
sensors

Article

A Social Potential Fields Approach for
Self-Deployment and Self-Healing in Hierarchical
Mobile Wireless Sensor Networks
Eva González-Parada †, Jose Cano-García *,†, Francisco Aguilera †, Francisco Sandoval †

and Cristina Urdiales †

Departamento de Tecnologia Electronica, ETSI Telecomunicacion, Campus de Teatinos s/n,
University of Malaga, Malaga 29010, Spain; gonzalez@uma.es (E.G.-P.); fjaguilera87@gmail.com (F.A.);
fsandoval@uma.es (F.S.); acurdiales@uma.es (C.U.)
* Correspondence: jcgarcia@uma.es; Tel.: +34-952-137-176
† These authors contributed equally to this work.

Academic Editors: Muhammad Imran, Athanasios V. Vasilakos, Thaier Hayajneh and Neal N. Xiong
Received: 18 November 2016; Accepted: 5 January 2017; Published: 9 January 2017

Abstract: Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow
self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage;
and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so
that each node locally decides when and where to move. This paper presents a behavior-based
deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed
algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area.
The proposed algorithm has been tested in environments with and without obstacles. Our study also
analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of
network life and coverage.

Keywords: mobile sensor networks; WSN; autonomous deployment; SPF; hierarchical routing;
geographic routing; self-healing; robots

1. Introduction

Wireless sensor networks (WSN) are conformed by a set of interconnected spatially-distributed
sensors. These nodes capture information from the environment within their detection range and
report to a sink node (SN) that redirects data to the appropriate destination. To achieve this goal,
every node needs to be connected to the sink node, directly or through one or more intermediate
nodes. The sink node: (i) does not move; (ii) is connected to a main power supply; and (iii) redirects
information to an external network. Performance in WSN can be measured in terms of a number of
parameters (see Section 3). Specifically, connectivity and throughput depend largely on deployment [1].
Optimal deployment is often not viable, specially if WSN need to cover large, dynamic areas. Instead,
WSN often rely on redundant, mesh topologies. However, the deployment of large WSN is still
complex [2]. Furthermore, nodes in WSN are prone to failure due to: (i) component malfunctioning;
(ii) battery depletion; (iii) environmental factors; and (iv) man-caused factors [3].

Network management techniques include topology management [4]. The main goal of topology
management is to achieve sustainable coverage while maintaining connectivity, i.e., to have the largest
possible area within the sensing range of at least one sensor and keep at least one communication
path between each sensor and the sink node. When sensor failures create holes in the coverage area
and/or disconnect full clusters of functional nodes, topology management includes self-diagnostic and
self-healing functions. Power control techniques [5] could be applied in such situations to increase the
transmission range at the expense of a higher power consumption. Many commercial radio transceivers

Sensors 2017, 17, 120; doi:10.3390/s17010120 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2017, 17, 120 2 of 22

allow one to adjust the transmission power levels at runtime, but only within a restricted interval, so
power control techniques are usually combined with more complex approaches [6]. Some of them
are based on strategically adding some redundant nodes so that there is more than one routing path
between every pair of sensors in the network (k-vertex connectivity) [7]. The main challenge in these
cases is the complexity of planning node deployment using a reduced number of redundant nodes.
Alternatively, other methods propose spares for critical nodes. These spares could be passive extra
nodes or active nodes nearby the critical ones. In this second case, it is necessary to select as the
replacement the node that would cause the least degradation in the network [8].

Some methods work in a reactive way: rather than planning over the full topology, nodes
are rearranged according to local criteria, like preserving connectivity or minimizing coverage
loss in a given area. In these cases, algorithms can work with as little as one-hop information to
detect the failure of critical nodes and decide the best strategy to recover from it [6]. In its simplest
implementation, a failed node could be replaced by its nearest uncritical neighbor [9], whereas more
complex approaches aim at minimizing movement overhead in order to extend network lifetime [10].
Other proposals deal with routing information to provide short paths between remaining nodes,
as well [11]. These techniques are typically used in mobile WSN (MWSN), where nodes have some
degree of mobility.

MWSN can autonomously deploy themselves and also adjust their positions if part of the network
fails (self-healing) [12]. MWSN are useful for long-term monitorization of large areas and also for
emergency deployment of communication networks. In both cases, mobile nodes allow adaptation
to changing conditions, including the specifics of the area and also the lifetime of the different nodes.
Multiple robot systems (MRS) are adequate for MWSN [3,13,14]. In these systems, robots move to
achieve the best possible coverage using all living nodes.

Some approaches for deployment in WSN are based on deliberative algorithms to optimize
efficiency [15–18] and also for self-healing [3,19]. Similarly, self-healing may rely on the deliberative
relocation of nodes in the network [20]. Deliberative algorithms reason over a model of the environment.
Hence, they tend to be computationally expensive and require information about the problem instance,
including network configuration, environment layout, traffic, etc. Instead, reactive deployment
assumes that local dispersion leads to global dispersion: hence, each node makes its own decisions
based on local factors [21–25]. Reactive deployment is not optimized, so some features, like path
redundancy, shortest path to the sink, etc., cannot be guaranteed. However, it is computationally less
expensive and, hence, better suited for operation in unknown environments, adaptation to failure and
also to dynamic structures where nodes can move.

A popular approach to reactive deployment in MWSN is behavior-based deployment.
In behavior-based algorithms, a node relies on several nuclear skills (behaviors). Each behavior
associates an input instance to an output action. More complex, emergent behaviors are obtained
as the combination of several simpler ones. A node stops moving when the combination of all its
behaviors return a null vector. All virtual potential and forces approaches are implementations of
behavior-based algorithms [23–25]. Alternatively, deployment could follow rules rather than behaviors
(e.g., [26]). Rule-based deployment is better fitted to deploy into a given topology, e.g., bus, backbone
or ring networks, and also to impose hard constraints, e.g., fix a number of beacons for RSS-based
localization [27]. However, behavior-based deployment adapts better to the environment, and it is
more adequate for self-healing, especially for multi-node failure, since no fixed node structure needs
to be preserved [28].

This work proposes a new behavior-based algorithm for deployment and self-healing of MWSN.
The proposed algorithm is a variation of the social potential fields (SPF) [29], originally proposed
for navigation in a robot swarm. Force-based strategies have also been proposed for deployment,
e.g., [23], or for autonomous repair, e.g., [30]. In one case, forces tend to move nodes away from each
other, whereas in the other, healthy nodes tend to move towards the center of the deployment area
(assuming it is known). Our proposal is valid for both deployment and self-repair simultaneously,

Sensors 2017, 17, 120 3 of 22

because forces are locally established between nodes, not with respect to specific locations. Each node
is affected at all times by a number of forces depending on nearby nodes. Nodes stop when forces are
balanced. However, any change that affects this balance will make the node move again. Nodes work
uniquely with local information (one-hop). Rather than coping with the state of the network, nodes only
care about their own goals, i.e., keep as far from the neighbors as possible and preserve connectivity,
plus avoiding collisions, since sensors are mobile, and there might be also other obstacles in the
environment. The authors proposed an initial implementation of this SPF-based algorithm for MWSN
in [28]. However, the proposed implementation only focused on network expansion and was not
adapted to the routing strategy. We propose a new SPF-based algorithm for deployment and self-repair
and its adaptation to different routing strategies in Section 2.

