
a super-Nernstian response, with the sensitivity greater than 59 mV/pH will be obtained when the
IrOx films were prepared by electrochemical techniques. This is because the electrochemical method
generates hydrated IrOx layers, in which case the transferred electrons are less than the involved
hydrogen ions. The sensitivity greater than 59 mV/pH indicates that the IrOx prepared in our work
was hydrate. Similar results were demonstrated in [21], where the IrOx showed super-Nernstian
response as well.
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We tested different electrodes in pH 4.01, 6.86, and 9.18 solutions, and the response was showed
in Figure 4b. The relative standard deviations (RSD) of the response for these electrodes were 1.60%,
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0.63%, and 4.03%, indicating a good reproducibility of the electrode. It was suggested that the
reproducibility and reliability of the hydrated IrOx-based pH sensor is associated with the hydrate
level [21,50] and oxidation state [22] of the film. The test result implies that the films have a similar
hydrate level and oxidation state.

A titration test was carried out to investigate the dynamic property of the pH sensing electrode.
In the experiment, the pH sensing electrode was placed in a beaker containing 20 mL B-R buffer
solution. Then, 2 mL NaOH (0.2 M) solution was dropped into the beaker every 100 s for adjustment
of the pH level. Magnetic stirring was employed to accelerate the progress towards the equilibrium
state. A commercial pH meter calibrated with standard buffer solutions (pH = 4.01, 6.86, 9.18) was
employed to verify the pH values. During the test, the OCP of the pH sensing electrode was recorded
by an electrochemical analyser. The potential responses of three measurement cycles were shown
in Figure 5a, illustrating the potential changed quickly with the titration event. However, there are
some potential differences at the same pH levels found in the graph, which is a common phenomenon
for most metal oxide-based pH sensing electrodes [51]. In our case, the maximum difference in the
detected pH levels was 16 mV, which indicates that our pH sensing electrode has good repeatability
due to the acceptable IrOx film quality.
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Figure 5. (a) The real-time potintial response of the pH sensing electrode; and (b) the response time
measured from pH = 4.03 to pH = 4.70 (upper) and from pH = 10.28 to pH = 11.19 (lower).

The time required to reach 90% of the equilibrium value was defined as the response time,
which is an important indicator of dynamic property. In order to know whether the sensing film has
the same quick response in different environments, the response times were measured in acid and
alkaline conditions, respectively. Figure 5b shows the potential response changing over two transition
steps, from which we can suggest that the response time was less than 7 s. The quick response facilitates
the reduction of power consumption for detection system. It was also found that a longer time was
needed to reach equilibrium in the alkaline condition. This is probably due to the lower concentration
change of hydrogen ions before and after titration in an alkaline environment.

3.3. Characteristics of the Solid State Reference Electrode

The electrochemical characteristics of the solid state reference electrode (SSRE) were investigated
by cyclic voltammetry (CV) and potentiometry, with a commercial Ag/AgCl reference electrode
(CRE) acting as the comparison. The CV measurements were carried out using 2 mM ferricyanide in
0.1 M KCl as a redox couple. The SSRE or CRE was dipped in the solutions as the reference electrode,
an on-chip Pt electrode as the working electrode, and a commercial Pt electrode as the counter electrode.
The CV curves of SSRE and CRE, obtained in the potential range from −0.1 to 0.7 V, at the scan rate of
50 mV/s, are almost coincident as shown in Figure 6a. When a series of scan rates (20, 50, 80, 100, 150,
and 200 mV/s) were applied, the CVs of SSRE were recorded and shown in Figure 6b. The anodic
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and cathodic peak current is linearly proportional to the square root of the scan rate (Figure 6c), which
matches the theory of the diffusion-controlled process.

KCl solutions with different concentrations were used to measure the independence to the Cl−

concentration of the SSRE. The freshly prepared electrode was dipped in the solutions and the OCP
versus the CRE was recorded after an equilibrium state was reached. Figure 6d shows the potential
curve plotted against the logarithm of the KCl concentration, illustrating that the potential of the SSRE
is around 24 mV and scarcely influenced by the Cl− concentration. This fixed potential vs. CRE is
probably due to the unequal concentration of Cl− for the SSRE and the CRE. The potential stability
of the SSRE was evaluated by recording the OCP vs. the CRE in deionized water. Over an 86-hour
measurement, the potential drift rate is 0.3 mV/h as shown in Figure 6e. In the first 30 h the potential
decreased faster at a rate of 0.6 mV/h, and then remained stable, from which the stability of our SSRE
was found to be at least 56 h.
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Figure 6. Electrochemical characteristics of the SSRE: (a) CVs for SSRE (—-) and CRE (—) in 2 mM
ferricyanide at 50 mV/s; (b) CVs for SSRE at various scan rates: 20, 50, 80, 100, 150, and 200 mV/s;
(c) variations of the anodic (�) and cathodic ( ) peak currents vs. the square root of the scan rates;
(d) potentials of the SSRE at KCl concentrations ranging from 0 to 3 mol/L; and (e) the stability of the
SSRE measured in deionized water over 86 h.

