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Abstract: In this study, a laser line auto-scanning system was designed to perform underwater
close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane
direction with a galvanometer to perform automatic scanning and obtain continuous laser strips
for underwater 3D reconstruction. The system parameters were calibrated with the homography
constraints between the target plane and image plane. A cost function was defined to optimize
the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the
incident and emitted light at the interface. The accuracy and the spatial measurement capability of
the system were tested and analyzed with standard balls under laboratory underwater conditions,
and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to
be satisfactory.
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1. Introduction

A large number of underwater applications require high resolution and accurate 3D reconstruction
for underwater objects. The intervention tasks [1–4], pipes or other industrial facility inspection [5,6],
archaeology [7–10], and biological applications [11,12] are just some examples. In these applications,
sensors working at a short distance have to be used to obtain the 3D geometry information of an object
accurately. These sensors can also increase the autonomy of underwater intervention systems.

Compared with acoustic methods [13,14], optical methods with high resolution and accuracy are
more suitable for short-distance operations [15]. The traditional passive vision systems are widely
used because of their simplicity and low cost. Camera-based sensors are usually used as passive
sensors since the other sensors are based on sounds or light projection. Passive methods sense the
environment with a sequence of pictures taken from different viewpoints, so that 3D information will
be recovered with the image features matching or stereo matching algorithms [16,17]. These systems
are seriously affected by backscatter in limited visibility environments and need textured scenes to
achieve satisfactory results [18,19]. As an active system, common structured light systems usually
project a pattern onto the object with a projector to reconstruct [20]. The larger illumination volume
and the projection light wavelength diversity lead to larger absorption and scattering coefficients.
In underwater environments, laser-based structured light systems may be equipped with a different
wavelength laser for the low absorption and scattering coefficients [21]. High brightness is generated
with small power to improve the identification accuracy. Due to the small coverage area of a single
laser stripe, a motion generator is often used to carry the laser to perform a scan. Such institutions
usually exercise large size and power consumption [22,23].

The laser line scan (LLS) system was first used in [24] to reduce the backscattering. Nowadays,
LLS systems have been used in various research fields such as underwater range finding [25],
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3D reconstruction [26,27], and guidance of a robot in real time [28,29]. The laser line scan is performed
with a handheld device [30], an electric motor [31], or a manipulator mounted on the robot [32,33].
There are also some commercial solutions available for 3D data gathering [34–37]. These systems can
achieve high-resolution results with the precise control of the laser line movement, and they are more
efficient than single laser line systems. However, the systems should be kept still while the laser line
moves. The range of these systems does not exceed 3 m, even in clear water, normally because of the
effects of absorption and scattering [38].

Our main motivation to develop this sensor was to provide visual guidance for an underwater
intervention task with higher accuracy. This requires that the sensor can accurately measure the
geometry information of the operation target, including shape, size, position, etc. The underwater
vehicle-manipulator system (UVMS) is a typical platform for underwater intervention. Nowadays,
few UVMSs can be considered to be able to perform autonomous manipulation. The underwater
vehicle named SAUVIM (Semi Autonomous Underwater Vehicle for Intervention Mission, University
of Hawaii) [3] hooked a cable under the guidance of a marker in the oceanic environment. A monocular
vision system is used to detect the cable. Although the experiment focused on the integrity of the
system, a monocular vision system is too simple to guide the robot to perform a more precise operation.
The GIRONA500 [32] is an autonomous underwater vehicle developed in the university of Girona.
It completed the reconstruction and grasping process on an amphora with a LLS mounted on the
manipulator. The laser line swept across the object’s surface with the motion of the manipulator.
The accuracy and resolution of the system were limited by the motion control accuracy of the
manipulator. A LLS with a motion generator will be available as an improvement. Due to the
sensor volume and consumption requirements of UVMSs and other underwater platforms, the motion
generator should be small and efficient. In addition, the accuracy of the motion control is an important
factor in the impact of 3D reconstruction.