The methodology we use to test the algorithm is presented in Section 3, including quality metrics
and the test environment. As stated in [3], the cost of mobile sensors is considerably higher than the
cost of static ones, and hence, it is generally accepted that deployment of only few of such nodes
may be feasible in real environments. Hence, most works with a large number of robot sensors
rely on simulations [3,14]. In our work, we have fixed all working parameters of our algorithm
using a reduced number of real robots and then tested it with large MWSN in simulation using the
Player/Stage environment. Simulations in robotics are not totally reliable because physical agents are
affected by a number of factors during operation, but they provide valuable information about how
the MWSN would evolve as a whole. Section 4 presents our results, and Section 5 presents conclusions
and future work.

2. A Behavior-Based Self-Deployment and -Repair Algorithm

2.1. An Implementation of SPF for MWSN

This work proposes a behavior-based algorithm valid both for deployment and self-healing.
Reactive behaviors are based on the local conditions of the nodes at each time instant. Our algorithm
is based on the social potential fields (SPF), originally proposed for swarm robots [29]. SPF assigns
simple attraction and repulsion forces to goals and/or constraints. The combination of all forces results
in a more complex emergent behavior. In our case, we rely on two repulsion forces and a clustering
one. We have purposefully designed two repulsion forces depending on their purpose. One is meant
to avoid collision with obstacles and to prevent robots from leaving the area to be covered. The other
is meant to expand the network, i.e., to keep the robot as far away from all of the others as possible.
Repulsion forces are split into two types, not only because they serve different purposes, but also
because it is easier to adjust their parameters when the goal of each one is clearly defined at the reactive
level. Forces are active at all times, but nodes only move when they are not balanced. SPF-derived
motion is typically smooth and tends to present no discontinuities. In our case, that means that while
nodes are moving, there will be a continuous trade-off between keeping away from each other and
preserving connectivity.

• Repulsion force(s) fr1(ri,j) repels the robot from other robots or physical obstacles in its vicinity to
prevent collisions. In our implementation, the coverage area boundary is modeled as a virtual
obstacle, so that it also repels nodes to prevent them from leaving the area.

• Repulsion force(s) fr2(ri,j) moves robots away from each other to expand the network. These forces
can be calculated using RSS.

• An attraction force (clustering force) fc(ri,j) increases with ri,j to avoid the loss of communication.

ri,j is the distance between robots i and j.
Unlike other node relocalization techniques, e.g., [31], our algorithm does not need absolute

localization information of elements in the environment to operate. However, it still needs to estimate
relative distances between robots and with respect to the coverage area boundaries. The locations
of all elements under simulation are always known. In real tests, locations are often estimated by
RSS-based trilateration [27,32]. However, RSS is affected by environmental factors and obstacles, so

Sensors 2017, 17, 120 4 of 22

RSS-based localization may yield significant errors. In our case, errors are constrained, because we
only need to estimate relative distances between nodes separated by one hop. Besides, in areas where
errors could be critical, distances are estimated with an onboard range sensor to prevent collisions
with other nodes and obstacles in the environment. Thus, unlike other methods [33], our system does
not need to assume that there are no obstacles in the environment, nor have knowledge about its
layout. Nevertheless, our system performance would still be affected by localization errors, especially
to estimate distances to the deployment area boundaries. Some approaches rely on creating a static
beacon infrastructure to reduce localization errors [34]. In open environments where GPS is reliable,
some of the network nodes equipped with a GPS receiver may work as beacons to autonomously create
this infrastructure during deployment [35]. Mobile robots may statistically combine this information
and/or sensor feedback with odometry to improve localization accuracy, e.g., [36]. However, this
process may involve computational load not affordable for inexpensive robots. Unlike deliberative
navigation systems, reactive approaches do not heavily rely on localization, so RSS-based localization
errors are acceptable because they are not accumulative, i.e., they are typically bounded to a few meters.
Besides, in our system, nodes typically keep a distance of a few meters between each other, whereas
the communication range is larger. Hence, they can use more than three signals for trilateration to
achieve some resistance against obstacles in the way and other factors affecting RSS. Localization
errors still result in sub-par deployment, especially with respect to the coverage area boundaries, but
in reactive approaches, the results are never optimal. However, in order to avoid collisions due to
these localization errors and also with obstacles that are not transmitting (robots out of battery, walls,
other obstacles in the environment, etc.), robots include a frontal range sensor that is used to estimate
repulsion force fr1.

Each node is affected by a number of forces depending on its location and all nearby nodes, which
are combined to obtain an emergent motion vector. Globally, robots spread over the coverage area,
avoiding each other and preserving connectivity. A node stops moving when its emergent motion
vector is under a threshold fu. If any force affecting the node changes, it may move again. For example,
when a node fails, all of its close neighbors stop receiving its signal, i.e., they lose a component of fr2.
Hence, they must move until they balance all remaining forces. Deployment/self-healing finishes
when all nodes stop moving.

2.2. Role Definition for Different Routing Mechanisms

Deployment/self-healing algorithms return different network topologies depending on the
employed routing algorithms. WSN support different routing mechanisms [37,38]. However, when
deployment is not planned and signaling traffic needs to be very limited to extend the network life
as much as possible, the most popular routing mechanisms are (greedy) geographic and hierarchical
routing. Geographic routing works over multi-hop topologies. Its main advantages with respect to
other WSN strategies are [3,38]: (i) it is a stateless, i.e., highly energy efficient, routing strategy; (ii) it
adapts quickly to network topological changes; and (iii) it provides good scalability. One of the simplest
approaches to geographic routing is the closest neighbor routing: a given node i sends a packet to all of
its neighbor nodes within its transmission range. However, receiving neighbor nodes only retransmit a
message if they are closer to the destination node than the one from which they received the message.
A node never retransmits the same packet more than once. This algorithm provokes a partial flooding;
but, it is very simple, and it does not require additional signaling for routing.

Hierarchical routing is a popular approach to point-to-point routing with a very small routing
state [38]. Hierarchical routing infrastructure can be autonomously bootstrapped and maintained
by the nodes [39]. In its simplest formulation, a hierarchical network includes three node levels.
The sink node is a Level 2 node. All nodes connected to the sink node are Level 1 nodes (L1). Finally,
nodes connected to a Level 1 node are Level 0 nodes (L0). L0 nodes are registered with a specific
L1 node. L1 nodes are registered with the sink node. Typically, an L0 node only exchanges data
with the L1 node it is registered with, and that L1 node redirects data to the sink node. The main

Sensors 2017, 17, 120 5 of 22

drawback of hierarchical routing in WSN is that failure in L1 nodes (critical nodes) may lead to loss
of all L0 nodes that were registered with them. This problem can be partially mitigated if L0 nodes
may become L1 nodes to replace dead ones. Furthermore, in MWSN, nodes may relocate to adapt to
this new configuration. In this work, we propose a very simple role-swapping algorithm. Originally,
all nodes except the sink start as L0. An L0 node is promoted to L1 if: (i) there is no L1 node in its
vicinity; and (ii) the number of L1 nodes for the whole network is under a prefixed threshold that
depends on the total number of nodes N. Alternatively, if an L0 node finds in its vicinity an L1 node
that still accepts connections, it registers with that node. If an L0 node moves away from the L1 node
it is registered with, it can unregister and find a closer one with which to register. This algorithm is
presented in Figure 1. It needs to be noted that role swapping occurs when nodes move (deployment
or self-healing).

