
Article

Underdetermined DOA Estimation Using
MVDR-Weighted LASSO

Amgad A. Salama, M. Omair Ahmad ∗ and M. N. S. Swamy

Department of Electrical and Computer Engineering, Concordia University, Montreal, PQ H3G 1M8, Canada;
am_adeli@encs.concordia.ca (A.A.S.); swamy@ece.concordia.ca (M.N.S.S.)
* Correspondence: omair@ece.concordia.ca; Tel.: +1-514-848-2424 (ext. 3075)

Academic Editor: Wilmar Hernandez
Received: 10 June 2016; Accepted: 13 September 2016; Published: 21 September 2016

Abstract: The direction of arrival (DOA) estimation problem is formulated in a compressive sensing
(CS) framework, and an extended array aperture is presented to increase the number of degrees of
freedom of the array. The ordinary least square adaptable least absolute shrinkage and selection
operator (OLS A-LASSO) is applied for the first time for DOA estimation. Furthermore, a new LASSO
algorithm, the minimum variance distortionless response (MVDR) A-LASSO, which solves the DOA
problem in the CS framework, is presented. The proposed algorithm does not depend on the singular
value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA
estimation can be done without a priori knowledge of the number of sources. The proposed algorithm
can estimate up to ((M2 − 2)/2 + M − 1)/2 sources using M sensors without any constraints or
assumptions about the nature of the signal sources. Furthermore, the proposed algorithm exhibits
performance that is superior compared to that of the classical DOA estimation methods, especially
for low signal to noise ratios (SNR), spatially-closed sources and coherent scenarios.

Keywords: adaptable LASSO; sparse array; direction of arrival estimation; compressive sensing;
sensor array processing

1. Introduction

Array signal processing plays an important role in many applications, including sonar, radar,
seismology and radio astronomy. Direction of arrival (DOA) deals with the problem of determining
the number and locations of multiple sources using an antenna array. Many of the recent algorithms
deal with DOA estimation of spatiotemporal electromagnetic waves emanating from multiple sources.
Beamforming can be considered as a very early attempt at DOA estimation. This is based on
mechanically steering an array to scan all possible angles in a sector of interest followed by measuring
the output power of the array. The power spectrum will have a peak when the angle given by the
mechanical steering corresponds to the DOA of one of the incoming source signals [1,2]. However,
classical beamforming techniques fail to identify closely-separated source signals. Capon’s beamformer
can overcome this problem; it maximizes the signal to noise ratio by using all of the available degrees
of freedom to form a beam towards the interested signal source and at the same time makes null all
of the other directions [3]. The linear prediction method minimizes the sensor array mean output
power assuming that the weight on a selected sensor is unity [4]. Use of the maximum likelihood
(ML) technique has been investigated for DOA estimation in [5]. ML leads to highly accurate DOA
estimation results; however, ML methods are the most time consuming and complex DOA estimation
algorithms among all of the DOA estimation techniques.

MUSIC [6] and ESPRIT [7] are two of the most studied algorithms in DOA estimation. The MUSIC
algorithm is based on the eigen decomposition of the covariance matrix of the received data.
Unlike conventional DOA techniques, it is easy to implement MUSIC with high resolution. However,
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it requires the number of sources to be known in advance. If the exact number of sources is unknown,
this will lead to a failure of the DOA estimation.

ESPRIT essentially investigates the shift-invariance properties of the sensor array and is based on
the assumption that the array is composed of two identical subarrays. The DOA can be estimated by
studying the shift-invariance properties of the output of each sub-array. Unfortunately, like the MUSIC
algorithm, ESPRIT also uses the eigenvalue decomposition and, hence, requires the number of sources
to be known in advance [8,9].

Increasing the number of sensor array elements leads to an enhancement in the array gain and
directivity, thus improving the array’s overall performance. On the other hand, increasing the number
of array elements increases the complexity of the feeding network and the time needed to process
the received data. Researchers have focused recently on the pursuit of light weight, small sized and
compact antenna arrays to satisfy the requirements of present day applications like the Internet of
Things (IoT) and unmanned vehicles [10]. Physically increasing the number of antenna array elements
is therefore not an option. Recent literature investigating the virtual array concept has shown it to
enhance the performance of a sensor array [11–15].

Minimum redundancy arrays (MRAs) and augmented covariance matrices (ACMs) have been
investigated for virtually extending the sensor array aperture by increasing the available degrees of
freedom [16–18]. However, there is no closed form expression for the locations of the sensors in the
virtual array and for the number of achievable degrees of freedom. Furthermore, ACM is not positive
semi-definite for a finite number of snapshots, and a transformation was suggested in [19] to overcome
this problem. Higher order cumulants were used to increase the available degrees of freedom and
consequently extend the array aperture. However, using the fourth order cumulants, Gaussian source
signals cannot be estimated. The Khatri-Rao (KR) product was suggested for the DOA estimation of
quasi-stationary source signals in [12,13].

Co-prime arrays have been proposed in the literature [20–23] to increase the degrees of freedom
in the array. For these arrays, the number of the degrees of freedom can be determined, and
closed-form expressions for the locations of the sensors in the corresponding virtual arrays can
be obtained. However, the corresponding virtual arrays are not uniform. Nested arrays have been
investigated for the first time in [14]. These arrays, in addition to all of the advantages provided by the
co-prime arrays, result in virtual arrays that are uniform and provide degrees of freedom that are even
higher [23]. For example, using six elements, the nested array provides 23 degrees of freedom in
contrast to only 17 provided by the co-prime array.

Compressive sensing (CS) has evolved rapidly in recent years and has found multiple
applications in various fields, such as medicine [24], ultrasound imaging [25] and radar detection [26].
Malioutov et al. [27] investigated the DOA estimation performance using CS with respect to the signal
to noise ratio, the number of sources and the coherence of the sources’ signals. Xenaki et al. [28]
studied the DOA estimation using CS with coherent arrivals, single-snapshot data and different
array geometries. It has been proven in [28] that CS does not require the arrivals to be incoherent.
Furthermore, single or multiple snapshots can be used. In terms of resolution, the performance of the
CS-based DOA is superior to that of the minimum variance distortionless response (MVDR) [29].