The system presented in this paper used a galvanometer as the motion mechanism. The laser
plane direction was changed precisely by the rotation of the galvanometer. The control accuracy of
the rotation angle of the galvanometer could reach 8 µrad, and this would provide a guarantee for
the measurement accuracy and resolution. The outline dimension of the instrument was 580 mm
(length)× 140 mm (width)× 205 mm (height), and the total weight in air was about 11.1 kg. The system
operating voltage was 24 VDC, and the maximum power consumption was less than 7 W. The system
with a smaller size and lower power consumption was suitable for installation onto an underwater
mobile platform to perform underwater 3D reconstruction tasks.

This article is structured as follows: the description of the system construction is given in Section 2,
the system calibration in Section 3, the compensation for the refraction caused by air-glass-water
interface in Section 4, the experimental setup and results in Section 5, and the discussion and outlook
in Section 6.

2. System Composition and Structure

As seen in Figure 1, a camera and a laser-galvanometer motion module unit were mounted in
two independent watertight housings. The housings were made out of an aluminum alloy and were
fixed to a base structure to keep its relative position stationary. The information such as the thickness
of the glass and the distance between the camera and the sealed glass was accurately measured after
the system was processed and installed.

The WAT-902B (Watec Incorporated, Kawasaki, Japan) industrial-grade low-illumination analog
camera and Computar 1214-MP (CBC Co., Ltd., Tokyo, Japan) megapixel lens produced by Watec were
used. The galvanometer was a TS8720, manufactured by Sunny Technology (Beijing, China). The laser
was LASIRIS series (ProPhotonix Limited, Salem, UT, USA).

The camera CCD resolution was 752 (H) × 582 (V), the unit pixel size of image plane
was 8.6 µm (H) × 8.3 µm (V), and the image resolution was 768 × 576. The galvanometer could
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be controlled to rotate in the range of ±20 by the voltage signal which ranges from −10 V to +10 V
from a D/A conversion card in the computer.

After reflexed by the galvanometer, the laser plane was projected onto the object. The laser stripe
moved with the galvanometer rotating in a certain step angle. The 3D data of the object surface could
be obtained based on the computation of the optical information with the triangulation method.Sensors 2016, 16, 1534 3 of 14 
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Figure 1. Laser line auto-scanning system.

3. System Calibration

The coordinate systems of the integrated system were set up as shown in Figure 2. The xg axis
is upward along the rotating axis of the galvanometer, og is the intersection point of the xg axis and
the o-yz plane of the camera coordinate system, and the yg axis is outward perpendicular to the xg

axis from og in the exiting laser plane when the galvanometer control voltage is U0. The galvanometer
rotates around the xg axis, and the rotating angle could be controlled by the input voltage. In order to
perform auto-scanning, the camera internal parameters and the transformation relation between the
camera and the galvanometer were calibrated on land. The refraction caused by the air-glass-water
interface was compensated when performing the underwater measurement.
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Figure 2. The schematic for system coordinate system setup.

Calibration was performed with a planar checkerboard target. As seen in Figure 3, the calibration
is completed by the following steps:

1. The target was placed in the measurement range to obtain a target image. Reasonable camera
parameters such as gain and contrast are set to obtain the corresponding laser stripe image so
that only the strongest laser spots were captured as saturated pixels. As the number of the points
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in the black squares has been already sufficient for fitting laser lines, the other points in the white
squares could be ignored. This target image, together with the images obtained in the next two
steps, were used to calibrate the camera internal parameters including the radial and decentering
distortion parameters with the Zhang method [39]. The laser stripe image at the same position
were used to calculate the coordinates in the camera coordinate system of the laser points with
the rotation matrix and translation matrix, which were obtained when calibrating the camera
internal parameters [40].

2. Keeping the laser plane emission angle constant, the position and the orientation of the target
were changed multiple times in the view field of the system. Step 1 was then repeated. All laser
spots obtained hitherto belonged to one laser plane, and these spots were used to fit the laser
plane equations expressed in the camera coordinate system.

3. Laser plane emission angle was changed with the rotation of the galvanometer. Steps 1 and 2
were then repeated. Then, we obtained several different laser plane equations that could be used
to calculate the galvanometer rotating axis equation.
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The camera internal parameters were calibrated with the target images, and the transformation
matrix between camera and galvanometer coordinates was calculated with the laser stripe images.