Figure 1. Role definition algorithm for Level 0 (L0) nodes.

The main difference between both presented routing algorithms is that in geographic routing,
all nodes have the same role, whereas in hierarchical routing, nodes may have different roles.
The proposed SPF-based algorithm may support both routing strategies if we define node roles,
as well. Forces defined in Section 2.1 that affect a node may change depending on the node role:

• fr1(ri,j) is the same for non-hierarchical and hierarchical topologies, i.e., in both cases, nodes need
to avoid obstacles and remain in the coverage area.

• Repulsion force(s) fr2(ri,j) depends on node roles. In hierarchical routing, L0 nodes are less
repelled from L1 nodes than from other L0 nodes or the sink node. Similarly, L1 nodes are less
repelled from the sink than from other nodes.

• The clustering force fc(ri,j): in non-hierarchical networks, nodes are attracted to the sink node:
in hierarchical networks, L0 nodes are attracted to L1 nodes, and L1 nodes are attracted to the
sink node.

It must be noted that this work does not focus on routing, but on the effect of both routing
strategies in deployment topologies. Hence, no routing optimization, nor deep analysis is performed.

It can be observed that in geographical routing, all nodes (except the sink) are affected by the
same forces. Figure 2 shows forces affecting nodes depending on their roles for hierarchical routing
depending on the node level. Attraction and repulsion forces are represented in different colors.
The next subsection provides further detail on these forces and how they are adjusted in our system.

Sensors 2017, 17, 120 6 of 22

Figure 2. Forces involved in hierarchical network deployment and self-healing.

2.3. Algorithm Implementation

Force parameters need to be heuristically set depending on the physical nature of nodes (robot and
RF chipset). Although tests in large networks have been performed under simulation, we have
built a small number of real robots to obtain these parameters (see Section 3.2). Table 1 shows
the force equations and their respective parameters for both routing mechanisms in Section 2.2.
As commented, in geographic routing, all nodes are affected by the same forces. In hierarchical routing,
there are different clustering (fc) and repulsion forces (fr2) between nodes at Levels 0 (L0), 1 (L1) and 2
(sink node, SN).

In order to set the parameters, the following considerations were taken into account. Our robots
are built on a Hexbug Spider frame (5.1 inches × 4.3 inches × 4.3 inches), and they are attached with a
Texas Instruments EZ430-RF2500, which has been configured to achieve a communication range of
25 m. They also include a SHARP IR range sensor for collision avoidance. Parameters are set so that
we can cover approximately an area of 150 m × 150 m with 100 robots.

• Repulsion forces fr1(ri,j) in our tests are fixed so that robots are not affected by objects farther
than 1 m. Obstacles may include static objects and other robots and also the borderline of the area
to be covered by the MWSN.

• Repulsion forces fr2(ri,j) are adjusted to keep at least 2 m between any two robots.
• Clustering forces fc(ri,j) are adjusted to start affecting robots when they are at least 1.5 m away.

We set the parameters of each force heuristically, using a limited number of robots until their
behavior consistently met our requirements, e.g., robots affected only by fr1(ri,j) did not collide with
each other, nor paid attention to obstacles further than 1 m. Obviously, if the size of the robots or the
communication range changed, parameters would need to be recalculated using the new physical
nodes. After the parameters of all forces were fixed in an isolated manner, all forces were combined
into a single emergent motion vector, as proposed in the SPF framework.

Table 1. Forces applied to node i for every node j in its vicinity.

Force Geographic Routing Hierarchical Routing

fr1(ri,j) − 0.001
(ri,j)8 − 0.001

(ri,j)8

L1 vs. SN L1 vs. L1/L0 L0 vs. L1 L0 vs. L0

fr2(ri,j) − 20
(ri,j)7 − 20

(ri,SN)2 − 60
(ri,j)7 − 10

(ri,j)3 − 3
(ri,j)8

fc(ri,j)
20·N f ail

N·NnearSN

6
(ri,SN)0.2 — 10

(ri,j)0.2 —

Sensors 2017, 17, 120 7 of 22

Repulsion forces are in charge of (i) collision avoidance (including deployment area boundaries)
and (ii) spreading the network over the coverage area, so removing fr1(ri,j) would result in collisions
and escaped nodes, and removing fr2(ri,j) would result in non-deployment. Figures 3 and 4 illustrate
the effect of removing clustering forces for both routing strategies. In geographic routing, no clustering
force is required for initial deployment as long as the number of nodes is enough to cover the full
coverage area. However, when nodes start to die, some node clusters might get disconnected from
the sink node. Nodes close to the sink node usually have a higher traffic load and fail first, whereas
nodes on the boundaries may have a longer life [19]. However, if they are not compelled to move
closer to the sink node after part of the network has failed, they might get disconnected from the rest
of the MWSN. Figure 3a shows the same MWSN after 25% of its nodes have died in absence of a
clustering force. If a clustering force is added, nodes tend to move closer to the sink node (Figure 3b).
They still need to avoid dead nodes in the way, and coverage obviously decreases; but, all living nodes
remain connected to the sink node. In a hierarchical network, clustering forces depend on node roles
(Figure 2). The force in charge of collision avoidance fr1 is the same as in the previous case. However,
there are different repulsion forces for deployment in this case. L1 nodes tend to keep away from all of
the other nodes, including the sink. However, repulsion from the sink node is stronger, meaning that
they are not affected by far L0/L1 nodes. L0 nodes are not repelled by the sink, only by L1 nodes and
other L0 nodes. Repulsion from L1 nodes is stronger in this case, meaning that L0 nodes registered
to the same L1 node can conform small clusters, but still aim to deploy themselves as spread out as
possible. In this case, there are only clustering forces between L1 nodes and the sink and between L0
nodes and L1 nodes. This forces are also in charge of self-healing after role swapping: if a given L1
node fails, one of the nearby L0 nodes will become L1 (Figure 1). At this point, it will start to become
strongly attracted to the sink node and, hence, reach a location where it is directly connected to the
sink. Besides, it will start to attract L0 nodes. Orphaned nodes or any other L0 node closer to the
new L1 node than to its own will try to register to it, and hence, one-hop connectivity to the sink will
be restored.

Figure 3. MWSN with geographic routing: (a) without clustering force; (b) with clustering force
(figures are scaled 1:10 m).

Figure 4a shows an example of an MWSN deployed with all clustering forces in Table 1. If the
clustering force between L1 nodes and the sink node is removed, L1 nodes tend to travel further from
the sink node (Figure 4b), sometimes even further than their own L0 nodes. If the clustering force
between L0 and L1 nodes is removed, deployment is less homogeneous, and the distances from L0 to
L1 nodes are more random (Figure 4c).

Sensors 2017, 17, 120 8 of 22

Figure 4. Hierarchical MWSN: (a) with all clustering forces; (b) without clustering force L1 vs. the sink
node (L2); (c) without clustering force L0 vs. L1 (figures are scaled 1:10 m).