The least square (LS) method is based on minimizing the residual squared error. LS estimates have
low bias and large variance; therefore, LS estimates suffer from low prediction accuracy, which can be
enhanced through setting some coefficients to zero. Furthermore, LS estimates can be improved by
subset selection and ridge regression; however, both of these have some drawbacks. Subset selection
can provide models that are interpretable. However, small changes in the data can lead to very different
models being selected. Ridge regression is more stable, but is not an interpretable model [30].

The least absolute shrinkage and selection operator (LASSO) [30] minimizes the residual sum
of squares (subject to the sum of the absolute values of the coefficients being less than a constant),
and it is popular for solving CS problems. The LASSO technique combines the advantages of both
subset selection and ridge regression. Zou [31] proposed a new version of LASSO, whereby adaptable
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weights are used for penalizing different coefficients in the `1 penalty function. Panahi et al. [32]
discussed the resolution of the LASSO-based DOA estimation; it has been noted that the LASSO-based
DOA estimation is better than that of the traditional beamforming techniques. It should be pointed
out that the above-mentioned techniques use uniform arrays, and some of them require the number of
signal sources to be known in advance, especially when singular value decomposition (SVD) of the
covariance matrix of the received data is performed [27].

In this paper, we propose a new algorithm for DOA estimation, the MVDR A-LASSO, which
combines the benefits of the virtual array concept for extended array aperture [12,14] along with CS.
In Section 2, we introduce the co-array principle and apply it to a sparse array. The CS framework is
presented in Section 3. In Section 4, a modified version of the adaptable LASSO, MVDR A-LASSO,
is proposed in order to further improve the performance. In Section 5, the performance of the proposed
MVDR A-LASSO is studied using simulations, and finally, conclusions are drawn in Section 6.

Notations

Superscript H denotes conjugate transpose; superscript ∗ denotes conjugation without transpose;
and T denotes the transpose operation. The symbol � denotes the Khatri-Rao (KR) product [33]
between two matrices of appropriate sizes.

2. Difference Co-Array

Consider a linear array (LA), uniform or non-uniform, consisting of M elements. Let di denote
the i-th element position in the array. Let us assume that there are L narrowband, far-field sources with
angles-of-arrival (AOA) (θl) and powers (σ2

l ), l = 1, 2, . . . , L. It is also assumed that the source signals
are uncorrelated with one another. Let a(θl) ∈ CM×1 be the steering vector corresponding to AOA (θl),
whose i-th element is e−jkodi cos(θl), where ko = 2π/λ is the wavenumber and λ is the wavelength of
the propagating waves. Let the vector s(t) = [s1(t) s2(t) . . . sL(t)]T , where s ∈ CL×1 represent the
source signals. Then, the output of LA can be written as:

x(t) = As(t) + n(t) (1)

where A = [a(θ1) a(θ2) . . . a(θL)], A ∈ CM×L is the array manifold matrix and n(t) ∈ CM×1 is
an additive white Gaussian noise (AWGN) that is uncorrelated with the source signals. One can obtain
the covariance matrix of the received signals as [34]:

Rxx = E[xxH ]

= ARssAH + σ2
nI

= A



σ2
1

. . .
σ2

l
. . .

σ2
L


AH + σ2

nI

(2)

where σ2
l , l = 1, . . . , L, correspond to the power of the source signals, I is the identity matrix of size

(M×M) and σ2
n is the noise power. One can now vectorize Rxx ∈ CM×M as [12,13]:

V = vec(Rxx) = vec

[
L

∑
l=1

σ2
l (a(θl)a

H(θl))

]
+ σ2

n1

= (A∗ �A)p + σ2
n1

(3)
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where p ∈ CL×1 = [σ2
1 σ2

2 . . . σ2
L]

T and 1 ∈ CM×M = [eT
1 eT

2 . . . eT
M]T with ei ∈ CM×1 being a column

vector of zeros except for a one at the i-th position. Comparing Equations (3) and (1), we can see that
V ∈ CM2×1 in Equation (3) can be considered as the output of an array with a manifold (A∗ �A),
p representing the equivalent source signals and the noise given by σ2

n1 being deterministic. The distinct
rows of (A∗ �A) form the virtual array (VA); the locations of whose distinct elements are given by
the set:

D =
{

di − dj
}

, ∀i, j = 1, 2, . . . , M (4)

where di is the position vector of the i-th sensor in the original array. This array is known as the
difference co-array [14].

We now assume that the original array is a two-level nested array [14] for which M is even, and
each level contains M/2 sensor elements. In such a case, the VA is a uniform linear array (ULA)
consisting of M̄ sensors, M̄ = (M2/2 + M− 1), which are located from −(M̄− 1)d/2 to (M̄− 1)d/2,
where d is the distance between two adjacent sensors [14]. It should be noted that the equivalent
source signal vector p (for the difference co-array) contains the power of the sources σ2

l , l = 1, . . . , L.
Therefore, they act like fully-correlated sources. A spatial smoothing technique was suggested by
Pal et al. [14] to overcome this problem of correlated sources. However, by using the CS technique,
we will no longer need spatial smoothing or any preprocessing scheme, and CS will be able to detect
the source signals.

3. Compressive Sensing Framework

Since the sources are assumed to be located in the far field, they can be considered as point
sources; hence, the sources become sparse in space. Let Ω denote the set of all possible source locations,
{θ̄n}N

n=1, N denoting a grid that covers Ω, with N � L. Let:

s̄(t) = [σ̄1 σ̄2 . . . σ̄n . . . σ̄N ]
T (5)

where s̄ ∈ CN×1, and:

Φ = [ā(θ̄1) ā(θ̄2) . . . ā(θ̄n) . . . ā(θ̄N)]

=



ejkod(−(M̄−1)/2) cos θ̄1 ejkod(−(M̄−1)/2) cos θ̄2 · · · ejkod(−(M̄−1)/2) cos θ̄N

...
...

...

1 1
. . . 1

...
...

