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Abstract: This paper describes a small range six-axis accelerometer (the measurement range of the
sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is
developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected
by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic
element. Through dynamic analysis, the dynamic model of the accelerometer is established using
the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative
calculation and a conservative congruence transformation, respectively. By simplifying the structure
of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are
designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of
the beam is calculated. Compared with the result obtained using a finite element analysis simulation
in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis,
88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element,
the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the
theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along
the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%,
0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element
performs great sensitive and precision characteristics.

Keywords: six-axis accelerometer; parallel mechanism; double cantilever beam; sensitivity analysis

1. Introduction

Due to significant advantages in terms of stiffness, payload and precision, a parallel mechanism
is generally applied in the design of six-axis accelerometers [1–4]. Six-axis accelerometers have been
widely used for applications such as head impact sensors [5] and structural health monitoring [6]. Four
identical T-shaped bars were applied to a novel six-component force sensor by Liu Sheng et al. [7].
The Gough–Stewart platform is a typical parallel mechanism in the field of sensors [8–12], and
this platform was adopted as a six-dimensional force/torque sensor by Kerr in early research [13].
To improve the system, Dwarakanath et al. developed a ring-type sensing element for the Stewart
platform [14,15]. Seibold et al. designed a six-dimensional force sensor with elastic joints for
minimally invasive surgery [16], and Nicholas developed a sensor for biomechanical measurement [17].
Gao Feng designed a micro six-dimensional force sensor applied to the finger and wrist of a robot [18],
while Ranganath et al. designed a directionally sensitive force/torque sensor, in a near-singular
configuration [19]. A ring-type sensing element was applied to the system, and the joints connecting
the legs to the base and platform were replaced by flexural hinges. Gao Zhen et al. designed a novel
architecture of a 3RRPRR(a parallel mechanism with revolute and prismatic pairs) fully decoupling

Sensors 2016, 16, 1552; doi:10.3390/s16091552 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 1552 2 of 17

parallel mechanism to replace the Gough-Stewart platform, which showed good results in terms
of isotropy, stiffness and sensitivity [20]. With the development of the microelectronic technology,
Microelectromechanical systems (MEMS) are developed for convenience [21,22], such as ADI ADXL345
accelerometer and ST TA0343 three-axis MEMS. Advantages of MEMS are small size, high sensitivity
and accuracy in measurement. However, the development and advancement of MEMS devices
require a substantial design and fabrication infrastructure. The objective of this work is to develop
a silicon-independent accelerometer that can be manufactured with a substantially less complex
infrastructure. Compared with development of a MEMS, that of a mechanical accelerometer performs
better in reliability, simple construction and economy.

In the measurement process, real-time detection and observation depends on dynamic
characteristics. To obtain better dynamic characteristics, a number of studies have focused on the
structure of the accelerometer. Based on Kane’s method, Yun Yuan and Yao Jiantao established a
mathematical model of a six-axis accelerometer with a parallel mechanism [23,24]. Detailed research by
You Jingjing et al. yielded a dynamic decoupling model of the system using a Hamiltonian dynamics
equation [25].

Double cantilever beam (DCB) structure is a normal elastic-sensitive element. A. B. deMorais
applied three-dimensional finite element analyses to the development of a metal adhesively-bonded
double cantilever beam (DCB) and analyzed the critical strain energy release rate of the DCB [26,27].
DCB structures are also used in sensor applications. Wang Jianhua applied a DCB structure to a
strain-measurement sensor and analyzed the strain of the DCB [28]. Yu Weijing et al. designed an
elastic sensitive element with a DCB structure [29]. Largely nonlinear dynamical traits of cantilever
beams with local nonlinearities and double cantilever beams have been shown in the literature
before [30,31]. These nonlinear effects likely provide an advantage in increasing their sensitivities.

Because of the good 6-DOF (degree of freedom) characteristic of steward platform and the
good elastic characteristic of the DCB structure, this paper comprehensively investigates a novel
six-axis accelerometer combined with the steward platform and DCB structure. At the first, the paper
introduces the structure of the small range six-axis accelerometer. DCB-sensing elements are applied to
improve the sensitivity of the system. Secondly, the mass matrix and stiffness matrix are obtained based
on a partial derivative calculation and a conservative congruence transformation (CCT). The dynamic
model is established based on the Lagrange equation. Then, by simplifying the structure of the system,
a model of the undamped free vibration is obtained. Finally, through stiffness and strain analysis of
the DCB structure, theoretical analysis of the deformation and sensitivity of the beam are undertaken.
Finite element analysis (FEA) simulations and experimental results from a prototype accelerometer are
applied to prove the validity and reliability of the research methods.