The world coordinate system was set up as shown in Figure 4 when the camera internal parameters
were calculated, and this coordinate system is a right-handed system. According to the perspective
projection principle, the relation between image plane coordinates and the world coordinates can be
expressed as follows:

ρ

 u
v
1

 =

 fNxr1 + r7u0 fNxr2 + r8u0 fNxr3 + r9u0 fNxtx + tzu0

fNyr4 + r7v0 fNyr5 + r8v0 fNyr6 + r9v0 fNyty + tzv0

r7 r8 r9 tz




xw
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zw
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 , (1)

where P (xw,yw,zw) in the world coordinate system images on the image plane is Pu (u,v). The camera
internal parameters, including focal length f, the principal point coordinate (u0,v0), rotation matrix
elements r1 to r9, and translation matrix elements tx, ty, tz. Nx, and Ny, were the number of pixels
corresponding to the unit length on the image plane, respectively, and they are constants. These camera
internal parameters and distortion parameters could be calculated using the Zhang calibration method.
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The laser plane was projected onto the target at different positions and orientations.
The transformation relation between the camera coordinate system and the galvanometer coordinate
system could be solved with the homography constraints. According to the definition of the world
coordinate system shown in Figure 4, all laser points were on the target plane, so zw = 0, and
Equation (1) could be rewritten as Equation (2). The parameter matrix became a square matrix,
so we could calculate the world coordinates with the known image plane coordinates.
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According to the rigid transformation relationship between the Euclidean coordinate systems,
the transformation relationship between the camera coordinates and the world coordinates could be
expressed as below:  x

y
z
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r7 r8 r9
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 . (3)

The transformation matrices between the camera coordinate system and the world coordinate
system when the position of the target was changed was obtained after calibrating the camera internal
parameters. The coordinates of the laser points in the camera coordinate system could be obtained by
solving Equations (2) and (3). All of the points in the same laser plane were used to solve the laser
plane equation. This equation can be written as follows:

z = Ax + By + C. (4)

Ideally, all light planes intersect in one line—the xg axis. Due to the error caused by machining and
assembly, the galvanometer rotating axis equation was optimized. The xg axis equation in the camera
coordinate system was defined as {

x−x0
a =

y−y0
b

x−x0
a = z−z0

c
, (5)

where (a,b,c) is the direction vector of xg axis, (x0,y0,z0) is one point on the xg axis. (x0,y0,z0) could
be obtained by fitting all laser planes with the least square method. The normal vector of laser plane
was perpendicular to the direction vector of the xg axis according to the definition of the galvanometer
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coordinate system. Thus, the optimization function was defined with the dot product of the two
vectors as the optimization goal.

F =
n

∑
i=1

(ji, ki, li)·(a, b, c), (6)

where (ji,ki,li) is the normal vector of the number i laser plane. F is optimized with the direction
vector of the intersection of any two laser planes as the initial value to calculate the direction vector of
the xg axis. The direction vector of the zg axis can be calculated with the galvanometer control
voltage. The direction vector of yg axis can be calculated with the direction vectors of xg and
yg axis. The galvanometer coordinate system origin expression in camera coordinate system is(

0, y0 −
b
a x0, z0 − b

a x0

)
.

The transformation relation between the camera coordinates and the galvanometer coordinates
can be rewritten as Equation (7): x

y
z

 =

 rg1 rg2 rg3

rg4 rg5 rg6

rg7 rg8 rg9


 xg

yg
zg

+

 tgx

tgy

tgz

 =

 xg yg zg

0 0 0
0 0 0

0 0 0
xg yg zg

0 0 0

0 0 0
0 0 0
xg yg zg

1 0 0
0 1 0
0 0 1

M, (7)

where M = [rg1 . . . rg9,tgx,tgy,tgz]T. The galvanometer coordinate origin coordinates and the unit
vectors of the three axes in Equation (7) were replaced to obtain the parameters matrix M.

According to the pinhole imaging model, we could obtain Equation (8).
z
f
=

x
(u− u 0 )/Nx

z
f
=

y
(v− v 0 )/Ny

. (8)

The galvanometer coordinates of the object could be obtained with Equations (4), (7) and (8).