...
ejkod((M̄−1)/2) cos θ̄1 ejkod((M̄−1)/2) cos θ̄2 · · · ejkod((M̄−1)/2) cos θ̄N


(6)

where Φ ∈ CM̄×N and ā(θ̄n) ∈ CM̄×1 is the steering vector of the VA corresponding to the AOA (θ̄n).
Then, the received signal at the m̄-th sensor is:

ym̄(t) = φm̄s̄(t) + n̄m̄(t), m̄ = 1, 2, . . . , M̄ (7)

where φm̄ is the m̄-th row of Φ. The n-th element of s̄(t), s̄n(t), is nonzero only if (θ̄n = θl), and in that
case, σ̄n = σl . Then, Equation (7) can be rewritten as:

y(t) = Φs̄(t) + n̄(t) (8)

where y ∈ CM̄×1 and n̄ ∈ CM̄×1. In accordance with conventional DOA estimation, the technique is to
estimate the signal energy as a function of the source location showing peaks corresponding to the
source locations. Since the sources are point sources and their number is small, the spatial spectrum
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is sparse. Hence, we can solve this problem by regularizing it to favour sparse signal fields using
LASSO [30]. The LASSO minimization is defined as:

min
s

∥∥∥∥∥y−
N

∑
n=1

φn s̄n

∥∥∥∥∥
2

+ τ
N

∑
n=1
|s̄n| (9)

where φn is the n-th element of φm̄ and s̄n is the n-th element of s̄. Equation (9) can be rewritten as:

ŝlasso = min
s
‖y−Φs̄‖2

2 + τ ‖s̄‖1 (10)

where τ is a nonnegative regularization parameter. The first term in Equation (9) is the `2 norm,
while the second is an `1 penalty function, which is very important for the success of LASSO.
LASSO shrinks the coefficients toward zero, as the regularization parameter τ increases. This parameter,
τ, controls the relative importance between the sparsity of the solution (`1-norm term) and the fitness
to the measurements (`2-norm term). However, the `1-norm penalty associated with LASSO tends to
produce biased estimates for large coefficients [35], thus degrading the estimation accuracy. Zou [31]
proposed a new version of LASSO, the adaptable LASSO (A-LASSO), wherein adaptable weights are
used for penalizing the coefficients in the `1-norm term iteratively. Furthermore, Zou [31] suggests
using the ordinary least squares (OLS) solution as the initial weights to construct the adaptable weights
in the adaptable LASSO first iteration. We shall refer to this as OLS A-LASSO. It should be mentioned
that the `1 penalization approach is also known as basis pursuit [36].

4. Modified LASSO for DOA Estimation

One can notice from Equation (9) that the regularization parameter, τ, penalizes the coefficients
equally in the `1-norm term. Therefore, the LASSO estimates could be biased [35] and result in
reducing the solution accuracy. In order to overcome this deficiency, we apply the A-LASSO in the
DOA estimation problem for the first time. Hence, the A-LASSO minimizes:

‖y−Φs̄‖2
2 + τ

N

∑
n=1

wn|s̄n| (11)

where wn is the n-th element of the weight vector, w ∈ CN×1. Let, ŝ be the initial estimate
for s̄. Now, choosing any weight factor, γ, where γ > 0, and defining the weight vector as
ŵ = [ŵ1ŵ2 . . . ŵN ]

T , where:

ŵn =
1
|ŝn|γ

n = 1, 2, . . . , N (12)

the A-LASSO is given by:

ŝ(k) = min
s
‖y−Φs̄‖2

2 + τk

N

∑
n=1

ŵn|s̄n| (13)

where k is the iteration number and ŵn is the n-th element of the weight vector, ŵ. The minimization
in Equation (13) corresponds to a convex optimization problem; it does not have multiple local minima,
and its global minimizer can easily be found. The A-LASSO is `1 penalized, so any efficient algorithm
that can solve the conventional LASSO should also be able to solve the adaptable version. The least
angle regression (LARS) algorithm [37] is utilized to solve the A-LASSO using the following steps:

1. Let the initial estimate for s̄ be ŝ.
2. Find ŵ, where the n-th element of ŵ, ŵn, is given by ŵn = 1

|ŝn |γ , n = 1, 2, . . . , N.
3. Define M̄ × N matrix Φ∗, such that its (m̄, n)-th element is given by φm̄n/ŵn, where

m̄ = 1, 2, . . . , M̄ and n = 1, 2, . . . , N.
4. Solve the LASSO problem as:
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ŝ∗ = min
s
‖y−Φ∗s̄‖2

2 + τk ‖s̄‖1

5. Calculate ŝ(k) = ŝ∗n/ŵn, n = 1, 2, . . . , N.

The steps from 2 to 5 are repeated until convergence to a predefined residual, R, is obtained or
when the chosen number of iterations is reached. The computational cost is of the order O(KN2),
where K is the total number of iterations, which is of the same order as the computation of a single
OLS minimization. Figure 1 summaries the above steps from 1 to 5. The efficient path algorithm makes
the A-LASSO an attractive method for practical applications [31].

Figure 1. A flowchart of the algorithm for adaptable (A)-LASSO-based DOA estimation.

For the uniqueness of the sparse solution, the spark of matrix Φ, defined as the smallest number of
columns from Φ that are linearly dependent [38], must be investigated. Hence, the above algorithm can
identify a unique L-sparse solution only if L < Spark[Φ]/2, Spark[.] denoting the spark of a matrix [38].
Since any set of (M2/2 + M − 1) columns of Φ is linearly independent, Spark(Φ) = (M2/2 + M).
Hence, the algorithm can identify L-sparse solutions only if L < Spark(Φ)/2. That is, our algorithm
can detect up to (M2/2 + M− 2)/2 sources using an array of M sensors.
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4.1. OLS A-LASSO

Previously, a vector of ones is assumed as the initial signal estimate for s̄. However, as proven
from the simulations, a vector of ones is not the appropriate guess for the signal to be estimated,
especially since there is no relation between the vector of ones and the signal to be estimated.
Furthermore, multiplying that vector by a factor, β, will affect the regularized solution (the same effect
as that of changing τ, the regularization parameter). Even more, if we try to push the algorithm to the
limits (by choosing a small β), we find spurious peaks along with the genuine peaks. Therefore, we will
use the OLS solution as the initial signal estimate for s̄, with the expectation that this modification
leads to better results and that the OLS A-LASSO solution converges faster than that of the A-LASSO.