2. Structure of the Accelerometer

As shown in Figure 1a, the preliminary design of the accelerometer consists of three parts:
A moving platform, elastic legs and a base. The moving platform is a spherical structure serving
as the inertial mass of the system, and the base is fixed to the measured object. Six elastic legs are
connected to the moving platform and the base with flexural hinges. The moving platform has
six active degrees-of-freedom (DOF) caused by the deformation of the elastic legs. If an external
acceleration is applied to the platform, the axial forces and deformation of the legs required to keep
the moving platform in equilibrium are obtained.

Figure 1b shows the theoretical model of the accelerometer. The geometrical center of the fixed
base is located at the points O where the base coordinate O-XYZ is established. The base connection
points are Bi, i = 1, 2, . . . , 6, and RB denotes the radius of the concentric circles on the base. θbi denotes
the directional angles of connection points with respect to the X axis of the coordinate O-XYZ. A point
P is located at the center of the moving platform. Local coordinates P-XYZ of the moving platform
are established at point P and the radius of the moving platform is RA. The connection points of the
moving platform are Ai, i = 1, 2, . . . , 6. On the moving platform, θai denotes the directional angles
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of the connection points with respect to the X-axis of the coordinate P-XYZ. H denotes the distance
between the moving platform and the base.
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Figure 1. Structure of the six-axis accelerometer: (a) three-dimensional model of a small range six-axis
accelerometer; and (b) theoretical model of the six-axis accelerometer.

3. Dynamic Analysis

3.1. Lagrange Equation for the System

For a general parallel manipulator, the number of associated generalized coordinates is usually
equal to the DOF of the moving platform [32]. In this paper, the generalized coordinates in the general

model are set to q =
[

qx qy qz qα qβ qγ

]T
, which represent the displacements and rotations

of the moving platform along X-, Y- and Z-axes.

The system-generalized speed
.
q =

[ .
qx

.
qy

.
qz qα qβ qγ

]T
is defined as the time change

rate of the generalized coordinates in the base coordinate system.
The local coordinate of the moving platform with respect to the base is described by a translation

vector P and rotation matrix R, and the initial coordinate of the vector P is [0,0,H]T. In the base
coordinate O-XYZ, the position and pose matrix of the moving platform is written as:

S =
[

diag (P) R
]

(1)

In Cartesian coordinate system, P-XYZ, vectors of points Ai are written as:

Ai =
[

RA · cos θai RA · sin θai 0
]T

(2)

In the Cartesian coordinate system, O-XYZ, vectors of points Bi can be written:

Bi =
[

RB · cos θbi RB · sin θbi 0
]T

(3)

By coordinate conversion, Vector Ai is converted to in the coordinate system defined by O-XYZ.
Li, the position vector of the ith leg, can be calculated as:

Li = P + RAi − Bi (4)

After differentiating Equation (4) with respect to time, velocity vectors of point Ai are:

UAi =
.
Li = v +ω× ri (5)
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where v and ω are the velocity and angular velocity of the moving platform respectively, and ri is the
radius vector from point P to point Ai after rotation of the moving platform, which can be expressed
as ri = RAi.

Velocity vectors of point Ai, which is the vectorial sum of the axial velocity and the tangential
speed along the elastic leg can also be calculated as:

UAi = li · (v +ω× ri) · li +ωl × Li (6)

where li is the unit vector of the leg, which is expressed as li = Li/Li, and ωl is the angular velocity of
the leg.