4. Compensation for the Refraction Caused by Air-Glass-Water Interface

Refraction caused by the air-glass-water interface results in high distortion on images when
performing underwater measurement. Therefore, it was necessary to carry out refraction compensation
for underwater measurements after calibration.

As shown in Figure 5, the incident laser projects onto the underwater object after reflecting at the
medium conversion interface. According to Snell’s Law, Equation (9) could be obtained:{

nasinθ1 = ngsinθ2

ngsinθ2 = nwsinθ3
. (9)

In this formula, θ1 could be calculated by the galvanometer deflection angle. na, ng, and nw are
the refractive index in air, glass, and water, respectively. hg and hw are the distance from the rotating
axis of the galvanometer to the sealed glass and the thickness of the glass, and they are known values.
The coordinates of point J could be calculated via triangulation. The equation of the laser plane in air
after reflexed by the galvanometer was then obtained. We then calculated the normal vector of the
laser plane in water after refraction with the original normal vector and the coordinates of point J.

The underwater point P images on the camera image plane as point Q. If there were no
air-glass-water interface refraction, the ideal imaging point would have been Q’. The relationship
between the image point Q and Q’ image coordinates could be written as Equation (10):

(u’, v’) = k(u, v). (10)
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of the incident and reflected light.

The k values of the different points on the image plane were different. According to the geometric
relationship seen in Figure 5, we could obtain Equation (11):

k =
QO
Q’O

=
tanγ
tanα

=
NHtanβ+GH

oH
tanα

, and (11)


oO = f

QO =
√

u2+v2

oN = hc

oH = z

, (12)

where the focal length of the camera f is obtained in the calibration process, and the image plane
coordinates (u,v) is known. Substituting Equation (12) into Equation (11), we get Equation (13):

k =

(
1− hc

z

)
tanβ+ hc

z tanα

tanα
. (13)

Supposing that hc << z, we can get a simplified expression for k:

k ≈ tanβ
tanα

. (14)

We could calculate the image plane coordinates of Q’ by triangulation with Equations (10) and (14).
The image plane coordinates of Q’ were substituted into the equation of the laser plane after reflexed.
Together with the measurement model on land, the 3D coordinates of the point P were obtained.

5. Experiments and Results

The experimental set-up in this article focused on the measurement feasibility and accuracy of the
system. The system was deployed in a 1.5 m (length) × 0.9 m (width) × 0.9 m (height) stainless steel
water tank. One side of the water tank was equipped with a 600 mm (width)× 600 mm (height)× 8 mm
(thickness) glass window which made it convenient to observe.

In this study, a ball as shown in Figure 6a was measured at different positions in the tank,
as shown in Figure 7. The radius was 20.0175 mm, and the sphericity error was 0.0056 mm. The 3D
information of the ball was obtained by fitting the point cloud with the commercial software NX
Imageware Version 13.2 (Siemens PLM Software, Plano, America). The latest version of the software
can be found at the company website [41]. The fitted radius value was compared with the actual value
to evaluate the accuracy. The collected scatter points were used to analyze the measurement error
distribution and stability. A three-ball system as seen in Figure 6b was used to assess the spatial error
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in the measurement field. A sealing cover of an underwater instrument was used to demonstrate the
system’s ability to perform 3D reconstruction for general objects.
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Figure 7. The standard ball measurement experimental setup in the water tank.

The zg coordinates of the sphere center in the galvanometer coordinate system were along the
system measurement depth direction. Thus, the zg coordinate value of the ball represented the distance
from the sphere center to the system. The ball was measured 10 times. As seen in Table 1, the zg

coordinate values of the sphere center in the 10 measurements ranged from 667.2722 to 1067.269.
The number of points measured on the ball surface was reduced from 3635 to 1176 with increasing
distance, and the resolution was high.

Figure 8 shows the errors between the standard radius and the fitted radii corresponding to
the 10 positions. They were distributed from 0.0619 mm to 0.2537 mm. The errors became small and
stable as the distance increased. This is because we assume hc << z when compensating the interface
refraction. Therefore, the error caused by the assumption became small when the z value became large.
In experiments, the distance between the camera optical center and the glass surface was about 10 mm,
and the zg values of the ball ranged approximately from 667 mm to 1067 mm.
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Table 1. The 10 fitted sphere centers galvanometer coordinates, radii (mm), and detected
points numbers.