We assume replacing ŝn in Equation (12) with ŝOLSn, where ŝOLSn is the n-th element of ŝOLS ∈
CN×1 and is given by:

ŝOLS = min
s
‖y−Φs̄‖2

2 (14)

The minimization in Equation (14) is known as the ordinary least square minimization.
The computational cost for Equation (14) is of order O(N2). It should be mentioned that the number of
source signals is not required to be known in advance for OLS A-LASSO. However, we do not use OLS
for DOA estimation. We use it in OLS A-LASSO only as an initial guess for the signal to be estimated
(not a stand-alone DOA estimation technique). Furthermore, OLS gives nonzero estimates to all of the
coefficients (compared to LASSO minimization) and does not favour sparse signals as in the case of
LASSO minimization.

4.2. MVDR A-LASSO

The MVDR technique uses the available degrees of freedom to form a beam in the look direction
and, at the same time, nulling the output in all of the other directions. Thus, for a particular
DOA, MVDR uses all, but one of the degrees of freedom to minimize the array output while
using the remaining ones to constrain a unity gain in the look direction according to the following
optimization [2]:

min
z

zHRssz, subject to zHa1(θ̄) = 1 (15)

where z ∈ C(M2/4+M/2)×1 is the MVDR beamformer weight vector, Rss is the spatially-smoothed
(SS) covariance matrix, which we will now obtain, and a1 ∈ C(M2/4+M/2)×1 is the steering vector
of the array whose SS covariance matrix is Rss. It should be noted that we are not able to use the
covariance matrix Rxx in Equation (2), since this contains information only about the real sensor array.
Furthermore, the received source signals are represented as the deterministic vector p in Equation (3).
Therefore, we are not able to use V of Equation (3) directly for MVDR, since the resultant covariance
matrix is rank defective. However, in our case, it is required to construct the covariance matrix of the
virtual array. Hence, we perform spatial smoothing on V to construct a full rank covariance matrix for
the virtual array. Assuming a two-level nested array containing M even sensors, the distinct elements
of vector V in Equation (3), V̄ ∈ CM̄×1 can be rewritten as:

V̄ = [v̄1 v̄2 . . . v̄m̄ . . . v̄M̄]T , M̄ = (M2/2 + M− 1) (16)

Then, the covariance matrix of the virtual array can be obtained as follows. Let R be the
Toeplitz matrix:

R =


v̄ (M̄−1)

2 +1
v̄ (M̄−1)

2 +2
. . . v̄M̄

v̄ (M̄−1)
2

v̄ (M̄−1)
2 +1

. . . v̄M̄−1

...
...

. . .
...

v̄1 v̄2 . . . v̄ (M̄−1)
2 +1

 (17)
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where R ∈ CM2/4+M/2×M2/4+M/2. Forward-backward (FB) SS [34] is applied to R to obtain the spatial
smoothed covariance matrix, Rss. It should be noted that FBSS is used here only in establishing a
full rank covariance matrix. The resulting n-th element of the weight vector wMVDR ∈ CN×1 is given
by [2]:

w(θ̄n) =
1

aH
1 (θ̄n)R−1

ss a1(θ̄n)
, n = 1, 2, . . . , N (18)

which is also known as the scalar output power for a single steering direction [39]. The computational
complexity of the MVDR algorithm [40] is as shown in Table 1. It is noted that the MVDR-based
DOA estimation technique does not require the number of the source signals to be known in advance.
Furthermore, the MVDR DOA estimation method performance is better than that of the conventional
beamforming. In addition, assuming that (N � M̄), the computational complexity of obtaining the
MVDR weights is less than that of obtaining the OLS one.

Table 1. Computational complexity of the minimum variance distortionless response
(MVDR) algorithm.

Operation Computation Cost

Inverse Covariance Matrix R−1
ss O(M̄3)

Beamformer Weight z = R−1
ss a1(θ̄n)

aH
1 (θ̄n)R−1

ss a1(θ̄n)
O(2M̄2 + 3M̄)

Beamformer Sum w(θ̄n) = [aH
1 (θ̄n)R−1

ss a1(θ̄n)]−1 O(M̄N)

It should be noted that our proposed algorithm does not depend on the orthogonality of the
signal subspaces nor on implementing singular value decomposition (SVD) on the sensor array data.
Therefore, it can perform DOA estimation without knowing the number of source signals in advance.
On the other hand, subspace-based techniques, such as MUSIC and ESPRIT, cannot estimate the
DOA without a priori knowledge of the number of source signals. Furthermore, it is known from the
literature that the MUSIC algorithm is superior to the ESPRIT algorithm [41–43]. However, for the
sake of evaluating our proposed algorithm in comparison with MUSIC, we assume that the number of
signal source is to be known a priori.

4.3. Wideband MVDR A-LASSO DOA

Recently, wideband wireless applications have dominated the area of wireless communications.
Orthogonal frequency division multiplexing (OFDM) transmission and ultra-wide band (UWB)
systems are the most-used techniques in that field. DOA of wideband signals is required in
such applications. However, there are only a few techniques that are applicable to the wideband
scenario [44,45]. When DOA of wideband source signals needs to be estimated, we cannot represent the
delays of the signals by simple phase shifts. An easy way to overcome this problem is to decompose
the wideband signals into several narrowband ones and apply the DOA scheme for each of the
narrowband signals. A filter-bank (or Fourier transform) consisting of Q filters could be used to
decompose the wideband signal into the narrowband ones, where each filter hq(t) has a narrowband
around the central frequency fq, q = 1, 2, . . . , Q. Thus, our DOA estimation is essentially equivalent
to estimating the DOA of Q narrowband signals, given by:

yq(t) = Φ( fq)s̄q(t) + nq(t) q = 1, 2, . . . , Q (19)

The over-complete steering matrix, Φ( fq), is computed for each filter centre-frequency, fq.

fq =
f̌q + f̂q

2
(20)
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where f̌q and f̂q are the lower and higher cut-off frequencies of the filters. It should be noted that
in [45], the KR product is used to virtually extend the array aperture, thus resulting in an increase of
the available degrees of freedom. Consequently, the algorithm proposed in [45] can detect more source
signals than the number of sensors used. However, our proposed technique can detect more source
signals than that of [45]. Moreover, the technique proposed in [45] cannot detect correlated source
signals (unless they are decorrelated before DOA estimation); but, our proposed technique can identify
correlated source signals. In addition, as will be demonstrated in the last experiment of Section 6,
our proposed technique can estimate the DOAs of the source signals even for a wideband scenario
with a very much smaller number of snapshots compared to that required with the technique in [45].