As shown in Figure 2, the DCB elastic leg consists of three parts: an upper spherical joint
connector, a double cantilever beam and a lower spherical joint connector. The mass centroids of the
upper spherical joint connector, double cantilever beam and lower spherical joint connector are mu,
mc and md respectively. Lu, Lc and Ld denote the distance between mass centroids and the connection
points Bi respectively.
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The partial angular velocities on each point of the leg are identical. Substituting Equation (5) into
Equation (6), the angular velocity of the leg is obtained by taking the cross product with li on both
sides of the equation:

ωl = [li × v + li × (ω× ri)] /Li (7)

The velocity of the mass center is the vectorial sum of the axial velocity and the tangential speed
along the elastic leg on the mass centroid. The axial velocity on the mass centroid of the double flexible
cantilevers is half that of the whole leg, and that on the mass centroid of the lower spherical joint
connector is zero. The velocity of the mass center along the elastic leg can be calculated using:

Uu = li · (v +ω× ri) · li +ωl × Lu

Uc =
li ·(v+ω×ri)·li

2 +ωl × Lc

Ud = ωl × Ld

(8)
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The Lagrange equation of the accelerometer can be written as:

d
dt

(
∂ET

∂
.
qj

)
− ∂ET

∂qj
= Qj (9)

where ET is the kinetic energy of the system, and qj and
.
qj are the jth generalized coordinates and

generalized speed, respectively. Qj is the generalized force. The moving parts of the system are the six
elastic legs and the moving platform, and each elastic leg consists of three moving parts. The kinetic
energy of the system is a summation of the translational kinetic energy and rotational kinetic energy of
the 19 moving parts, which can be expressed as:

ET =
19

∑
i=1

1
2

(
Ui

TmiUi +ωli
TIiωli

)
(10)

where mi and Ui are the mass and velocity vector of the ith part, and Ii and ωli are the moment of inertia
and angular velocity vector of the ith part, respectively. According to the differential transformation,
d
dt

(
∂ET
∂

.
qj

)
, ∂ET

∂qj
and Qj can be calculated as:



∂ET
∂

.
qj

=
19
∑

i=1

1
2

(
∂Ui

T

∂
.
qj

miUi + Ui
Tmi

∂Ui
∂

.
qj
+ ∂ωli

T

∂
.
qj

Iiωli +ωli
TIi

∂ωli
∂

.
qj

)
d
dt

(
∂ET
∂

.
qj

)
=

19
∑

i=1

(
∂Ui

T

∂
.
qj

mi
∂Ui
∂

.
qj
+ ∂ωli

T

∂
.
qj

Ii
∂ωli
∂

.
qj

)
· ..

qj

∂ET
∂qj

=
19
∑

i=1

1
2

(
∂Ui

T

∂qj
miUi + Ui

Tmi
∂Ui
∂qj

+ ∂ωli
T

∂qj
Iiωli +ωli

TIi
∂ωli
∂qj

)
Qj =

19
∑

i=1

∂Ui
T

∂qj
·mig +

6
∑

l=1

∂Ul
T

∂qj
Fl

(11)

where g is the gravity vector and Fl is the force of the lth elastic leg. Considering all six generalized
coordinates, Lagrange equations of all the generalized coordinates are translated into differential
equations for the motion:

M
..
q + C

.
q + Kq = F (12)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and F is the force
vector acting on the system. Because of the minimal speed on the elastic leg, the damping matrix
that is related to Ui and ωli can be ignored in the motion differential equation, which may then be
simplified to:

M
..
q + Kq = 0 (13)

3.2. Mass Matrix of the System

Referring to Equation (11), the mass matrix can be calculated as:

M =
19

∑
i=1

(UT
i,

.
qmiUi,

.
q +ω

T
li,

.
qIiωli,

.
q) (14)

where Ui,
.
q is the velocity Jacobian matrix of the ith part, derived from the velocity vector on the mass

centroid with respect to the generalized speed, andωli,
.
q is the angular velocity matrix of the ith part,

derived from the angular velocity vector of each part with respect to the generalized speed.
The mass of the moving platform can be calculated using the sphere quality function m = 4

3 πr3ρ,
where m is the quality of the sphere, r is the radius of the moving platform and ρ is the density of the
material. The moment of inertia along the x-, y-, and z-axes is given by Ix = Iy = Iz =

2
5 mr2.
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The mass and moment of inertia of the elastic leg is obtained through the Solidworks environment.
Based on the parallel axis theorem, the moment of inertia of the parts with respect to the base coordinate
can be expressed as:

Ii = TiIioTT
i + midiag(d2

x, d2
y, d2

z) (15)

where Iio is the moment of inertia with respect to the mass center; dx, dy and dz are the distances
between the mass center of each part and point O along the X, Y, Z axis, respectively; Ti is the rotation
matrix which rotates the local coordinate system on the lower spherical joint connector to the base
coordinate system; and mi is the mass of the ith part.