3. Methodology

The proposed algorithm is going to be tested for deployment and self-healing both for geographic
and hierarchical routing configurations. This section describes our methodology.

3.1. Evaluation Parameters

Deployment and self-healing algorithms in an MWSN can be evaluated in terms of coverage and
network life. These two factors are going to be analyzed in terms of the following parameters, which
we originally proposed in [28]:

• Blanket coverage: percentage of the deployment region A covered by at least one sensor. Coverage
C is the ratio between the union ∪ of all Ai and A, Ai being the round area covered by node i.
For N sensors:

C =
∪i=1...N Ai

A
(1)

If we assume that cell i has a probability pi of detecting an event on the cell, we can model
Equation (1) with a probabilistic grid of M cells [40]. Any event at cell i can be detected by several
nodes, i.e., node j may detect an event at cell i with a probability pij. Hence, pi can be calculated
from the probability of an event going undetected at cell i (p̄i):

pi = 1− p̄i = 1−∏
N
(1− pij) (2)

Finally, coverage C is obtained using Equation (3):

C =
M

∑
i=1

pi
M

(3)

• Energetic efficiency: The cost of deployment and self-healing depend on distance d traveled by a
node to its current location; and time t to reach its current location [41].

• Energy cost when nodes are not moving depends on the uniformity U of the deployment topology.
In a network of N nodes:

U =
1
N ∑

i=1
Ui (4)

Sensors 2017, 17, 120 9 of 22

Ui = (
1
Ki

Ki

∑
j=1

(ri,j − r̄i)
2)

1/2

(5)

Ki,j being the number of neighbors of node i, ri,j being the distance between nodes i and j and r̄i
being the average distance between node i and its neighbors.

• The average power that nodes require to send a message to the network P̄:

P̄ =
1
N

N

∑
i=1

P̄i (6)

P̄i being the average power that node i needs to send a message to the network. P̄i has an impact
on the network lifetime, and it can be obtained as:

P̄i =
1
N

N−1

∑
i=1

Pij (7)

Pij being the power needed to send a message from node i to j. This power depends on the
physical features of the RF chipset the network is using.

If messages need to hop through k nodes, it is necessary to add the involved transmission power
between each of the two nodes:

Pij = Pi1 + ... + Pik (8)

• Networks are unbalanced when some nodes consistently transmit more packets than others. In
the non-balanced situation, the life time of loaded nodes is significantly shorter that the rest.
Failure in some critical nodes may lead to disconnection of large areas of the network. Unbalance
can be analyzed by the evaluation deviation in the number of routed packets per sent message in
the network (σMsgTx). If σMsgTx is high, some nodes are routing far more traffic than the rest.

3.2. Work Environment

In this work, we use the simulation environment fully described in [28]. We rely on the freeware
Player/Stage environment [42] to run our control system. Player/Stage supports multiple concurrent
client connections, so it can simulate every robot in a MRS. The main advantage of this environment is
that physical robots can be replaced by simulated ones in a straight way [43]. This feature allowed us
to use a few physical robots to fix the heuristic parameters of the proposed algorithm (Table 1) and
then use the same software in large networks’ simulation. Our real robots are based on off-the-shelf
Hexbug robot toys (Figure 5). Every robot control board circuitry includes an H-bridge for motor
control, plus feeding and protection electronics. The board is connected to a EZ430-RF2500 from
Texas Instruments Inc. (Dallas, TX, USA), including an MSP430F2274 microcontroller and a CC2500
RF chip. Figure 6 presents the power consumption vs. distance plot for CC2500 RF according to its
datasheet [44]. The system uses the Texas SimpliciTI Low Power RF open protocol to operate 2.4-GHz
wireless networks. Real robots estimate distances using RSS-based trilateration, but they also include
a SHARP infrared range sensor for collision avoidance (robots may avoid collisions with each other
using RSS, but they need a sensor to detect dead nodes and other obstacles in the environment).

Sensors 2017, 17, 120 10 of 22

Figure 5. Node hardware structure.

Robots in simulation always know their location with respect to the others and to the coverage
area boundaries. We have only used real robots for parameter setting. In these cases, we relied uniquely
on RSS-based trilateration for localization, so localization errors appeared. We did not implement any
statistical robotic localization method in our robots for several reasons: (i) the computational load of
such processes is high, and our microcontroller memory was mostly dedicated to the communication
protocol stack implementation; (ii) our robots are legged, and their body structure does not allow
any simple odometry mechanism; (iii) the onboard SHARP sensor has a very limited detection
range. Since our deployment algorithm is fully reactive, it would work in real environments despite
localization errors. However, if localization precision were required, our robots would need to be
replaced to support more complex localization mechanisms.

10 20 30 40 50 60 70 80 90 100

10

12

14

16

18

20

Distance (meters)

T
y
p

ic
a

l
c
u

rr
e

n
t

(m
A

)

: R=0.9912

fit

data

Figure 6. Power consumption vs. distance for CC2500 per packed transmitted.

After the parameters are heuristically fixed (see Section 2.3), a large number of these robots is
simulated in Player/Stage to test the behavior of large MWSN during deployment and self-healing.
Environments in our simulations are 150 × 150 m2. These environments can be fully covered with
100 of our robots.

3.3. Tests Description

The goal of our tests is to show that the proposed behavior-based algorithm: (i) provides good
adaptation to the environment; and (ii) provides good performance according to the quality parameters
proposed in Section 3.1. Since the proposed algorithm is fit for geographic and hierarchical routing,
a secondary goal is to compare the resulting MSWN for both routing strategies in terms of coverage
and network life for deployment and self-healing. Hence, in this work, we run four kinds of tests:

Sensors 2017, 17, 120 11 of 22

• Geographic routing without obstacles
• Geographic routing with obstacles
• Hierarchical routing without obstacles
• Hierarchical routing with obstacles

In all of the tests, we follow the same procedure:

1. Let nodes move until balance, i.e., nodes stop moving (see Section 2).
2. Obtain all relevant quality parameters (see Section 3.1).
3. Determine which nodes would fail first (depending on routed traffic), and move time forwards

in the simulation until the most loaded nodes run out of battery (typically, nodes do not fail
continuously, but in small groups, depending on how many packets they were routing/rerouting).
At this point, forces are not balanced anymore, and remaining living nodes start to move again.