4.4. Selecting the Regularization Parameter

Choosing the regularization parameter, τ, is an important issue for the success of LASSO
minimization Equation (10). The regularization parameter controls the trade-off between the data
fidelity (‖y−Φs̄‖2

2) and the prior information (‖s̄‖1). The discrepancy principle (DP), cross-validation
(CV), generalized cross-validation (GCV) and L-curve method are some of the existing regularization
parameter selection methods. The regularization parameter in DP is chosen so that the sum of squares
of the weighted residuals is equal to the mean of a chi-square distribution [46–48]. CV selects the
regularization parameter that minimizes the mean square error, while GCV selects the value of the
regularization parameter that minimizes the GCV function, which is a leave-one-out CV function for
large-scale problems [48,49]. The L-curve criterion is based on a log-log plot of the corresponding values
of the solution norms and the residuals for a range of values of the regularization parameter [29,50,51].
From Figures 2a and 3a, it is seen that as the value of the regularization parameter τ is increased,
the significance of the A-LASSO estimates shifts from large non-sparse estimates to smaller sparse
estimates. In other words, a small value of τ leads to an under-regularized estimate, whereas a large
value results into an over-regularized estimate. Therefore, suitable values of τ are those lying in the
knee of the L-curve. We consider the beginning of the knee to correspond the value of τ at which
the solution norm starts to decrease and the end of the knee to correspond to the value of τ at which
the residual norm does not significantly change. These are the two red stars on the L-curve. We
empirically determine a segment of this knee corresponding to which all of the τ values provide
satisfactory estimates. We have chosen the value of the regularization parameter τ to be the midpoint
of this segment. It should be mentioned that there are different methods to select a suitable value
for the regularization parameter in the literature [46–49]. However, it has been shown in [52] that
the L-curve [29,50,51] method gives a good estimation of the regularization parameter. In order to
illustrate how τ is chosen, we consider two source signals from DOAs of 60◦and 120◦ to be impinging a
six-sensor two-level nested array with the sampling grid being uniform from 1◦ to 180◦, in increments
of 1◦, and an SNR of 10 dB; the corresponding L-curve plot is as shown in Figure 2a. Selecting τ to
be between 1.39 and 2.19, the resulting DOA estimation is as shown in Figure 2b. Lowering the SNR
to be 0 dB, the results for the same specifications are shown in Figure 3. In this case, a suitable value
for τ is between 1.86 and 2.58. From Figure 2b, it can be seen that we are able to identify correctly the
two source signals, even at low SNR conditions.
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(a) (b)

Figure 2. (a) The data residual ‖y−Φ∗s̄‖2
2 versus the solution `1-norm linear scale on a log-log scale

(L-curve); (b) DOA estimation for two source signals; τ was selected using L-curve, in the MVDR
A-LASSO problem (SNR = 10 dB).

(a) (b)

Figure 3. (a) The data residual ‖y−Φ∗s̄‖2
2 versus the solution `1-norm linear scale on a log-log scale

(L-curve); (b) DOA estimation for two source signals; τ was selected using L-curve, in the MVDR
A-LASSO problem (SNR = 0 dB).

5. Simulation Results

Consider a sparse linear two-level nested array, for which M is even, consisting of M = 6 elements,
as shown in Figure 4. Investigating the array output by applying Equations (1) to (3) and extracting
the equivalent distinct virtual elements from the virtual array manifold (A∗ �A), one can see that
the virtual uniform linear array (ULA) contains M̄ = 23 elements, as shown in Figure 4. It should
be noted that the resultant virtual is a ULA [14]. The sampling grid θ̄n ∈ [1◦ : 180◦] that covers Ω is
chosen to be of 1◦ step, except for the twelfth simulation and d = λ/2, where λ is the wavelength of
the propagating waves.
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Figure 4. The proposed sparse (upper) and the virtual co-array (lower).

All of the simulated source signals are assumed to be equi-power and uncorrelated with one
another or with the noise, except in the fifth simulation, where the sources are assumed to be correlated.
The weight parameter, γ, is set to 0.5 in all of the simulations, except for the eleventh simulation.
The total number of simulations, Nsim, is set to Nsim = 100 for each observation point except in the
case of the eleventh simulation, where it is set to 10. For each simulation, the regularization parameter,
τ, is selected based on the idea of the L-curve [29,50,51]. For the wideband scenario, two chirp signals
are assumed for the wideband simulations, and the filter-bank is assumed to contain 10th order
Butterworth bandpass filters.

The CVX toolbox [53,54] for convex optimization that is available within the MATLAB
environment is used for examining the performance of the proposed A-LASSO algorithms. It uses
semi-definite quadratic-linear programming (SDPT3) [55] to obtain the global solution for the
optimization problem.

The root mean square error (RMSE) is used as the performance measure:

RMSE =
1
L

L

∑
l=1

√√√√ 1
Nsim

Nsim

∑
n=1

(θ̂l,n − θl)2 (21)

where θ̂l,n is the estimate of the DOA angle θl of the n-th Monte Carlo trial.

5.1. Narrowband Signal Sources

5.1.1. Investigations of LASSO-Based Algorithms

In the first simulation, we study the effect of the initial vectors on the performance of the
three LASSO algorithms, namely classical LASSO (for which γ = 0), OLS A-LASSO and MVDR
A-LASSO. For the latter two, we assume γ = 0.5. We consider two source signals impinging on
the sparse array from the DOA of 60◦ and 120◦. For SNR of 0 dB, 10 snapshots and one iteration,
the results are as shown in Figure 5. It can be seen that the MVDR A-LASSO yields a performance
better than that of the classical LASSO, as well as that of the OLS A-LASSO. It may be mentioned that
by increasing the number of iterations, OLS A-LASSO can be made to yield a performance similar to
that of MVDR A-LASSO. This superior performance of the MVDR A-LASSO can be attributed to the
initial weights used, compared to the least square weights used for the OLS A-LASSO, as will be seen
later in Simulation 6. It should be noted that classical LASSO uses equal initial weights and has the
poorest performance.
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(a) LASSO

(b) OLS A-LASSO (c) MVDR A-LASSO

Figure 5. Performance of LASSO, OLS A-LASSO and MVDR A-LASSO, for two source signals at
DOAs 60◦ and 120◦, 10 snapshots, SNR = 0 dB and one iteration. (a) LASSO; (b) OLS A-LASSO;
and (c) MVDR A-LASSO.