The velocity Jacobian matrix and angular velocity matrix of the moving platform are formed by
differentiating Equation (1) with respect to q and

.
q, respectively:

Um,
.
q =

[
I3 03×3

]
(16)

ωm,
.
q =

[
03×3 I3×3

]
(17)

By differentiating Equation (7) with respect to q, the angular velocity matrix of the elastic leg
is obtained:

ωl,
.
q =

[
l̂i −l̂i r̂i

]
/Li (18)

where the matrix marked by “ˆ” is an anti-symmetric matrix of the vector, such as

û =

 0 −uz uy

uz 0 −ux

uy ux 0

, where u× c can be expressed as û · c.

Differentiating Equation (8) with respect to
.
q, the velocity Jacobian matrix of the mass center

along the elastic leg is obtained:
Uu,

.
q =

[
li · li

T + Lu
Li

l̂i l̂i −li · li
T · r̂i +

Lu
Li

l̂i l̂r̂i

]
Uc,

.
q =

[
li ·li

T

2 + Lc
Li

l̂i l̂i
−li ·li

T ·r̂i
2 + Lc

Li
l̂i l̂r̂i

]
Ud,

.
q =

[
Ld
Li

l̂i l̂i
Ld
Li

l̂i l̂i r̂i

] (19)

3.3. Stiffness Matrix of the System

Referring to Equations (2) and (3), the unit line vectors of the elastic legs can be calculated as

li =

[
si
sri

]
(20)

where si = (Ai − Bi) / |Ai − Bi|, sri = r× s = (Ai × (Ai − Bi)) / |Ai − Bi| = (Bi ×Ai) / |Ai − Bi|.
For the six-axis accelerometer system, the force Jacobian matrix can be obtained:

J =
[

l1 l2 l3 l4 l5 l6

]T
(21)

Based on the CCT, the stiffness matrix of the system is expressed as:

K = JTKlJ (22)

where Kl is the diagonal stiffness matrix of the elastic legs, which can be written as:

Kl = diag (k1, k2, k3, k4, k5, k6) (23)
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According to [2], the elastic leg force matrix can be calculated as:

Fl = KlJq =
(

JT
)−1 (

−M
..
q
)

(24)

4. Analysis of the DCB Elastic Element

4.1. Structure of the Elastic Legs

DCB structure is an elastic-sensitive element. Compared with the single cantilever beam, DCB
structure performs better elasticity and stability characteristics, and the strain value is also enhanced.
In this accelerometer, the DCB structure is applied as the elastic element. With a high strain of the DCB,
the sensitivity of the system and the accuracy of the sensor are improved.
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Figure 3. Force analysis of the double cantilever beam (DCB) elastic leg.

Figure 3 shows the force analysis of the DCB elastic leg, F is assumed to be a lift force on the top of
the leg, and the end of the leg is fixed. The upper and lower spherical joint connectors are assumed to
be rigid. The equivalent effect on the first cantilever beam is a combination of the force f 1 and moment
M1, and that on the second beam is f 2 and M2. According to the principle of balanced forces and
moments, the force equation of the DCB leg can be calculated as:{

f1 = f2 = F
2

M1 = M2 = Fl
4

(25)

where l is length of the cantilever beam. In Figure 4, A-A is an arbitrary cross section of the cantilever
beam. Based on the differential equation of the deflection, the deflection of the section A-A is obtained:{

w f =
Fl2(3l−x)

12EI

wM = M1x2

2EI = Flx2

8EI

(26)

where I is the moment of inertia of the cantilever beam, wf is the deformation of the cross section
A-A caused by the force F, wM is the deformation caused by the moment M1 and x is the distance
between the section A-A and the fixed port of the cantilever beam. Based on the moment of inertia of a
rectangular section, the moment of inertia I can be expressed as:

I =
b · h3

12
(27)
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where h is the width and b denotes thickness. Force analysis proves that force F and moment M have
an opposite effect on the deflection. Total deflection is expressed as w = w f − wM. The total deflection
of section A-A is expressed as:

wA−A =
F
(
3lx2 − 2x3)

24EI
=

F
(
3lx2 − 2x3)

2Ebh3 (28)