4. Go back to Step 1 until the number of living nodes is lower than 70% of the original number
of nodes.

In order to determine in which time instant a given node dies under simulation, its power
consumption (current drained from the battery) during network operation has to be estimated.
This consumption does not depend only on the transceiver features specified in the datasheet, it is also
highly influenced by the medium access control (MAC) strategy, which determines how much time
the transceiver spends in each possible state (transmission, reception or sleep) during its operation.
In battery-powered wireless sensor networks, a duty-cycling MAC strategy is typically used to allow
the transceiver to remain in a low power state most of the time [45]. Our simulation model considers
such a strategy. There are two main sources of power consumption: (i) a constant background
consumption due to the duty-cycling operation, which is equal for every node in the network; and
(ii) the consumption caused by packet transmissions, which depends on how many packets each node
is transmitting and how much power is required per packet. If MAC parameters are properly tuned,
current drained during duty-cycling operation can be as low as 1% of the current drained when in the
receiving state [46]. On the other hand, duty-cycling strategies require each packet to be repeatedly
transmitted over a period of time. Hence, transmission becomes more costly and the main source of
consumption. Current drained from the battery when transmitting depends on transmission power,
which in turn determines transmission range (Figure 6). In geographic routing scenarios, we configure
all nodes to transmit their packets at −12 dBm to cover a prefixed range (25 m radius). In hierarchical
networks, L0 nodes transmit to L1 nodes, and L1 nodes retransmit to the sink node. In this scenario,
we consider that the transmission range is adapted depending on the relative distances among the
source and destination nodes, to guarantee that the signal received by the destination is above its
sensitivity level. Thus, the current drained from the battery is estimated following the linear regression
depicted in Figure 6. In our simulations, we assume an ideal battery with a capacity of 3000 mA·h and
a wake-up frequency of 20 Hz for the duty-cycling protocol. To compute the amount of packets routed
by each node, we consider a simple data-gathering traffic model, where each node sends a packet to
the sink node approximately every 10 s once the network is deployed.

We have added a simplified motor consumption model to the transmission one for our simulations.
First, we measured how much current is drained from the battery when the robot is moving (≈100 mA).
All of our robots move at constant speed, both in real tests and under simulation. Then, we measured
how long it takes for a robot to move 1 m ahead (≈20 s). This provides the motor battery discharge
per distance unit (≈0.56 mA·h/m). Finally, in our simulation, this current drain is calculated for
each robot depending on its traveled distance. It needs to be noted that this model is over-simplistic,
and consumption would probably change in real conditions, especially if the terrain were uneven,
robots could accelerate and/or they carried a load. Nevertheless, in all of our tests, we found that
power consumption due to motor operation is neglectable with respect to power consumption due
to communications, because: (i) the covered area is not too large, so robots do not travel too far even
in the worst case scenario (robots in boundary area in environments with obstacles); and (ii) after
deployment, robots do not move too often.

Sensors 2017, 17, 120 12 of 22

4. Experiments and Results

All simulations in this section are run in 150 × 150 m2 environments with and without obstacles
using 100 nodes. These robots start together at the center of the test environment. Then, they move
autonomously until deployment is complete. The sink node does not move: it remains in the center of
the deployment area. It does not run out of battery either, because in real tests, it would be connected
to a main power source. When nodes die, self-healing is achieved, as proposed in Section 2. All tests
are performed for geographic and hierarchical routing.

4.1. Topologies after Deployment and Self-Healing

Figures 7 and 8 show a network with geographic routing in an environment with and without
obstacles, respectively, for a decreasing number of living nodes. The proposed algorithm returns a
homogeneous distribution of nodes in a grid-like structure. The grid is not fully symmetrical nor
equally spaced, because there is no global directive to move one way or another. The initial positions
of the nodes after deployment are simply the result of all interacting forces when balance is reached
(Figures 7a and 8a). As time passes, nodes start to die, and the grid starts to shrink. As soon as there
are not enough nodes to cover the full test environment, remaining living nodes tend to conform
a circular structure around the sink node due to its attraction force (Figures 7b–e and 8b–e). It can
be observed that nodes close to the sink node tend to die earlier than the rest. This is coherent with
a closer neighbor routing algorithm, where nodes close to the destination one reroute most of the
traffic. Dead nodes become obstacles. Since fr1(ri,j) is lower than fr2(ri,j), living nodes can move
closer to dead nodes than to other living nodes. However, at some point, dead nodes might act as a
barrier around the sink node for living nodes (Figures 7d,e and 8d,e). In our simulations, this issue was
not important because the distance of this barrier to the sink node is lower than the communication
range (Figure 7e). If the barrier actually kept outside nodes out of range, it might be necessary to add
additional battery-dependent forces to move dying nodes out of the way.

Figure 7. Network configuration when: (a) 0%; (b) 12.5%; (c) 25%; (d) 50% and (e) 70% of the nodes are
dead (figures are scaled 1:10 m).

Sensors 2017, 17, 120 13 of 22

One of the main advantages of the proposed algorithm is that it naturally adapts to the structure
of the environment. Since nodes operate only on reactive forces, any obstacle in the way simply acts
as a repulsor, and nodes seamlessly arrange themselves around it (Figure 8a–e). Obstacles may have
some impact on how the network evolves during self-healing, since rearrangement is not optimized at
any stage. However, deployment differences in nodes with and without obstacles are not significant.
Figure 9 shows the deployment areas after initial balance and after 70% of the nodes are dead in the
environment without and with obstacles for the simulations in Figures 7 and 8. We can observe that
there are some differences in the boundaries, but nodes are mostly located within the same areas.

Figure 8. Network configuration when: (a) 0%; (b) 12.5%; (c) 25%; (d) 50% and (e) 70% of the nodes are
dead (figures are scaled 1:10 m).

Figure 9. Deployment with geographic routing: area difference with and without obstacles: (a) initial;
(b) final.

Sensors 2017, 17, 120 14 of 22

Figures 10 and 11 show a deployed network with hierarchical routing in the same environment
with and without obstacles. If we compare geographic and hierarchical routing network deployment
in the same environments (Figures 7 and 8), it is obvious that the coverage area is lower in hierarchical
mode. In this case, no node barrier appears around the sink node, because dead nodes are more
randomly distributed. In this case, nodes die in the expected order: L1 nodes fail before L0 nodes,
and then, they are replaced by role swapping L0 nodes (see Section 2.2, Figure 1). In hierarchical
deployment, the proposed algorithm also adapts naturally to environments with obstacles (Figure 11).
Since hierarchical networks keep a (minimum) structure, differences in node areas with and without
obstacles (Figure 12) are larger than in the previous case (Figure 9), mostly in areas close to obstacles.
However, covered areas are basically the same.

Figure 10. Network configuration when: (a) 0%; (b) 12.5%; (c) 25%; (d) 50% and (e) 70% of the nodes
are dead (figures are scaled 1:10 m).

Figure 11. Cont.

Sensors 2017, 17, 120 15 of 22

Figure 11. Network configuration when: (a) 0%; (b) 12.5%; (c) 25%; (d) 50% and (e) 70% of the nodes
are dead (figures are scaled 1:10 m).

Figure 12. Deployment with hierarchical routing: area difference with and without obstacles: (a) initial;
(b) final.

4.2. Coverage and Network Life

Deployment and self-healing results can be evaluated in terms of the parameters proposed in
Section 3.1.

The most relevant parameter is coverage. As the number of dead nodes in the MWSN
increases, coverage decreases. Figure 13a shows how nodes die in time during the simulations in
Figures 7, 8, 10 and 11. Nodes run out of battery mostly depending on the number of packets they
route and also on transmission distance (Figure 6). As commented in Section 3, in our closest neighbor
routing implementation, all nodes transmit with constant power, specifically at −12 dBm to reach
25 m. In hierarchical routing, packets are sent to the sink node via L1 nodes, and transmission
power is adapted to reach the destination node depending on the distance between transmitter and
receiver. Nodes usually die in small groups that have been routing similar traffic since the network
reached balance.