In the second simulation, we investigate the performance of the proposed MVDR A-LASSO
algorithm as we vary SNR and compare it with that of LASSO and OLS A-LASSO. Two source signals
are assumed to impinge on the sparse array from DOA of 60◦ and 120◦. The performances of the
proposed MVDR A-LASSO algorithm, along with that of the conventional LASSO and OLS A-LASSO
are shown in Figure 6. It is clear from this figure that the MVDR A-LASSO algorithm outperforms
both the LASSO and OLS A-LASSO algorithms for all SNR.

Figure 6. Performance of the three LASSO algorithms versus SNR, for two source signals at DOAs 60◦

and 120◦, 10 snapshots and after one iteration of the MVDR A-LASSO and OLS A-LASSO algorithms.
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Assuming now that L (the number of source signals) is known, we compare the performance
of the LASSO algorithms with that of the MVDR algorithm and that of MUSIC. For that purpose,
two ULAs, one consisting of six elements and another consisting of 23 elements, are used to evaluate the
performance of MUSIC, while only the ULA with six elements is considered for the MVDR algorithm.
However, for the three LASSO algorithms, the real array used is as shown in Figure 4, namely with
six elements. The performance of the various algorithms as SNR is varied is shown in Figure 7. It is
observed from the figure that all three LASSO algorithms outperform the MUSIC algorithm, as well as
the MVDR algorithm, even when 23 elements are used in the array.

Figure 7. Performance of the LASSO algorithms as SNR is varied in comparison with that of MVDR
and MUSIC algorithms, for two source signals at DOAs 60◦ and 120◦, 10 snapshots and after one
iteration of the MVDR A-LASSO and OLS A-LASSO algorithms.

We investigate, in the third simulation, the capabilities of the proposed algorithms in detecting
the sources even when the number of sources exceeds the number of physical array elements. In other
words, the proposed algorithm is for an underdetermined DOA scenario. For that purpose, two
ULAs, one consisting of six elements and another consisting of 23 elements, are used to evaluate
the performance of MVDR, while only the ULA with 23 elements is considered for the MUSIC
algorithm. However, for the three LASSO algorithms, the real array used is as shown in Figure 4,
namely with six elements. Let 11 source signals impinge the array from uniformly-distributed DOAs
over θ = [30◦, 150◦]. The snapshots number is chosen to be 70, and SNR is set to be −5 dB. All of the
LASSO algorithms can easily identify 11 peaks (even after just one iteration of the MVDR A-LASSO
and OLS A-LASSO algorithms), as seen from Figure 8, while MVDR and MUSIC fail to identify the
source signals.
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(a) (b)

(c) (d)

(e)

Figure 8. DOA estimation when the number of sources is more than the number of sensors: (a) After
one iteration of OLS A-LASSO; (b) After one iteration of MVDR A-LASSO; (c) Classical LASSO and
MVDR using a six-element array; (d) Classical LASSO, MVDR and MUSIC using a 23-element array;
(e) MVDR and MUSIC using a 23-element array.

In the fourth simulation, we examine the resolution of the proposed adaptive algorithms in
comparison with that of MVDR and MUSIC. Two spatially-correlated equi-power signals are assumed
to impinge on the array from the DOAs of 85◦ and 95◦. The SNR is set to 15 dB. Figure 9 illustrates the
results. Two peaks can easily be identified in the case of the three LASSO algorithms, while in the case
of MVDR and MUSIC algorithms, the two peaks are merged into one.
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(a) (b)

(c)

Figure 9. DOA estimation for spatially-closed two-source signals using LASSO algorithms, for two
source signals at DOAs 85◦ and 95◦, 10 snapshots, SNR = 15 dB and one iteration of the MVDR
A-LASSO and OLS A-LASSO algorithms. (a) OLS A-LASSO after the first iteration; (b) MVDR
A-LASSO after the first iteration; and (c) the classical LASSO algorithm.

In the fifth simulation, we examine the performance of our proposed algorithms for the detection
of correlated source signals. Two fully-correlated (coherent) source signals are assumed to impinge on
the array from directions of 60◦ and 100◦ with SNR set to 15 dB. Figure 10 shows that the three LASSO
algorithms can resolve the two sources, revealing the capability of the algorithms in detecting correlated
source signals. It is also clear that MVDR and MUSIC fail to distinguish the two sources.

From the above simulations, it is seen that the performance of the A-LASSO-based DOA estimation
is superior to that of the MVDR (for which L is not required to be known) and that of MUSIC (for which
L must be known in advance). Further, we also conclude that the performance of the classical LASSO
is inferior to that of the two A-LASSO schemes, even though it exhibits a performance better than that
of MVDR and MUSIC. In view of these results, we will not consider MVDR, MUSIC or the classical
LASSO algorithm further in our study.
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(a) (b)

(c)

Figure 10. DOA estimation for two correlated source signals using LASSO algorithms, for two source
signals at DOAs 60◦ and 100◦, 10 snapshots, SNR = 15 dB and one iteration of the MVDR A-LASSO
and OLS A-LASSO algorithms. (a) OLS A-LASSO after the first iteration; (b) MVDR A-LASSO after the
first iteration; and (c) the classical LASSO algorithm.

5.1.2. Investigations of A-LASSO Algorithms

In the sixth simulation, we test the performance of the OLS A-LASSO and MVDR A-LASSO
algorithms in a low SNR situation. For this purpose, we consider two source signals with DOAs of
60◦ and 120◦, set SNR to 0 dB and snapshots to 10. The results for the two A-LASSO algorithms are
shown in Figure 11. It can be seen from this figure that MVDR A-LASSO can detect the source signals
after the first iteration itself, while OLS A-LASSO needs more iterations to be able to eliminate all of
the false peaks. This can be explained by looking at the initial weights for both the OLS A-LASSO
and MVDR A-LASSO algorithms. Figure 11d illustrates the initial weights for OLS A-LASSO and
MVDR A-LASSO; it can be seen that the weights using the MVDR A-LASSO algorithm are relatively
smooth compared to those of OLS A-LASSO. Furthermore, it can be seen that the OLS A-LASSO
weight consists of many peaks that affect its performance and lead to false source signal peaks.