The microscopic voids existing in the epoxy offer an ionic connection between the inner KCl-agar
and the sample solutions, on the other hand, the epoxy efficiently protected the inner Cl− from
fast fluxing into the sample solutions. Table 1 illustrates the performance comparison of our SSRE
and some other SSREs for pH sensing in the literature. The stability of the Ag/AgCl/GO reference
electrode is 26 days in 3 M KCl solution with test intervals [52]. A LBL-PE/npPt reference electrode
exhibited a stability of 50 h in 0.1 M PBS [53], and a screen-printed Ag/AgCl/KCl-glass SSRE showed
a stability of 4 h in deionized water [54], while our SSRE exhibited a longer stability in deionized
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water. Additionally, the fabrication method of our SSRE is very simple, without any specific apparatus
needed, and it can be used and stored freely, as the cured epoxy has good adhesiveness and high
mechanical strength. Therefore, the SSRE in this work is suitable for the application in water quality
monitoring, where intermittent measurement strategy is used.

Table 1. Comparison of the performance of some solid-state reference electrodes for pH sensing.

Electrode Type Fabrication Techenique Test Solution Test Mode Stability Literature

Ag/AgCl/GO Sputtering, chemical
chlorination, and drop casting 3 M KCl Intermittent

(2 or 3 days’ interval) 26 days 2015 [52]

LBL-PE/npPt Electrodeposition,
photo polymerization 0.1 M PBS Continuous 50 h 2011 [53]

Ag/AgCl/KCl-glass Screen printing Deionized water Continuous 4 h 2014 [54]

Ag/AgCl/KCl-
agar/epoxy Drop casting Deionized water Continuous 56 h This work

3.4. Conductivity Measurement

A four-electrode conductivity cell is like a four-terminal precision resistor. The conductivity
of water was determined by detecting the trans-impedance of the cell. A supporting circuit was
constructed providing an appropriate signal to drive the cell. When a DC signal was used to
excite the transducer, the interfacial capacitance between electrodes and water, which is known
as an electrolytic double-layer capacitance, may cause the impedance errors, resulting in a smaller
readout [55]. Thus, an alternative current with a sufficiently low amplitude is preferable. It was proved
that the trans-impedance is a function of the frequency, and there is a clear conductivity-sensitive
interval for medium frequencies [41,56]. In our case, an alternating square wave was applied to excite
the cell, and 4 kHz was selected as the optimal operating frequency. Figure 7a shows the diagram
of the supporting circuit for the trans-impedance measurement. The amplitude of the drive current
was controlled by adjusting the resistance of the reference resistor (R f ). The trans-impedance of
the cell was determined by detecting the excitation current passed over the two drive electrodes
(ring 1 and 4) and the potential drop between the sensing electrodes (rings 2 and 3). The conversion
from the measured conductance to the specific conductivity is derived from Equation (2):

C = k× I/E (2)

where I is the excitation current through the sensor, E is the voltage drop between the sensing electrodes,
k is the factor determined by the cell itself and called the cell constant.
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The conductivity cell was calibrated with the standard solutions prepared with the recipe
described in [57]. The test was repeated five times. The measured conductance was plotted
against the conductivity of the solution (Figure 7b), from which the cell constant was calculated to
be 1.566 cm−1. The maximum relative deviation was 3.37%, which shows that the conductivity sensor
has good repeatability. Meanwhile, the linear range of the conductivity sensor was from 21.43 µS/cm
to 1.99 mS/cm, which covers the conductivities of usual drinking water [1].

3.5. Temperature Measurement

Motivated by the need of accurate temperature measurement, the RTD was designed as a
three-terminal structure to prevent the errors caused by lead impedance. The temperature sensor
was calibrated against a commercial temperature probe using a water bath. The resistance of the
RTD was measured with the multi-meter in the test. The relationship of the resistance of RTD and
temperature is shown in Figure 8. The sensitivity (5.46 Ω/◦C) and good linearity (R2 = 0.9999) indicate
that the RTD could be used to detect temperature accurately, compensating for the thermal errors for
the measurements of pH and conductivity.Sensors 2017, 17, 157  11 of 14 
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4. Conclusions

In this paper, we proposed a multi-parameter sensor chip, on which three different sensors were
distributed. The chip size was approximately 7 mm × 8 mm. The circular shape for the conductivity
sensor was designed to prevent the bipolar square wave from disturbing the other electrodes. Hydrous
IrOx film was electrodeposited on the surface of the Pt electrode as the pH sensing material, coupling
with a miniaturized solid-state reference electrode. The on-chip sensors exhibited good performance
as intended. The pH sensor showed a sensitivity of −67.60 mV/pH, and had a short response time.
The conductivity cell had a sensitivity of 1.566 cm−1, which is suitable for the detection of drinking
water. The temperature sensor had a high sensitivity of 5.46 Ω/◦C. The integrated sensing chip could
be manufactured in batches, which makes it economical and suitable for application in portable or
online detection systems of water quality. Further work will focus on the optimization and fusion of
multiple transducers, as well as the construction of the water quality monitoring system. Lifetime
is the most important issue for on-site measurement, so we will mainly aim for the extension of the
sensor lifetime. A low-power consumption circuit will be developed as the data acquisition node,
so that the sensor can be used in water quality monitoring.
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