Figure 13a shows the evolution of dead nodes in time for all simulations in Section 4.1.
As commented, results in real conditions would most likely change (e.g., robot battery life, localization
errors, etc.), so coverage and network lifetimes would probably be significantly lower. Nevertheless,
conclusions extracted from these simulations as a whole are consistent and coherent with theoretical
expectations. Closest neighbor routing provokes partial flooding. Hence, the number of packets in the
network is much larger in this mode than in hierarchical routing, where an L0 packet is just one hop
away from the sink node. Consequently, nodes start to die earlier and faster in geographic routing
simulations: around 120 days after initial deployment, 70% of the nodes are dead. In hierarchical
routing simulations, nodes do not start to die until approximately Day 250, and their dying rate is

Sensors 2017, 17, 120 16 of 22

lower. Indeed, the network life is extended to almost 600 days. On the other hand, as observed in
Section 4.1, coverage in geographic routing scenarios is initially higher. Figure 13b shows how
coverage is higher than 90% in these scenarios, both with and without obstacles, whereas it is
slightly over 50% for hierarchical routing scenarios. However, coverage decreases much faster in
geographic routing simulations: after approximately 60 days, hierarchical networks present a better
coverage than non-hierarchical ones. Indeed, they preserve the same coverage until nodes start to die
(around Day 250), and afterwards, coverage decreases significantly slower. This effect can be better
appreciated in Figure 14, where coverage is plotted against the number of living nodes instead of
against time. This was to be expected, since nodes live longer when hierarchical routing is used.

0 100 200 300 400 500 600

Days

0

10

20

30

40

50

60

70

D
e

a
d

 n
o

d
e

s

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(a)

0 100 200 300 400 500 600

Days

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v
e
ra

g
e

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(b)

Figure 13. Network evolution in time: (a) dead nodes; (b) coverage.

30405060708090100

Alive nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

v
e

ra
g

e

Geo.

Hier.

Geo. Obs.

Hier. Obs.

Figure 14. Coverage vs. number of nodes alive in an MWSN deployed with the proposed algorithm.

It is important to note that if we changed our routing algorithms, we could improve the
performance of geographic routing deployment in our simulations. Similarly, if we change algorithm
parameters, like attraction forces, we could improve coverage in hierarchical routing. However,
the general conclusions would remain the same: geographic routing deployment with our
algorithm provides better coverage, and the hierarchical one provides a longer network life. In this
sense, non-hierarchical networks are probably more suited for emergency deployment of MWSN,
whereas hierarchical networks are more adequate for long-term deployment.

Sensors 2017, 17, 120 17 of 22

4.3. Node Distribution

Figure 15 shows the evolution in time of parameters related to node distribution. Figure 15a
presents the average distance that nodes move in time in all presented simulations. Only living
nodes are taken into account to calculate this average. It can be observed that mean distances tend
to evolve similarly for non-hierarchical network deployment, although they are initially larger in an
environment with obstacles. Nodes move on average 38 m for deployment if there are no obstacles and
44 m for the proposed obstacle layout. Then, when nodes start to die, all remaining nodes adjust their
positions, and hence, the mean distance grows steadily. After 100 days, the mean distance is over 100 m
for non-hierarchical simulations. Distances also evolve similarly for both hierarchical simulations.
After initial deployment, the mean distance is equal to 34 m and 45 m for the environment without
and with obstacles. Since nodes last longer in these simulations, they stay in position until Day 250.
After that, when nodes start to die, living nodes relocate themselves. In this case, the mean distance
grows more slowly, probably because most variations affect only limited areas where L1 nodes died.
Nevertheless, the final nodes also reach a mean distance close to 100 m after 70% of the nodes are
dead. Figure 15b shows network uniformity. As expected, uniformity is much better in geographic
routing simulations, where all nodes have the same roles and, hence, are affected by the same forces.
It is interesting to note that when nodes start to die, uniformity punctually grows up to 0.75 for these
simulations. This probably happens because after some nodes are dead, the network can extend to its
fullest with respect to the simulation area and the allowed communication range (see Equation (4)).
Soon afterwards, the number of nodes starts to decrease, and there are not enough nodes to extend
over the full simulation area. At this point, uniformity decreases very quickly. In hierarchical routing
simulations, uniformity is initially lower, as expected. This is typical for deployment algorithms where
nodes tend to conform structures. Nevertheless, like other parameters, including coverage, uniformity
decreases much slower in these cases.

0 100 200 300 400 500 600

Days

30

40

50

60

70

80

90

100

110

120

M
e
a
n
 d

is
ta

n
c
e
 (

m
)

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(a)

0 100 200 300 400 500 600

Days

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

U
n
if
o
rm

it
y

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(b)

Figure 15. Node distribution evolution in time: (a) mean distance per (living) node; (b) network uniformity.

4.4. Power Consumption

Figure 16a shows mean power in the network (see Equation (6)). Mean power is calculated
using only living nodes. As commented, nodes in non-hierarchical simulations transmit at a fixed
power, but mean power in the network is reduced as the average number of hops necessary to reach
the destination decreases. In hierarchical networks, power depends also on transmission distance.
Hence, mean power decreases in time, mostly because living nodes tend to move closer to avoid loss
of connectivity. In general, mean power after deployment is higher in simulations with obstacles.
However, when nodes start to move closer to each other, their relative locations depend on the obstacle
layout, and mean power may grow or decrease punctually depending on the number of living nodes.

Sensors 2017, 17, 120 18 of 22

Power on the network obviously depends on the number of transmitted packets. This number
depends on routing. In closest neighbor routing, a node transmits a packet to all of its neighbors.
Even though some of these neighbors, those farther from the sink node than the transmitting node,
do not retransmit the packet and a node never transmits the same packet twice, in the worst case
scenario, a node close to the sink in an N node MWSN might need to route N-1packets. We can
observe in Figures 7 and 8 that geographic routing networks are highly interconnected. Hence, the
mean number of packets transmitted over these networks is typically very high, but decreases in
time with the number of living nodes (Figure 16b). In hierarchical networks, the mean is very stable
because most L1 nodes have approximately the same number of attached L0 nodes, and there is only
one retransmission per packet. Transmitted packets’ standard deviation in non-hierarchical networks
grows in time, because nodes tend to move closer to each other, and hence, interconnectivity grows;
but outside nodes route much less traffic than those closer to the sink node (see Figures 7d,e and 8d,e).
In a hierarchical network, this deviation is low and stable until nodes start to die. At this point, the ratio
between L1 and L0 nodes grows, and L1 nodes are the ones that contribute to the deviation in these
simulations. There are no significant differences in scenarios with and without obstacles in terms of
power in the network.

0 100 200 300 400 500 600

Days

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
e
a
n
 p

o
w

e
r

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(a)

0 100 200 300 400 500 600

Days

0

5

10

15

20

25

30

M
e

a
n

 p
a

c
k
e

ts
 t

ra
n

s
m

it
te

d
 p

e
r

c
y
c
le

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(b)

0 100 200 300 400 500 600

Days

6

8

10

12

14

16

18

T
ra

n
s
m

it
te

d
 p

a
c
k
e

ts
 s

ta
n

d
a

rd
 d

e
v
ia

ti
o

n
 (

%
)

Geo.

Hier.