The DOA performance is investigated after five and 15 iterations for both the OLS A-LASSO
and MVDR A-LASSO in the seventh simulation. Two signal sources are assumed to be impinging
the array from DOAs of 60◦ and 120◦, while the SNR changes. The snapshot number is chosen to be
10; the results are shown in Figure 12. It can be seen from the figure that, in terms of RMSE, MVDR
A-LASSO outperforms the OLS A-LASSO algorithms.
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Based on the results of the previous simulations (Figures 5, 6, 11 and 12), it is clear that MVDR
A-LASSO outperforms OLS A-LASSO. Hence, OLS A-LASSO will not be considered in the rest of
the paper.

(a) (b)

(c) (d)

Figure 11. DOA estimation using A-LASSO algorithms, for two source signals at DOAs 60◦ and 120◦,
10 snapshots, SNR = 0 dB. (a) MVDR A-LASSO after the first iteration; (b) OLS A-LASSO after the first
iteration; (c) OLS A-LASSO after five iterations; and (d) initial weights of the two algorithms.

(a) (b)

Figure 12. DOA estimation of two source signals at DOAs 60◦ and 120◦, and 10 snapshots (a) after
five iterations and (b) after 15 iterations, using the A-LASSO algorithms.
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5.1.3. Investigations of the MVDR A-LASSO Algorithm

The eighth simulation investigates the DOA estimation using MVDR A-LASSO as we increase
the number of iterations. Let two source signals with DOAs of 60◦ and 120◦ impinge on the array,
and let the SNR be −5 dB and 50 snapshots be used. The results for the first five iterations are
shown in Figure 13. It is seen from the figure that, after the first iteration, fake source signal peaks
appear. As the algorithm runs, the weights corresponding to the fake source signals become very
large, whereas those of the actual source signals remain constant. Hence, the weights corresponding to
the false source signals damp the false peaks, while those of the real source signals remain constant.
As a consequence, as the number of iterations increases, it is clear that only the real source signal peaks
remain. Furthermore, it can be observed that the sidelobe ratio (SLR) after the fifth iteration is more
than twice that after the first iteration.

We now examine the performance of the proposed MVDR A-LASSO algorithm at low and very
low SNR situations in the ninth simulation. The same settings as in the previous simulation are used,
except that the SNR is set to −10 dB and −15 dB. The snapshot number is set to 150 for the first case
and 200 for the second one. The results are as shown in Figure 14 for SNR of −10 dB and Figure 15 for
that of SNR set to be −15 dB.

It can be seen from Figures 14 and 15 that the two signals can be identified after only five iterations,
even for very low SNR conditions. However, more snapshots are needed in this situation. Thus, it is
a trade-off between SNR and the number of snapshots required so that the DOA of the source signals
can be correctly identified. It is further observed that even after three iterations, we are able to identify
the two source signals.

In the tenth simulation, we study the effect of changing the number of snapshots on the
performance of MVDR A-LASSO. We consider two source signals arriving from DOAs of 60◦ and
120◦ with SNR changing from −5 dB to 5 dB. The results are shown in Figure 16. It can be observed
from this figure that increasing the number of snapshots leads to an enhancement in the performance,
in terms of RMSE. In other words, it is a trade-off between the number of snapshots and the RMSE.
For low and very low SNR, the number of snapshots has to be increased, for better performance.

The eleventh simulation involves the investigation of the effect of changing γ. Two source
signals impinging the array from DOAs of 60◦ and 120◦ are considered, the SNR being set to
−5 dB while changing γ. Figure 17 shows the residual, R, in terms of the absolute value of
( ‖y−Φs̄k+1‖2

2 − ‖y−Φs̄k‖2
2 ), where k is the iteration number, for 10 simulations. From this figure,

it is clear that increasing the number of snapshots decreases the residuals for all three cases of
γ = 0.25, 0.5 and 0.75. Furthermore, the residual after the end of the first iteration using γ = 0.5 is
smaller than when γ = 0.25 or 0.75, even when the number of snapshots is increased. From Figure 17b,
it can be seen that, at the end of the second iteration, the residual corresponding to γ = 0.25 is smaller
than that corresponding to γ = 0.5 or γ = 0.75. However, for none of these values of γ have we
achieved convergence by the end of the second iteration. At the end of Iteration 3, the convergence of
the residual is achieved only for the weight factor γ = 0.5. However, since the residual for γ = 0.5 at
the end of the first iteration is less than that of γ = 0.25, the signal sources are identified at the end of
the first iteration (Figure 18e), while that of γ = 0.25 needs more iterations (Figure 18a–c). The effect
of γ on the DOA estimation, using the same previous source signals, with SNR chosen to be −5 dB
is shown in Figure 18. In this case, 50 snapshots are used, while γ assumes values of 0.25, 0.50 and
0.75. It can be seen from this figure that γ = 0.5 provides the right signal sources at the end of the
first iteration with a smaller residual than for γ = 0.25 or 0.75. On the other hand, selecting γ = 0.25
leads to more fake source signals being detected, and as a consequence, more iterations are needed to
identify the real sources, while using γ = 0.75 leads to misidentifying one of the source signals.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. DOA estimation in the case of two source signals at DOAs 60◦ and 120◦, SNR = −5 dB,
50 snapshots using MVDR A-LASSO algorithm. (a–e) after 1− 5 iterations; and (f) MVDR A-LASSO
weights as the number of iterations k varies.
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(a) 1st iteration (b) 2nd iteration

(c) 3rd iteration (d) 4th iteration

(e) 5th iteration (f) MVDR A-LASSO weights

Figure 14. DOA estimation in the case of two source signals at DOAs 60◦ and 120◦, SNR = −10 dB, 150
snapshots, using the MVDR A-LASSO algorithm. (a) to (e), after one to five iterations; and (f) MVDR
A-LASSO weights as the number of iterations k varies.
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(a) 1st iteration (b) 2nd iteration

(c) 3rd iteration (d) 4th iteration

(e) 5th iteration (f) MVDR A-LASSO weights

Figure 15. DOA estimation, two source signals at DOAs 60◦ and 120◦, SNR = −15 dB, 200 snapshots,
using the MVDR A-LASSO algorithm. (a) to (e) after one to five iterations; and (f) MVDR A-LASSO
weights as the number of iterations k varies.
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Figure 16. MVDR A-LASSO DOA estimation performance versus the number of snapshots,
two source signals with DOAs 60◦ and 120◦, γ = 0.5.