The maximum deformation of the beam is obtained when the distance between the section A-A
and the fixed port equals the length of the beam. Referring to the Equations (27) and (28), the equivalent
stiffness coefficient of the DCB leg can be obtained as:

kl = 2 · F
w

=
24EI

l3 =
2Ebh3

l3 (29)

4.2. Numerical Calculation

Parameters of the elastic legs are determined by the strength of the DCB structure, size of the
accelerometer and the manufacturing costs. Maximum moment is at the mode point of the beam,
which can be calculated as:

Mmax =
Fi
2
· l − Fi

4
· l = Fi · l

4
(30)

where Fi is the force loading on the ith elastic leg, and Mmax is the maximum moment on the beam.
Based on the formula for the normal stress of the beam, the maximum bending stress of the DCB can
be calculated as

σmax =
Mmax · h

2I
(31)

where σmax is the maximum bending stress of the DCB. After analyzing the isotropic of the
accelerometer and considering the manufacturing costs, the improved parameters of the accelerometer
and the elastic legs and angle parameters of the accelerometer are obtained as shown in Tables 1
and 2 [33].

Table 1. Parameters of the six-axis accelerometer.

Parameter Value (mm)

RA 25
RB 52
r 22.5
H 30
b 5
h 0.6
l 13

Table 2. Angle parameters of the six-axis accelerometer.

Sequence Number θai θbi

i = 1 −π/12 −π/4
i = 2 π/12 π/4
i = 3 7π/12 5π/12
i = 4 3π/4 11π/12
i = 5 5π/4 13π/12
i = 6 17π/12 19π/12
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Based on the stress requirements and the cost of component processing, the elastic element
material is an aluminum alloy with elastic modulus E = 6.9E10 Pa. Substituting the parameters in
Tables 1 and 2 into Equation (21), the Jacobian matrix of the accelerometer can be calculated as:

J =



−0.2882 −0.2882 −0.4550 0.7432 0.7432 −0.4550
0.6918 −0.6918 −0.5955 0.0963 0.0963 0.5955
−0.6621 −0.6621 −0.6621 −0.6621 −0.6621 −0.6621
0.0043 −0.0043 −0.0160 −0.0117 0.0117 0.0160
0.0160 0.0160 −0.0043 −0.0117 −0.0117 −0.0043
0.0148 −0.0148 0.0148 −0.0148 0.0148 −0.0148


(32)

Substituting the parameters in Tables 1 and 2 into Equation (20), the mass matrix can be
calculated as:

M =



0.4425 0 −0.0001 0 0 0
0 0.4404 0 0 0 0

−0.0001 0 0.4459 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001


(33)

Substituting the parameters in Tables 1 and 2 into Equation (22), the stiffness matrix can be
calculated as:

K = 105 ·



1.1429 0 0 0 −0.0154 0
0 1.1429 0 0.0154 0 0
0 0 1.7844 0 0 0
0 0.0154 0 0.0006 0 0

−0.0154 0 0 0 0.0006 0
0 0 0 0 0 0.0009


(34)

To analyze the sensitivity of the accelerometer, acceleration components gx =[
9.8 0 0 0 0 0

]T
, gy =

[
0 9.8 0 0 0 0

]T
and gz =

[
0 0 9.8 0 0 0

]T

are loaded onto the moving platform for deformation analysis. Substituting Equations (32)–(34) into
Equation (24), the forces of the legs are calculated as:

Fx =
[

0.6048 0.6048 −2.2572 1.6524 1.6524 −2.2572
]T

Fy =
[

2.2572 −2.2572 −0.6048 1.6524 −1.6524 0.6048
]T

Fz =
[
−1.0475 −1.0475 −1.0475 −1.0475 −1.0475 −1.0475

]T

(35)

where Fx is the force matrix of the legs when acceleration gx is loaded onto the moving platform, Fy is
the force matrix of the legs when acceleration gy is loaded on the moving platform, and Fz is the force
matrix of the legs when acceleration gz is loaded on the moving platform. A positive number indicates
a tensional force, and a negative number indicates a compressional force.

Referring to Equation (28), the distance between the section A-A and the fixed port is set as the
variable, and the deformation curves of the six beams are shown in Figure 4.
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(b) deformation under a load gy on the moving platform; and (c) deformation under a load gz on the
moving platform.

To validate the theoretical model, a finite element method was applied to the model and strain
analysis of the system.