Geo. Obs.

Hier. Obs.

(c)

Figure 16. Power evolution in time: (a) mean power in the network; (b) mean transmitted packets;
(c) transmitted packets’ standard deviation.

5. Conclusions

This work has proposed a reactive behavior-based algorithm for deployment and self-healing
in MWSN using autonomous robots. The algorithm is based on locally balancing three forces for

Sensors 2017, 17, 120 19 of 22

each robot: (a) repulsion from nearby obstacles to avoid collisions and remain in the work area;
(b) repulsion from nearby nodes to expand the network; (c) attraction to gateway nodes to prevent
loss of connectivity. The algorithm is valid for geographic and also for hierarchical routing if we
define roles to determine which forces affect a given node. Parameters in our nodes have been
heuristically adjusted using a reduced number of physical robots equipped with a radio chip and
a range sensor. Afterwards, we have tested the algorithm in large networks using the Player/Stage
simulation environment. Tests have been performed in environments with and without obstacles to
check how adaptable the proposed algorithm is to environment layout. Results have been evaluated in
terms of network life and coverage in time. We have tested the algorithm both for geographic and
hierarchical routing, although our routing algorithms are very simple because routing was not the
target of this work.

The main advantages of our algorithm with respect to other approaches [4] are the following
ones. Our algorithm is valid for multi-node failure. It is fully reactive, so no knowledge about the
topology of the full network nor about the layout of the environment is required: nodes estimate their
motion in terms of the relative distance to their (one-hop) neighbors and nearby obstacles detected
with an onboard short-range sensor. Unlike in game theory-based approaches, no absolute localization
information is required. Furthermore, the algorithm does not assume that there is a direct path free of
obstacles during movement. The computational load is reduced and distributed among the nodes;
this increases resistance to failure. Discrimination between different types of nodes, if necessary,
is automatic: nodes reposition themselves depending uniquely on local conditions and their intended
role. Additional constraints can simply be added as additional forces in the SPF algorithm. On the
other hand, since the proposed algorithm is fully reactive, its performance may be sub-par with respect
to algorithms that optimize factors like coverage, average distance traveled by nodes, number of hops
to sink, etc. Furthermore, the estimation of node to node distance is based on RSS from nodes in
the transmission range. In the real world, returned values would be affected by localization errors.
Although collisions are handled by on-board range sensors, relative distances between nodes and,
especially, distance to the deployment boundaries would be affected by these errors, as well.

Our main conclusions are the following ones. The proposed algorithm provides good results in
terms of deployment and self-healing. Differences between scenarios with or without obstacles are not
significant, meaning that the algorithm adapts well to the layout of the environment. Furthermore,
it steadily adapts to the loss of nodes in the network, as well. Geographic routing-based networks
usually provide better coverage, but their expected life is much lower. This drawback could be
mitigated by using more efficient routing algorithms. However, these routing algorithms would also
increase signaling traffic, so further study would be needed. Similarly, coverage could be improved in
hierarchical routing-based networks if we allowed nodes to travel further from each other, but then
transmission power would also need to be increased.

The proposed algorithm is suitable for deployment and self-healing in large, dynamic,
unstructured areas, although its performance depends on acceptable node localization. Hierarchical
routing is advisable for operation during extended time periods, whereas non-hierarchical routing
might be a better alternative to cover large areas quickly, e.g., for emergency deployment of WSN.

Future work will focus on building a larger number of physical robots to run tests in real
environments and evaluate the real impact of localization errors and also on testing better routing and
topology management strategies to estimate how much the network life could be extended.

Acknowledgments: This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia
(MEC), Project No. TEC2014-56256-C2-1-P, and by Junta de Andalucia, Project No. TIC 7839.

Author Contributions: E. González and J. M. Cano devised and performed the experiments and analyzed the
results; F. Aguilera coded the simulator core and the driver for the Player framework; F. Sandoval compiled the
state of the art and supervised the work; C. Urdiales conceived the study, designed the algorithms and analyzed
the results.

Sensors 2017, 17, 120 20 of 22

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

SPF Social potential fields
MAC Medium access control
MRS Multiple robot systems
MWSN Mobile wireless sensor network
RF Radio frequency
RSS Received signal strength
SN Sink node
WSN Wireless sensor network

References

1. Robinson, J.; Ng, E.; Robinson, J. A Performance Study of Deployment Factors in Wireless Mesh Networks.
In Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE Infocom
2007), Anchorage, AK, USA, 6–12 May 2007; pp. 2054–2062.

2. Curiac, D.I. Towards wireless sensor, actuator and robot networks: Conceptual framework, challenges and
perspectives. J. Netw. Comput. Appl. 2016, 63, 14–23.

3. Vlajic, N.; Moniz, N. Self-healing Wireless Sensor Networks: Results That May Surprise. In Proceedings of
the IEEE Global Telecommunications Conference Workshops (GLOBECOM Workshops), Washington, DC,
USA, 26–30 November 2007; pp. 333–338.

4. Younis, M.; Senturk, I.F.; Akkaya, K.; Lee, S.; Senel, F. Topology management techniques for tolerating node
failures in wireless sensor networks: A survey. Comput. Netw. 2014, 58, 254–283.

5. Correia, L.H.; Macedo, D.F.; dos Santos, A.L.; Loureiro, A.A.; Nogueira, J.M.S. Transmission power control
techniques for wireless sensor networks. Comput. Netw. 2007, 51, 4765–4779.

6. Imran, M.; Younis, M.; Haider, N.; Alnuem, M.A. Resource efficient connectivity restoration algorithm for
mobile sensor/actor networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 347.

7. Lee, S.; Younis, M.; Lee, M. Connectivity restoration in a partitioned wireless sensor network with assured
fault tolerance. Ad Hoc Netw. 2015, 24, 1–19.

8. Vaidya, K.; Younis, M. Efficient failure recovery in Wireless Sensor Networks through active, spare
designation. In Proceedings of the 2010 6th IEEE International Conference on Distributed Computing
in Sensor Systems Workshops (DCOSSW), Santa Barbara, CA, USA, 21–23 June 2010.

9. Younis, M.; Lee, S.; Abbasi, A.A. A Localized Algorithm for Restoring Internode Connectivity in Networks
of Moveable Sensors. IEEE Trans. Comput. 2010, 59, 1669–1682.

10. Imran, M.; Zafar, N.A.; Alnuem, M.A.; Aksoy, M.S.; Vasilakos, A.V. Formal verification and validation of
a movement control actor relocation algorithm for safety–critical applications. Wirel. Netw. 2016, 22, 247–265.

11. Alfadhly, A.; Baroudi, U.; Younis, M. Least Distance Movement Recovery approach for large scale wireless
sensor and actor networks. In Proceedings of the 2011 7th International Wireless Communications and
Mobile Computing Conference, Istanbul, Turkey, 4–8 July 2011; pp. 2058–2063.

12. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330.
13. Heo, N.; Varshney, P.K. Energy-efficient Deployment of Intelligent Mobile Sensor Networks. Trans. Syst.