(a) (b)

Figure 17. The residual for two source signals at DOAs 60◦ and 120◦, with γ = 0.25, 0.5 and 0.75,
10 iterations, SNR = −5 dB using the MVDR A-LASSO algorithm, (a) 10 snapshots and (b) 50 snapshots.

The twelfth simulation involves the investigation of the effect of varying the angular separation
between the source signals. Consider two source signals, the first one held fixed at DOA of 60◦,
while the second one with DOA ranging from 61◦ to 100◦ with steps of 1◦. The SNR is set to be
10 dB; 10 snapshots are considered for the simulation; 100 trials for each point; and a sampling grid
θ̄n ∈ [1◦ : 180◦] chosen to be of 0.1◦ steps. Figure 19 illustrates the DOA estimation error as a function
of the angular separation between the two source signals. It can be seen from this figure that the DOA
estimation error is less than 2◦ for an angular separation < 5◦. This DOA estimation error is reduced
to < 0.4◦ for an angular separation ≥ 6◦.
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(a) γ = 0.25, 1st iteration (b) γ = 0.25, 2nd iteration

(c) γ = 0.25, 3rd iteration (d) γ = 0.25, weights

(e) γ = 0.50, 1st iteration (f) γ = 0.75, 1st iteration

Figure 18. DOA estimation of two source signals at DOAs 60◦ and 120◦, 50 snapshot, SNR = −5 dB,
using the MVDR A-LASSO algorithm, (a)–(d) γ = 0.25; (e) γ = 0.50; and (f) γ = 0.75.
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Figure 19. DOA estimation error for two sources as a function of separation between the two sources,
SNR = 10 dB, 10 snapshots and one iteration of MVDR A-LASSO.

5.2. Wideband Signal Sources

The last simulation is to investigate the DOA estimation in a wideband source signal scenario.
Two chirp source signals, with frequency spanning from 250 to 500 Hz, are assumed to be impinging
the array from DOAs of 60◦ and 120◦, with the SNR being set to 30 dB and the number of snapshots
being 10. Figures 20 and 21 show the wideband DOA estimation results assuming two ULAs containing
six sensors and 23 sensors, respectively. Here, we compare the performance of the proposed MVDR
A-LASSO with that of both the conventional beamforming and MUSIC algorithm in a wideband
scenario. It can be seen that the conventional beamforming suffers from wide beams so that the
source signals can be merged if they are close to each other (Figures 20c,d and 21c,d). Increasing the
number of sensors to 23 (the same number of sensors in the virtual array) leads to narrower beams
(Figure 21c,d). However, conventional beamforming still has wider beams. Using the MUSIC algorithm,
we cannot identify the two source signals using a six-sensor ULA (Figure 20e,f); however, we can
identify them using an array with 23 sensors (Figure 21e,f). Using MVDR A-LASSO (Figure 20a,b),
we can easily identify the source signals using the sensor array shown in Figure 4. We notice that the
sidelobe ratio of the MVDR A-LASSO is superior to that of both the conventional beamforming and
MUSIC algorithm. Furthermore, MVDR A-LASSO has a sharper beam compared to that of both the
conventional beamforming and MUSIC algorithm. This simulation shows that MVDR A-LASSO is
applicable to wideband scenarios, as well as to narrowband situations.



Sensors 2016, 16, 1549 25 of 29

(a) (b)

(c) (d)

(e) (f)

Figure 20. Wideband DOA estimation, two chirp source signals at DOAs 60◦ and 120◦, γ = 0.5,
10 snapshots, using uniform linear array (ULA) containing six sensors for conventional beamforming
and the MUSIC algorithm. (a,b) The MVDR A-LASSO algorithm (after the first iteration);
(c,d) Conventional beamforming; and (e,f) the MUSIC algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 21. Wideband DOA estimation, two chirp source signals at DOAs 60◦ and 120◦, γ = 0.5,
10 snapshots, using ULA containing 23 sensors for conventional beamforming and MUSIC algorithm.
(a,b) The MVDR A-LASSO algorithm (after the first iteration); (c,d) Conventional beamforming; and
(e,f) the MUSIC algorithm.
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6. Conclusions

This paper has presented a novel technique using the compressive sensing framework on a sparse
linear array. The ordinary least square adaptable LASSO (OLS A-LASSO) has been applied for the
first time for the DOA estimation problem. Further, we have proposed a new adaptable LASSO
algorithm, the MVDR A-LASSO, for the DOA estimation problem. The proposed A-LASSO algorithm
outperforms the classical LASSO, OLS A-LASSO and the classical DOA estimation techniques. It does
not require any a priori knowledge about the number of source signals. The proposed algorithm
is able to perform DOA estimation using a smaller number of snapshots and is able to estimate
correlated source signals and spatially-related source signals. Moreover, even when the number
of source signals is known, it outperforms the MUSIC algorithm. Our proposed algorithm can
identify ((M2 − 2)/2 + M− 1)/2 source signals using M sensors and has a high resolution. Using
the proposed technique, we are able to eliminate any spurious peaks and identify only the actual
source peaks. Further, it has been shown that, using the proposed MVDR A-LASSO, the source signals
can be identified with a lesser number of iterations than that using OLS A-LASSO. Therefore, the
computational cost of the MVDR A-LASSO is lower than that of the OLS A-LASSO. Further, the
simulations have shown that MVDR A-LASSO is suitable for wideband scenarios, as well. Finally, it is
worth mentioning that the proposed scheme for DOA estimation is applicable to other types of array
structures, but when the scheme is applied to other structures, it may not provide all of the advantages
that it provides to the nested structure.
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