As shown in Figure 5, The finite element model was established in the ANSYS Workbench
environment. The accelerometer was meshed using hexahedral elements, and the material of the
moving platform was a copper alloy. The elastic modulus was 1.17E11 Pa, Poisson’s ratio was 0.31,
and the density was 8900 kg/m3. The material of the elastic element was an aluminum alloy, with
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elastic modulus of 6.9E10 Pa, Poisson’s ratio of 0.3 and density of 2700 kg/m3. The base is fixed before
running the model.Sensors 2016, 16, 1552 11 of 17 
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Figure 5. Deformation of the six beams in ANSYS Workbench: (a) deformation under a load gx on the
moving platform in ANSYS Workbench; (b) deformation under a load gy on the moving platform in
ANSYS Workbench; and (c) deformation under a load gz on the moving platform in ANSYS Workbench.

Accelerations gx, gy and gz are loaded onto the moving platform in the strain analysis. Comparing
the theoretical deflection with that of the simulations, an overall trend is apparent. The maximum
theoretical deflections are 3.33 × 10−2 mm along the x-axis, 3.33 × 10−2 mm along the y-axis and
1.54 × 10−2 mm along the z-axis. The maximum simulated deflections are 3.74 × 10−2 mm along the
x-axis, 3.77 × 10−2 mm along the y-axis and 1.76 × 10−2 mm along the z-axis. The coincidence rate
reaches 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis.

5. Theoretical Analysis of the Elastic Leg Strain

There are four sensing elements positioned at predetermined locations on the elastic leg. Figure 6
depicts the location of the strain gauges; the Wheatstone bridge arrangement for a single element is
also shown. Each bridge is excited by a stable 5-V power supply. The resistances of the strain gauges
are equal initially and can be described as:

R1 = R2 = R3 = R4 = R (36)
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When the accelerometer is in a working state, the resistances of the strain gauges change by an
amount given by ∆R1, ∆R2, ∆R3, and ∆R4. In the case where ∆R i << R(i = 1,2,3,4), the output voltage
can be simplified to:

∆UBD =
U
4
(

∆R1

R
− ∆R2

R
+

∆R3

R
− ∆R4

R
) =

U
4

K(ε1 − ε2 + ε3 − ε4) (37)

where K is the sensitivity coefficient of the strain gauge and εi(i = 1,2,3,4)is the strain value of each
strain gauge. ε1 and ε3 are opposite in sign to ε2 and ε4, and U is the power supplied to the system. By
making use of the integral, strain ε1 and ε3 are calculated using:

ε1 =
2
∫ l

2
0 εxdx

l
, ε2 =

2
∫ l

l
2

εxdx

l
, ε3 = −

2
∫ l

l
2

εxdx

l
, ε4 = −

2
∫ l

2
0 εxdx

l
(38)

where εx = hMx
2IE is the strain of the beam on section A-A and Mx is the bending moment on section

A-A, which can be calculated as Mx = F(l−2x)
4 . The strain of the beam can be expressed as:{

ε1 = ε3 = 3Fl
4Ebh2

ε2 = ε4 = − 3Fl
4Ebh2

(39)

Referring to Equation (39), the strain of one strain gauge in the elastic element is 8.22 × 10−2

mm with the accelerometer az = 1 g. Compared with the reference 20 (With acceleration az = 1 g,
maximal positive strain of the accelerometer is 6.903 × 10−5 mm), DCB structure shows better strain
performance. Measurement of the strain gauge shows that the sensitivity coefficient K is 4. The output
voltage can be expressed as:

∆UBD =
3UKFl
4Ebh2 (40)

Sensitivities of the accelerometer means the output voltage of each elastic leg in the unit
acceleration. Referring to Equations (24) and (40), the ratio of the output voltage to the acceleration
can be calculated. Theoretical sensitivities of the accelerometer along the x-axis, y-axis and z-axis were
obtained as: 

∆Ux
′ =

[
0.0969 0.0969 0.3616 0.2647 0.2647 0.3616

]
∆Uy

′ =
[

0.3616 0.3616 0.0969 0.2647 0.2647 0.0969
]

∆Uz
′ =

[
0.1678 0.1678 0.1678 0.1678 0.1678 0.1678

] (41)

where ∆Ux’, ∆Uy’ and ∆Uz’ are the theoretical sensitivity matrixes of the elastic legs along the x-,
y- and z-axes, respectively, in units of mV/(m/s2).
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6. Sensitivity Experiments