Ball Position No.
Fitted Sphere Centers

Fitted Radii Points Number
xg yg zg

1 18.6293 −71.9997 667.2722 20.2712 3635
2 18.6899 −79.499 721.507 20.2547 2978
3 19.5748 −39.5651 772.5898 20.2187 2870
4 19.7713 −39.3427 817.5533 20.2018 2380
5 19.8753 −29.6658 858.9471 20.1116 1958
6 19.9782 −23.9347 912.6583 20.0975 2017
7 20.3525 −16.948 958.4314 20.0857 1701
8 21.1155 −23.5845 998.197 20.0794 1527
9 21.6605 −32.4656 1021.3342 20.1154 1433

10 23.3907 −37.6898 1067.269 20.1003 1176
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The maximum distance from the points outside and inside the sphere to the fitted surface
corresponding to 10 positions were respectively computed and are shown in Figure 9. They are
randomly distributed without a regular trend.

Sensors 2016, 16, 1534 9 of 14 

 

Table 1. The 10 fitted sphere centers galvanometer coordinates, radii (mm), and detected  

points numbers. 

Ball Position No. 
Fitted Sphere Centers 

Fitted Radii Points Number 
xg yg zg 

1 18.6293 −71.9997 667.2722 20.2712 3635 

2 18.6899 −79.499 721.507 20.2547 2978 

3 19.5748 −39.5651 772.5898 20.2187 2870 

4 19.7713 −39.3427 817.5533 20.2018 2380 

5 19.8753 −29.6658 858.9471 20.1116 1958 

6 19.9782 −23.9347 912.6583 20.0975 2017 

7 20.3525 −16.948 958.4314 20.0857 1701 

8 21.1155 −23.5845 998.197 20.0794 1527 

9 21.6605 −32.4656 1021.3342 20.1154 1433 

10 23.3907 −37.6898 1067.269 20.1003 1176 

 

Figure 8. The errors between the fitted radii and the standard radius. 

The maximum distance from the points outside and inside the sphere to the fitted surface 

corresponding to 10 positions were respectively computed and are shown in Figure 9. They are 

randomly distributed without a regular trend. 

 

Figure 9. The maximum distance from the points outside and inside the sphere to the fitted surface. 

Figure 10 shows the error distribution between all of the scatter points and the fitted sphere 

surface measured at Position 6. The maximum distance from the points outside and inside the 

sphere to the fitted surface were 0.3532 mm and 0.4211 mm. 

Figure 9. The maximum distance from the points outside and inside the sphere to the fitted surface.



Sensors 2016, 16, 1534 10 of 14

Figure 10 shows the error distribution between all of the scatter points and the fitted sphere
surface measured at Position 6. The maximum distance from the points outside and inside the sphere
to the fitted surface were 0.3532 mm and 0.4211 mm.Sensors 2016, 16, 1534 10 of 14 
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The three-ball system was measured 3 times with different orientations at the positions, which
was about 1 m from the laser system. The three balls were marked as A, B, and C as seen in Figure 6b.
AB, AC, and BC are the distances between the two corresponding balls’ centers. The width of the
system’s view field at a position 1 m from the system was about 250 mm, and the three-ball system
almost occupied the entire image in the experiments. The distances between any two balls were
relatively long in the whole measurable volume and could be used to assess the spatial measurement
errors. The results are in Table 2. The radius errors were distributed from −0.07 mm to 0.924 mm,
and most of the errors were less than 0.5 mm. The maximum distance error value was 1.877 mm, and
the most of the values were within 1 mm. The greater distance errors occurred when the distance
directions approached the zg axis direction. In addition to the affection of the assumption hc << z on
the foregoing, the errors of the processing and assembly parameters such as the distance between the
galvanometer and glass also had a greater impact on the measurement error in the depth direction.

Table 2. Summary of the fitted radii and distances values of the three-ball system. The errors between
the fitted values and the standard values are also listed.