Man Cybern. A 2005, 35, 78–92.
14. Howard, A.; Mataric, M.J.; Sukhatme, G.S. An incremental self-deployment algorithm for mobile sensor

networks. Auton. Robots 2002, 13, 113–126.
15. Ferentinos, K.P.; Tsiligiridis, T.A. Adaptive design optimization of wireless sensor networks using genetic

algorithms. Comput. Netw. 2007, 51, 1031–1051.
16. Kukunuru, N.; Thella, B.R.; Davuluri, R.L. Sensor deployment using particle swarm optimization. Int. J.

Eng. Sci. Technol. 2010, 2, 5395–5401.

Sensors 2017, 17, 120 21 of 22

17. Kulkarni, R.V.; Venayagamoorthy, G.K. Particle Swarm Optimization in Wireless-Sensor Networks: A Brief
Survey. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2011, 41, 262–267.

18. Han, X. Mobile node deployment based on improved probability model and dynamic particle swarm
algorithm. J. Netw. 2014, 9, 131–137.

19. Yang, J.; Liu, F.; Cao, J.; Wang, L. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor
Networks with Multiple Mobile Sinks. Sensors 2016, 16, 1081.

20. Alfadhly, A.; Baroudi, U.; Younis, M. Optimal node repositioning for tolerating node failure in wireless
sensor actor network. In Proceedings of the 2010 25th Biennial Symposium on Communications, Kingston,
ON, Canada, 12–14 May 2010; pp. 67–71.

21. Bartolini, N.; Calamoneri, T.; Fusco, E.G.; Massini, A.; Silvestri, S. Push & Pull: Autonomous deployment of
mobile sensors for a complete coverage. Wirel. Netw. 2010, 16, 607–625.

22. Jensen, E.; Gini, M. Rolling Dispersion for Robot Teams. In Proceedings of the IJCAI Twenty-Third
International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013.

23. Chen, J.; Li, S.; Sun, Y. Novel deployment schemes for mobile sensor networks. Sensors 2007, 7, 2907–2919.
24. Zhang, C.; Fei, S. Connectivity-Preserved and Force-Based Deployment Scheme for Mobile Sensor Network.

Wirel. Pers. Commun. 2013, 77, 463–475.
25. Özdağ, R.; Karcı, A. Probabilistic dynamic distribution of wireless sensor networks with improved

distribution method based on electromagnetism-like algorithm. Measurement 2016, 79, 66–76.
26. Damer, S.; Ludwig, L.; LaPoint, M.A.; Gini, M.; Papanikolopoulos, N.; Budenske, J. Dispersion and

exploration algorithms for robots in unknown environments. In Proceedings of the SPIE Unmanned Systems
Technology VIII, Orlando, FL, USA, 17–20 April 2006.

27. Othman, S.N. Node positioning in zigbee network using trilateration method based on the received signal
strength indicator (RSSI). Eur. J. Sci. Res. 2010, 46, 048–061.

28. Urdiales, C.; Aguilera, F.; González-Parada, E.; Cano-García, J.; Sandoval, F. Rule-Based vs. Behavior-Based
Self-Deployment for Mobile Wireless Sensor Networks. Sensors 2016, 16, 1047.

29. Reif, J.H.; Wang, H. Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots.
Robot. Auton. Syst. 1999, 27, 171–194.

30. Joshi, Y.K.; Younis, M. Autonomous recovery from multi-node failure in Wireless Sensor Network.
In Proceedings of 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA,
3–7 December 2012; pp. 652–657.

31. Senturk, I.F.; Akkaya, K.; Janansefat, S. Towards realistic connectivity restoration in partitioned mobile
sensor networks. Int. J. Commun. Syst. 2016, 29, 230–250.

32. Aamodt, K. CC2431 location engine. Application Note AN042 (Rev. 1.0), SWRA095; Texas Instruments: Dallas,
TX, USA, 2006; pp. 2–4.

33. Senturk, I.F.; Akkaya, K. Energy and terrain aware connectivity restoration in disjoint Mobile Sensor
Networks. In Proceedings of the 37th Annual IEEE Conference on Local Computer Networks, Clearwater
Beach, FL, USA, October 22–25 2012; pp. 767–774.

34. Hattori, K.; Owada, N.T.T.K.Y.; Hamaguchi, K. Autonomous deployment algorithm for resilient mobile mesh
networks. In Proceedings of the 2014 Asia-Pacific Microwave Conference, Sendai, Japan, 4–7 November
2014; pp. 662–664.

35. Kuriakose, J.; Amruth, V.; Sandesh, A.G.; Abhilash, V.; Kumar, G.P.; Nithin, K. A Review on Mobile Sensor
Localization. In Security in Computing and Communications, Proceedings of the Second International Symposium,
SSCC 2014, Delhi, India, 24–27 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 30–44.

36. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F. Robust Monte Carlo localization for mobile robots. Artif. Intell.
2001, 128, 99–141.

37. Akyildiz, I.F.; Wang, X.; Wang, W. Wireless Mesh Networks: A Survey. Comput. Netw. ISDN Syst. 2005,
47, 445–487.

38. Garcia Villalba, L.J.; Sandoval Orozco, A.L.; Triviño Cabrera, A.; Barenco Abbas, C.J. Routing Protocols in
Wireless Sensor Networks. Sensors 2009, 9, 8399–8421.

39. Iwanicki, K.; van Steen, M. On Hierarchical Routing in Wireless Sensor Networks. In Proceedings of the
2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA,
13–16 April 2009.

Sensors 2017, 17, 120 22 of 22

40. Ghosh, A.; Das, S.K. Review: Coverage and Connectivity Issues in Wireless Sensor Networks: A Survey.
Pervasive Mob. Comput. 2008, 4, 303–334.

41. Heo, N.; Varshney, P.K. A Distributed Self Spreading Algorithm for Mobile Wireless Sensor Networks.
IEEE Wirel. Commun. Netw. 2003, 3, 1597–1602.

42. Hedges, R.; Stoy, K. The Player/Stage project. Available on line: http://playerstage.sourceforge.net/
(accessed on 1 December 2016).

43. Gerkey, B.P.; Vaughan, R.T.; Howard, A. The Player/Stage Project: Tools for Multi-Robot and Distributed
Sensor Systems. In Proceedings of the 11th International Conference on Advanced Robotics, Coimbra,
Portugal, 30 June– 3 July 2003; pp. 317–323.

44. Texas Instruments, Inc. CC2500 Low-Cost Low-Power 2.4 GHz RF Transceiver. Rev. C.; Texas Instruments, Inc.:
Dallas, TX, USA, 2016.

45. Alfayez, F.; Hammoudeh, M.; Abuarqoub, A. A Survey on MAC Protocols for Duty-cycled Wireless Sensor
Networks. Procedia Comput. Sci. 2015, 73, 482–489.

46. Dunkels, A. The Contikimac Radio Duty Cycling Protocol; Technical Report, Swedish Institute of Computer
Science: Stockholm, Sweden, 2011.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Behavior-Based Self-Deployment and -Repair Algorithm
	An Implementation of SPF for MWSN
	Role Definition for Different Routing Mechanisms
	Algorithm Implementation

	Methodology
	Evaluation Parameters
	Work Environment
	Tests Description

	Experiments and Results
	Topologies after Deployment and Self-Healing
	Coverage and Network Life
	Node Distribution
	Power Consumption

	Conclusions