In order to verify the sensitivity of the accelerometer, a calibration test on the linear sensitivity
of the accelerometer was conducted (certificate number: LSzb2011-0416). As shown in Figure 7,
the test system consisted of five parts: an accelerometer, multi-channel dynamic strain gauge, data
acquisition system, data processing system and calibration platform. Strain gauges are located on the
accelerometer and Wheatstone bridge circuit is applied in the system. The multi-channel dynamic
strain gauge can achieve calibration of 12 channels simultaneously and transfer the analog signals
into digital signals to a computer. The data acquisition system was connected to a microcomputer
data processing system through a USB interface. The frequency of vibration standard device APS 129
ELECTRO-SEIS is applied to the calibration platform.
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Figure 7. Calibration test for linear sensitivity of the accelerometer: (a) the calibration system for the
six-axis accelerometer; and (b) prototype of the elastic element of the six-axis accelerometer.

A calibration test on the linear sensitivity of the accelerometer was conducted. As shown in
Figure 7, the test system consisted of five parts: an accelerometer, multi-channel dynamic strain gauge,
data acquisition system, data processing system and calibration platform. The multi-channel dynamic
strain gauge can achieve calibration of 12 channels simultaneously and transfer this information to a
computer. The data acquisition system was connected to a microcomputer data processing system
through a USB interface.

The system requires preheating for 30 min during the process of demarcation and calibration.
The acceleration load gz was divided into 10 equal points along the z-axis. Loading was sinusoidal
with a reference frequency of 16 Hz. Output voltages of the elastic legs, magnified 1000-fold, are shown
in Table 3. The sensitivity shows a strong linear relationship, which can be calculated as:

Table 3. Output voltage of each channel on z-axis acceleration.

No. Acceleration
(m/s2)

Output Voltage (mv)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

1 1 132.4 143.8 116 128.2 137.8 131.6
2 2 277.8 289.2 232.4 258.8 274 262.8
3 3 414 434.4 348.3 387 412.5 394.5
4 4 554 578.4 465.2 519.6 552.4 526.8
5 5 690 721 581.5 646 688 660
6 6 837 867.6 696.6 777 824.4 796.2
7 7 970.2 1012.2 814.8 906.5 964.6 928.9
8 8 1110.4 1155.2 932 1036 1098.4 1060.8
9 9 1249.2 1298.7 1046.7 1163.7 1237.5 1198.8

10 10 1389 1442 1165 1292 1376 1331
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Acceleration test loads along the x and y-axis were 1 m/s2, divided into 10 equal points. Output
voltages of the elastic legs, magnified 1000-fold, are shown in Tables 4 and 5.

Table 4. Output voltage of each channel on x-axis acceleration.

No. Acceleration
(m/s2)

Output Voltage (mv)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

1 0.1 8.41 9.43 40.03 34.51 37.29 41.92
2 0.2 17.06 18.9 80.24 69.18 74.54 83.46
3 0.3 25.68 28.62 120.72 103.11 111.87 125.01
4 0.4 34.16 38.04 160.8 137.72 148.72 166.28
5 0.5 42.1 47.8 200.8 172 185.5 207.5
6 0.6 50.04 58.26 241.08 206.46 221.7 249.06
7 0.7 56.49 69.16 281.54 240.66 258.79 290.08
8 0.8 65.68 78 321.28 275.28 294.32 331.6
9 0.9 73.35 87.93 361.62 309.42 331.38 372.78

10 1 80.4 98.6 401.3 343.5 367.4 414.3

Table 5. Output voltage of each channel on y-axis acceleration.

No. Acceleration
(m/s2)

Output Voltage (mv)

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5 Leg 6

1 0.1 47.22 47.43 17.28 27.47 34.79 14.49
2 0.2 94.44 94.68 34.9 55.3 69.48 28.96
3 0.3 142.08 142.5 51.66 82.35 103.56 43.62
4 0.4 189.48 188.68 69.4 109.28 138.04 58.2
5 0.5 236.55 236.15 86.7 136.55 172.1 72.85
6 0.6 283.8 284.04 103.92 163.74 206.4 87.36
7 0.7 331.38 330.68 121.52 190.26 240.66 101.92
8 0.8 378.64 377.76 138.8 217.52 275.04 116.56
9 0.9 425.61 424.53 156.42 244.26 308.88 131.04