Position No. Value Type
Radii (mm) Distances (mm)

A B C AB AC BC

- Standard Values 30.200 30.193 30.166 151.713 220.056 221.449

1
Measured Values 30.612 30.939 31.089 151.682 219.197 222.09

Errors 0.412 0.746 0.923 −0.031 −0.859 0.641

2
Measured Values 29.968 30.461 30.631 150.699 218.179 220.716

Errors −0.232 0.268 0.465 −1.014 −1.877 −0.733

3
Measured Values 30.133 30.245 30.519 150.694 219.372 222.438

Errors −0.067 0.052 0.353 −1.019 −0.684 0.989

A sealing cover of an underwater instrument was measured at a distance of about 1 m from
the laser system. The outer ring radius of the cover was 78 mm. The galvanometer rotation angle
increased from 25.49◦ to 38.37◦, and the rotation step was 0.09◦. 36127 points were obtained. As seen
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in Figure 11b,c, the point cloud was uniformly distributed with high resolution, and the triangular
mesh model was smooth and complete.
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In summary, under ideal laboratory conditions, the presented system was able to perform the
3D reconstruction for a smaller object at different positions with good accuracy. Moreover, the space
measurement capability was thoroughly tested and analyzed with a three-ball system. By measuring a
given cover, the system was proved to be effective in performing a 3D surface reconstruction with high
resolution. In fact, accuracy and resolution were closely related to the working distance. T. Ekkel [42]
used a laser line system to perform 3D measurement for welding seams at a closer distance (150 mm)
with higher accuracy (35 µm). In [31], a device with a camera and motorized laser stripe was used to
measure a board from 2 m away, and the accuracy was about 1 cm.

6. Discussion and Outlook

The designed system extends measurement range with a galvanometer. The system can be
equipped onto an underwater platform with a smaller size and lower power consumption, as well as a
standalone sensor.

The planning of the target positions in the calibration procedure is ingenious. In accordance
with the planning, the laser points on the targets of different positions in the unified light plane will
be obtained. The calibration is carried out with the coplanar constraint of these points. This greatly
simplifies the calibration procedure and improves the efficiency. The rotation and translation matrices
between the target and the camera coordinate systems in the calibration process of the camera's internal
parameters can be directly used to perform the coordinates conversion of the laser points such that the
computation cost is greatly reduced.

As seen in the results, the system has been proved to be effective in clear waters for close range
static objects with high accuracy and resolution. The main source of the measuring error is the
calibration error, and the following factors will cause the errors when performing actual measurement.

• System machining and assemblyIn this paper, we assume that the galvanometer rotating axis
should completely coincide with the line intersected by the laser plane and the mirror of
galvanometer. Assembly error will affect the accuracy of the measurement. The effect is reduced
by the virtual axis with the optimization algorithm to improve the accuracy in the actual operation.
In addition, the other machining and assembly parameters can also lead to the calculation error of
the triangulation.

• Parameters of the camera and laserAn external environment with a different light will cause the
contrast and definition difference of the image. The camera gain, offset, and contrast parameters
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as well as the laser intensity should be adjusted accordingly to improve optical quality so as to
improve the accuracy. The results are stable in dark environments.

• The angle between light plane and spherical surfaceWhen the angle is small, the width of the light
strip formed by the laser line and spherical intersecting becomes large and the length becomes
short. All of the above have a great influence on the extraction of the light stripe center.

The results demonstrate the accuracy under ideal conditions. In application, measurement results
will be affected by environmental factors such as turbidity, illumination, salinity, current, etc. All
of these factors should be considered in future experimental settings. More realistic experiments in
practical situations (i.e., sea water conditions) will comprise our future work. Comparisons between
measurements with different levels of turbidity and illumination will be performed to analyze the
influence on the accuracy and robustness. In general, the effects caused by turbidity is acceptable [27].
Light scattering is increased and the image definition is degraded. A larger power laser may be
a solution.

At present, the system in this paper can perform underwater scanning and obtain a 3D point
cloud. All radii and distance data in the experiments were obtained with commercial software fitting.
An algorithm that can automatically separate rule shape objects from the view field point cloud and
perform the surface shape and fitting is under development and experimental testing. The algorithm
focus on general objects with irregular shapes will also be considered.
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