10 1 472.8 472.2 173.8 271.2 342.9 145.6

The result of the output voltage shows a strong linear relationship. Based on the arithmetic mean
summation method, the sensitivity of the accelerometer can be calculated as:

∆Uz =
1

10

10
∑

i=1

Uzi
azi

=
[

0.138 0.144 0.116 0.129 0.137 0.132
]

∆Ux = 1
10

10
∑

i=1

Uxi
axi

=
[

0.083 0.096 0.402 0.344 0.370 0.416
]

∆Uy = 1
10

10
∑

i=1

Uyi
ayi

=
[

0.473 0.473 0.173 0.273 0.344 0.145
] (42)

where ∆Uz, ∆Ux, and ∆Uy are the sensitivity matrix of the elastic legs along the z-, x- and y-axis, in
units of V/m/s2; Uzi, Uxi, and Uyi are the output voltage matrix of the elastic legs in the ith experiment;
and azi, axi, and ayi are the acceleration loaded on the system in the ith experiment, respectively.

To verify the theoretical model, theoretical result magnified 1000-fold is compared with that of
the experiment. Based on the arithmetic mean summation method, theoretical sensitivity accuracies
along the x-, y- and z-axes of 90.4%, 74.9% and 78.9% with respect to the test data are obtained.

Acceleration loading times of the experiments is set as n = 10. Based on the arithmetic mean
summation method, the measurement precision of the accelerometer is obtained in Table 6.
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Table 6. Measurement precision of the six-axis accelerometer.

Acceleration (m/s2)
ax Error (%)

n = 10
ay Error (%)

n = 10
Acceleration

(m/s2)
az Error (%)

n = 10

0.1 2.6 0.6 1 1.31
0.2 2.55 0.5 2 1.22
0.3 2.5 0.57 3 1.1
0.4 2.45 0.53 4 1.11
0.5 2.36 0.52 5 1.23
0.6 2.45 0.52 6 1.16
0.7 2.47 0.5 7 1.02
0.8 2.48 0.5 8 1.11
0.9 2.48 0.53 9 1.15
1 2.44 0.52 10 1.11

Max Error (%) 2.6 0.6 1.31

As can be seen in Table 6, the maximum errors of ax, ay and az are 2.6%, 0.6% and 1.31% respectively.
Table 7 shows the measurement precision of another accelerometer with parallel structure [34].
The minimum error of ax, ay and az are 5.058%, 6.99% and 5.984% respectively. Compared with
the data in Table 7, the experiments data in Table 6 prove that accelerometer with DCB elastic element
performs a great sensitive and precision characteristics.

Table 7. Measurement precision of another parallel type six-axis accelerometer.

Acceleration (m/s2) ax Error (%) ay Error (%) az Error (%)

0.15 g 5.058 7.428 \
0.30 g \ \ 6.017
1.38 g 6.899 \ 7.470
2.75 g \ 6.99 \
3.82 g \ 7.108 5.984
7.64 g 7.479 \ \

Min Error (%) 5.058 6.99 5.984

7. Conclusions

A theoretical model of a six-axis accelerometer with a DCB elastic element is presented based on a
parallel mechanism. FEA simulations and prototype experiments prove that the accelerometer shows
high sensitivity performance. The main conclusions are:

• In this paper, a dynamics model for the accelerometer is established based on the Lagrange
equation, and the mass and stiffness matrices obtained. Based on structural mechanics,
characteristics of the DCB elastic element are obtained. A theoretical model of the whole
accelerometer is calculated.

• Accelerations gx, gy and gz are loaded onto the moving platform, and the deformation of the elastic
legs calculated. By comparison with the FEA simulation, the coincidence rate of the deformation
reached 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis.

• The prototype experiments show that the six-axis accelerometer with the DCB elastic element
is highly sensitive. Compared to theoretical sensitivities, the accuracy of the x-, y- and z-axes
measurements was found to be 84.6%, 75.1% and 79.8%, respectively. Prototype experiments
prove the reliability of the theoretical model. The measurement errors of linear accelerations ax,
ay and az are 2.6%, 0.6% and 1.31%, respectively.

• Because of the limited equipment, only linear acceleration can be loaded in the accelerometer
calibration experiment. The analysis and results of the experiments are for the three linear
directions only.
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